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Chapter 1

Introduction

The thesis disclosed here is framed in the Industrial PhD program of the Generalitat de Catalunya. The

work is then developed in a collaborative framework between the Institut de Robòtica i Informàtica Indus-

trial from the Universitat Politècnica de Catalunya (IRI CSIC-UPC ) and the company PAL Robotics.

The goals of the research plan are aligned with the mid-term requirements of the company.

1.1 Overview

Since a few years we see an acceleration in the development and spreading of mobile robots evolving

alongside humans both in public and private spaces. Automation has began decades ago in industries

such as the automotive industry with in-situ robots (e.g. robotics arms). Despite a rapid growth due to

the extremely structured environment of factories and warehouses limiting the uncertainty of the envi-

ronment to a limited set of well established rules, integration happened almost exclusively by modifying

the environment (metal cage, painted railway etc). Robots were strictly separated from workers in order

to prevent any dramatic accident. The current novelty lies in the mobility aspect of the robots. With the

current advances in compliance, mapping, perception, together with the interest of the public, robots are

slowly but surely getting out of their metal cage.

This evolution obviously raises many different challenges but also legal and ethical concerns, we focus

in this work on one of the fundamental problems in Robotics: Navigation.

1.2 Problem Statement

Although service robots begin to appear in semi-structured public spaces such as shopping malls or

museums, their presence is still unusual. Most of the time a robot appears to the public, it is quickly

surrounded by a crowd of people being curious leading to a partial or complete occlusion of its sensors.

In this condition the robot is nearly blind and naive mapping methods fail to localize the robot. Such

situation, as depicted in Figure 1.1, highlights the difficulties of dynamic environments.

Before being able to cope with the fairly unstructured and dynamic environment that homes are,

they are going to be massively deployed in semi-structured public spaces (hospitals, retail stores, malls,

museums ...). To do so, their reliability together with their capacity to sense and adapt to dynamic scenes

1



must be improved both for people-safety and long-term unwatched deployment. To adapt to dynamic

environment, robots must be able to recognize places despite static and/or dynamic changes (change in

room furniture, people passing by, seasonal change ...). Moreover, since spaces as those aforementioned

are commonly very large, robots must then be able to create, maintain and update a fairly large map.

Figure 1.1: The REEM Robot
surrounded at a fair.

Another type of difficulty encountered leading to erro-

neous localization is related to the nature of the environ-

ment and the technology of the sensors used to apprehend

it. Certain materials can absorb, refract or reflect the beam

of a Laser Range Finder (LRF) (i.e. black paint, windows,

mirrors), whereas entire room can lack of visual features (i.e.

uniformly painted wall) making cameras almost useless for

navigation purpose. This motivates the use of several differ-

ent types of sensors at a time.

1.3 Objectives

The main objective of the thesis is to investigate novel meth-

ods for multi-modal Simultaneous Localization and Mapping (SLAM). These methods must ensure the

robustness over time of the overall navigation framework as they will be implemented on commercially

available service robots which are deployed in real environments.

Most modern robots feature several different sensors allowing for a redundancy in the sources of

displacement sensing (odometry) together with a diversity in the perceived environment’s features. We

aim at exploiting both these aspects in order to tend toward a robust continuous SLAM system.

Moreover, whereas SLAM research has moved toward richer sensor such as cameras or 3D LRF,

many robots still use 2D LRF sensors for navigation, especially mobile bases for industrial applications. A

consequence of the shift of interest to different sensors is that current solutions to planar LRF-based SLAM

do not benefit from the latest advances and concepts developed for their visual counterparts. We then aim

at developing algorithms that adapts some of the latest key improvements to planar LRF-based SLAM.

The main objectives are as follows:

- Develop a local optimization scheme for LRF-based SLAM which aims at refining the estimated
local odometry together with the estimated local map.

- Integrate the redundancy of mobile-base odometry sources in order to bolster the SLAM framework
against misestimation, algorithm divergence or critical failure.

- Improve the recognition of places using multi-sensors data to diminish the false positive recognition
rate. Such recognition can be used for both re-localization and/or loop-closure.
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1.4 Expected Contribution

In order to meet the above-mentioned objectives, at first a comprehensive in depth overview of the state-

of-the-art must be studied and compiled, to contribute with novel solutions.

The aim is at bolstering a continuous SLAM algorithm allowing robots to constantly adapt to dynamic

environments during long deployment.

To that end, we expect to provide means for exploiting robots sensors complementarity and redun-

dancy both for improving and make robust the estimation of the trajectory; and the recognition of

past visited places. Key concepts and algorithms drawing inspiration from those encountered in Visual-

SLAM (V-SLAM) are going to be formalized, developed and evaluated for LRF-based SLAM.

1.5 Resources

PAL Robotics

Founded in 2004, PAL Robotics is a worldwide leading company in biped humanoid and service robots

based in Barcelona. Aiming at enhancing people’s quality of life, PAL’s team is composed of passionate

engineers that creates research platforms as well as service robots for tasks such as inventory making.

Since 2004 and the release of first version of the REEM-A robot, PAL Robotics developed several

robotic platforms including:

- REEM-A – officially released in 2005 it won the following year the walking challenge of the
RoboCup.

- REEM-B – the strongest robot of its time since it could carry a load about 20% of its own
weight.

- REEM-H1 – the first wheel-based mobile humanoid robot of the company.

- REEM – the second wheel-based mobile humanoid robot and one of the current platforms.

- REEM-C – a human-size biped humanoid robot.

- Pmb2 – a mobile base platform developed targeting both industry and research needs.

- TiaGo – Take it & Go. A mobile manipulator that adapts to research needs.

- StockBot – a service robot that ease inventory making by means of RFID technology.

- Talos – a human-size biped humanoid robot and one of the most advanced platform in the
world. It is the last born robot of PAL family.

The software developed during the thesis will mostly be tested and used both on the TiaGo and StockBot.

Moreover the company provides a workstation connected to their internal network and a complete access

to their software infrastructure.
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Figure 1.2: PAL’s robot family.

Institut de Robòtica i Infomatica Industrial

The university provides access to their under-development SLAM framework. This library, named Windowed

Localization Frames (WOLF) aims at solving localization problems in mobile robotics, such as SLAM,

map-based localization, or visual odometry. It is mainly a structure for having the data accessible and

organized, plus some functionality for managing this data

1.6 Plan Outline

The remainder of the report is structured as follows:

- Chapter 2 gives an overview of the state-of-the-art.

- Chapter 3 describes the preliminary work and characterizes a work-plan.

- Chapter 4 draws a time frame planning.
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Chapter 2

State-of-the-Art

2.1 The SLAM Problem

For a mobile robot, SLAM is the process of concurrently building a representation of the environment,

a map, and estimating its own localization in this map. The acronym actually encompasses three main

complementary problematics:

- Mapping - the problem of the representation of the environment as the robot perceives it from

its sensors readings.

- Localization - the problem of the localization of the robot within the aforementioned representation

of the environment.

- Planning - the problem of finding a feasible trajectory between at least two configurations in a

map.

These complementary problems are extensively active research areas and are fundamental in the sense

that many high level tasks depend on them. How could a robot bring us a drink, clean a room or be a

guide in a museum if it does not know its environment, what is its state in this environment nor how to

move in it ?

Each one of the aforementioned problems can be sub-divided further into specific sub-problems such

as the distinction between Localization and Re-Localization.

Addressing both Mapping and Localization together leads to the so called SLAM algorithm.

Tremendous efforts and progress characterized the past few years of the SLAM community, especially

in its branch employing cameras, also called V-SLAM. Nowadays state-of-the-art algorithms are able to

accurately localize a robot online and produce rich representation of the environment, by means of a

textured point cloud for instance. Despite those impressive results and an inside joke stating that SLAM

is solved, the overall SLAM framework is still very challenged by the possible combinations of:

- Robots

– dynamics : mobile-base, biped, Unmanned Aerial Vehicle, Autonomous Underwater Vehicle ...
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– available sensors : rotary/linear encoders, RGB/D/event-camera, LRF, Inertial Measurement

Unit (IMU), radars ...

– computation resources : one/many cores, cloud

- Environments

– indoor : warehouse, museum, private house ...

– outdoor : city, wild, underwater, space ...

- Task driven specifications

– precision of the localization and/or map

– size of the map

– communication resources

But also by the Curse of parameters. 1

SLAM is a family of algorithms which encompasses different approaches (e.g. Filtering-based, Optimization-

based) and as many different sub-problems as aforementioned scenarios.

They are usually presented as composed by two main components, a front-end and a back-end. The

front-end manages the sensors raw data, extracts, interprets and organizes information in order to build

a mathematical representation of the problem which can then be solved by the back-end.

Previous to detailing further, we operate a slight distinction of this representation to propose one that

better fits the reality of the implementation of SLAM algorithms. Indeed, the front-end is composed of

two main sub-modules which operate at different pace. The first sub-module aims at tracking the robot

current state in the concurrently built map representation, hence it must be able to operate at sensor-

frame performing short-term data association. The second module on the other hand performs long-term

data association, trying to recognize places visited by the robot in the past history of the environment

exploration. This operation is usually time and computation expensive therefore must not prevent the

tracking from operating in real-time. It can be summarized as follows:

1. Core module - building the actual estimation problem and eventually solving it.

2. Odometry module - tracking the sensor/robot motion and selecting information to be added to the

overall problem.

3. Loop-closure/re-localization module - detecting loop closures and re-localizing the sensor/robot.

Most modern SLAM algorithms such as [1, 2] rely on the parallelism of these three modules.

1Analogous to the Curse of dimensionality, it encompasses the problems of having highly parametrizable algorithms
leading to a necessary expert fine tuning for a particular use, environment, scenario etc.
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2.2 SLAM Formulation

The SLAM problem has known several formulations and solutions over the years. In this section are given

references to some of these formulations and further details the optimization-based formulation which has

become the de-facto standard SLAM formulation. The reader can find exhaustive and historical reviews

of SLAM in [3, 4, 5, 6, 7].

Notation

The SLAM problem is best formulated in terms of probabilities, thereafter the following notation are

used:

at given time t,

- xt - A state vector representing the robot position and orientation - e.g. xt = [x, y, θ] ∈ R2. It may
include extra variables such as the robot velocity.

XT = x0, x1, ..., xT The history of robot poses for t ∈ [T0, T ].

- ut - A control signal executed at t− 1 inducing the robot motion to xt

UT = u0, u1, ..., uT The history of input commands.

- ln - A state vector representing a landmark position and orientation.

L = l0, l1, ..., lN The set of all landmarks.

Lt = lt0, lt1, ..., ltn The set of all landmarks observed at time t.

- zt ,n - A measurement of landmark ln at xt .

ZM = z0,N , z1,N , ..., zM,N The set of all observations.

The robot state vector update is a Markov process depending only on the robot previous robot state

and the input control command:

P(xt|xt−1, ut)⇔ xt = f (xt−1, ut, vt), vk ∼ N (0,Σv) . (2.1)

where f is usually non-linear and models the robot kinematics and vt is a perturbation considered Gaussian

with zero-mean and covariance Σv.

The observation model describe the probability of making an observation zt knowing the robot and

landmarks poses:

P(zt|xt, L)⇔ zt = h(xt, L) + wt, wk ∼ N (0,Σh) . (2.2)

where h is usually non-linear and models the geometry of the observation and wt an additive noise

considered Gaussian with zero-mean and covariance Σh.

The complete probabilistic SLAM model, that is, at time t, the joint posterior density of the landmarks

and the robot pose given the history of input controls commands and the observations is then:

P(XT , L|Zt, UT , x0) . (2.3)

This formulation, exemplified in Fig 2.1, is known as Full SLAM as it estimates the whole history of the

robot and landmarks poses as opposed to early solution that only kept few landmarks and the current
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robot poses [8]. In the case one estimates only the robot poses history by marginalizing the landmarks,

such formulation is know as Pose SLAM [9, 10, 11, 12].

ut+1

ut+2

xt

xt+1zt,i

zt+1,j

lj

li

Figure 2.1: The SLAM structure. The hollow figures correspond to the truth whereas filled correspond
to the estimates.

2.2.1 Core

During what [7] refers to as the classical age, early solution to SLAM used filtering-based algorithms to

solve the problem such as Extended Kalman Filter (EKF) [13, 14, 15], particle filters [16, 17] or later

on Extended Information Filter (EIF) methods were proposed [9, 12].

Nowadays, the de-facto standard SLAM formulations is known as Graph-based SLAM.

Graph-based SLAM

The SLAM problem may also be solved through non-linear sparse optimization. In this case it is expressed

graphically, the robot and landmarks locations are nodes of a graph, tied together by edges representing

their relative relationship - a motion (eq. 2.1) or an observation (eq. 2.2). Such representation is depicted

in Figure 2.2.

Factor Graph As mentioned in the previous paragraph, the SLAM-graph is only constituted of two

types of nodes: state nodes connected to a small subset of other state nodes through constraint nodes.

Such bipartite-graph representation, as depicted in Fig. 2.2 is called the Factor graph.

Without further derivation and recalling that the noises in Eq 2.1 and Eq. 2.2 are Gaussian noises,
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the SLAM problem eq. 2.3 can be written in a quadratic form,

log P(XT , L|Zt, UT ) =
∑
t

[xt − f(xt−1, ut)]
T Ωf [xt − f(xt−1, ut)]︸ ︷︷ ︸

motions

+

∑
t

[zt − h(xt, Lt)]
TΩh[zt − h(xt, Lt)]︸ ︷︷ ︸

observations

+ const .
(2.4)

From the probabilities in Eq 2.1 and Eq. 2.2 the following factors Φ are derived:

Φt = P (xt|xt−1, ut) ∝ exp

(
−1

2
[xt − f(xt−1, ut)]

TΩf [xt − f(xt−1, ut)]

)
.

Φn = P(zt|xt, Lt) ∝ exp

(
−1

2
[zt − h(xt, Lt)]

TΩh[zt − h(xt, Lt)]

)
.

(2.5)

where Ωf = Σ−1f and Ωh = Σ−1h are the information matrices of the observed data. Eq. 2.5 leads to a

unique form of the error formulation:

ek(xt−1, xt) = f(xt−1, ut)− xt .

ek(xt, ln) = h(xt, ln)− zn .
(2.6)

Φk = exp(−0.5 eTk Ωkek) . (2.7)

as exemplified in the Fig. 2.2-Right. Finally, the SLAM problem is reduces to solving the equation:

x∗ = argmin
x

K∑
k=1

ek(xi, xj)
TΩke(xi, xj) . (2.8)

where the summed terms are of the form of the Mahalanobis distance.

x0 x1

u1 u2 u3

x2 x3

z1 z2 z3 z4 z5 z6 z7

l1 l2 l3 l4 l5

1 2 3

0 1 2 3

4 5 6 7 8 9 10

4 5 6 7 8

Figure 2.2: A factor graph representation of the SLAM structure of Figure. 2.1. Left : Nodes representing
known data have been replaced by factors (squares) which depends on the unknown variables or states
(circles). Right : The same graph. Unknown states are labeled with a single index i ∈ [0, 7] and factors
are labeled with a single k ∈ [1, 10].
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Solving the SLAM problem As mentioned in sec. 2.2.1, the SLAM problem can be solved by means

of iterative non-linear optimization. Rather than detailing the optimization algorithms, which is beyond

the scope of this report, here are provided some references shall the reader requires further insights.

Since the SLAM’s support matrix is sparse, the methods employed in the literature to solve the

problem aims at taking benefits for the sparsity of the problem. The first approach is based on a sparse

QR factorization as in [18] and was further developed to an incremental versions in [19, 20]. The same

objectives can be fulfilled with the Cholesky factorization [21, 22], reaching similar levels of performance.

2.2.2 Odometry

A key issue in robotics navigation is the ability of the robot to estimate its current pose in an unknown

environment, the so called self-localization. The odometry module, generically expressed by Equation 2.1,

aims at providing an estimate of the robot state at a given time with respect to the previous one. It may

estimates the robot displacement from an input control command and/or from its sensors readings.

Additionally to the integration of the motion, one can also integrate the uncertainty associated. It

is done by linearizing the motion model (f in Equation 2.1) and integration a Gaussian estimate of the

state x ∼ N (x̂,Σ) as follows:

x̂← f(x̂, u, 0) . (2.9)

Σs ← JsΣsJ
T
s + JvΣvJ

T
v . (2.10)

Where Js, Jv are respectively the Jacobians of f() with respect to x and the perturbation v and Σs the

covariance matrix x.

Differential Drive Odometry

Odometry is a composition of estimated relative transforms - local pose increments. Given the control

signal u = [δp, δθ] ∈ R3, Equation 2.9 is such that:

p← p+R{θ}(δp+ δpt) . (2.11)

θ ← θ + δθ + δθi . (2.12)

where R{θ} is a 2D rotation matrix associated with the angle θ. The Equation 2.11 correspond the a

composition of 2D rigid-body transforms between the robot previous pose and the odometry increment.

The differential drive model is derived for a robot such that it has two actuated wheels, one on each

side of its base, with its origin frame located at the center of the wheels axis.

The motion is usually measured by means of wheel encoders reporting incremental wheel angles -

δψL,δψR - every time step δt. In this model the robot is parametrized by three parameters, its wheels

radii rL,rR and the length of the axis joining both joints d.
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Assuming δt to be small, the increment angle δθ is small too, then the motion increment ut is so that:

δx =
rL ∗ δψL + rR ∗ δψR

2
. (2.13)

δy = 0 . (2.14)

δθ =
rL ∗ δψL − rR ∗ δψR

d
. (2.15)

The uncertainty covariance Σf used for uncertainty integration in Equation 2.10 is obtained from the

uncertainty of the wheel angle measurements as follows:

Σf = JfΣψJ
T
f . (2.16)

with Σψ the wheel measurement covariance:

Σψ =

[
σ2ψl

+ α2 0

0 σ2ψr
+ α2

]
, σψl

= kl ∗ v, σψr = kr ∗ ω, α = (µl + µr) ∗ 0.5 . (2.17)

where kr and kl are wheels intrinsics parameters, α acts as an offset equal to half the wheels encoders

resolution µl and µr.

In case δθ is not small the contribution of the rotation angle on the transversal translation δy must

be taken into account. Yielding the following:

δx =
rL ∗ δψL + rR ∗ δψR

2

sin(δθ)

δθ
. (2.18)

δy =
rL ∗ δψL + rR ∗ δψR

2

1− cos(δθ)

δθ
. (2.19)

δθ =
rL ∗ δψL − rR ∗ δψR

d
. (2.20)

Twist Control Model A differential-drive model is typically controlled via linear and angular velocities

in the robot frame also called twist [v, ω]. Assuming constant velocity inputs over [t, t+1], the robot moves

along an arc of circle of radius r = vt/ωt. The twist control is expressed in term of motion increment ut

such as:

δx = r sin(δθ) . (2.21)

δy = −r(cos(δθ)− 1) . (2.22)

δθ = ωδt . (2.23)

with the associated Jacobians:

Jm =


sin(δθ)
ω

v
ω (cos(δθ)− sin(δθ)

ω )
1−cos(δθ)

ω
v
ω (sin(δθ) + 1−cos(δθ)

ω )

0 1

 . (2.24)
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Js =

1 0 v
ω (cos(δθ)− 1)

0 1 v
ω (sin(δθ))

0 0 1

 . (2.25)

where Jm is the Jacobian w.r.t the measurement and Js the Jacobian w.r.t the robot state.

In a similar manner as previously, in case the robot follows a straight trajectory requires special

consideration. Since ω = 0, the arc circle radius is so that:

r =
v

ω
=
v

0
→∞

Indeed, a line is a degenerate case of a circle which radius → ∞. This case is handled by means of an

approximate integration using a second order Runge-Kutta integration:

δx = vδt ∗ cos(ωδt ∗ 0.5) . (2.26)

δy = vδt ∗ sin(ωδt ∗ 0.5) . (2.27)

δθ = ωδt . (2.28)

with the associated Jacobians:

Jm =

cos(ω ∗ 0.5) −0.5 ∗ v ∗ sin(ω ∗ 0.5)

sin(ω ∗ 0.5) 0.5 ∗ v ∗ cos(ω ∗ 0.5)

0 1

 . (2.29)

Jp =

1 0 −0.5 ∗ v ∗ sin(ω ∗ 0.5)

0 1 0.5 ∗ v ∗ cos(ω ∗ 0.5)

0 0 1

 . (2.30)

where Jm is the Jacobian w.r.t the measurement and Js the Jacobian w.r.t the robot state.

LRF-based Odometry

This estimation can be addressed by tracking a sensor pose directly from its readings. Laser-scan based

odometry is the process of estimating the robot trajectory from consecutive LRF readings. Given two

consecutive readings, the odometry algorithm is two folds; first compute a scan-to-scan data association,

then estimate the relative transform that aligns the associated data. Doing so over time allows one to

compute pair-wise relative transforms which once integrated provides an estimate of the robot trajectory.

In the literature this problem has been addressed in many ways, such as algorithm similar to the Iterative

Closest Point (ICP) [23]. Other methods constitute direct variations of the original ICP formulation [24]

such as [25], which uses a custom metric in place of the Euclidean distance to lessen the increase of

distance due to the sensor rotation. Other variants include Iterative Closest Line (ICL) proposed in [26]

whose error function relies on a point-to-line distance rather than point-to-point as in the classical ICP.

Other LRF-based odometry estimation algorithms include feature-based data association [27] which ex-

tracts features from the range data. Doing so they discard the need for an iterative process inherent
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of ICP-based methods. Rather than considering the range-reading in the Cartesian plane, [28, 29] per-

form the data association in polar coordinates. More recent methods align consecutive scans by means of

correlation [30]. The scans are projected on 2D occupancy grids, which are then correlated. Recently, a

formulation of the Optical-Flow has been successfully proposed for 2D laser scan [31].

2.2.3 Loop-Closure

Loop closure detection is an essential module of any SLAM system. It is the process of (re)identifying a

place from the corpus of places visited in the past. Unlink the odometry module mentioned in Section 2.1

which estimates the robot pose in short terms, the loop closure module estimates the robot pose against

the global map therefore comparing the current pose against the history of poses.

This module reduces the uncertainty in the estimated map that accumulates during open loop map-

ping. It is exemplified in Figure 2.3. The robot estimated trajectory highlighted with dashes drift over

time. When revisiting a place, the module identify it as being part of its corpus and estimates the relative

transform from the current pose to the identified one (the red segment in Figure 2.3). Doing so it creates

and adds a constraint to the problem allowing to correct the accumulated drift.

This is closely related to the place recognition problem up to the difference that in the case of place

recognition, one only seek for a topological match hence do not necessarily compute the relative transform

between the two matched places.

Tlc

xk

xk

Figure 2.3: A loop closure.

Loop closure detection has been tackled with geometric methods (see e.g. [32]), correlation methods

(see e.g. [33]), or with appearance-based methods. Appearance can be considered either globally [34,

35, 36, 37] or as a set of local distinctive features [38, 39, 11] possibly extracted from different sensor

modalities [40]. After the initial work of the computer vision community on the use of Bag-of-Words (BoW)

for object recognition [41, 42, 43], the SLAM community found in BoW an efficient manner to query large

corpus of places visited by a robot while mapping [44, 45], hence its amenity for the solution of the
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loop closure problem. More recently, state of the art visual SLAM algorithms have relied on BoW for

their loop closure and re-localization modules. ORB-SLAM [2] for instance uses DBoW2 [46], whereas

LSD-SLAM [1] relies on FAB-MAP [47].

The reader can find an recent and complete survey of visual place recognition in [48].
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Chapter 3

Preliminary Work

3.1 Preliminary Work

The preliminary work presented here focus on two of the three SLAM module presented in Section 2.1

namely the odometry module and the loop-closure module. We first aim at bringing to LRF-based SLAM

some of the latest concepts developed in V-SLAM, such as local windowed optimization for both trajectory

and map refinement. In a second time we will explore the benefits of fusing sensors to tend to a robust

continous SLAM. Finally our work will focuses on strengthening the accuracy in place recognition.

3.1.1 Odometry

As mentioned in Section 2.1, V-SLAM received a great deal of attention and great advances where made

over the past few years. Following the strategy developed in [49], state of the art algorithms such as [1, 2]

decoupled the odometry estimation from the overall SLAM problem (eventually splitting it in three

modules - see Section 2.1). This particular sub-problem is called visual odometry [50, 51].

LRF-based odometry did not benefited from the novel approach of V-SLAM such as windowed local

optimization [1, 2, 52].

LRF-based Odometry as a Local Pose Optimization

We propose to investigate the benefit of performing a local optimization around the current robot pose

in order to refine the estimated odometry.

Whereas most LRF odometry perform a scan-to-scan matching in order to track the estimated odom-

etry we propose to fit the current scan to N previously pre-registered scans and estimate N−1 transforms

all together. This is known as the global registration problem.

Global registration of multiple point-clouds has been extensively investigated eventually leading to

the formalization of Generalized Procruste Analysis (GPA) [53, 54]. GPA computes the best set of trans-

formations (e.g. Euclidean, Similarity, Affine) relating matched shape data. It can be optimized following

either the Reference-space model (eq. 3.1) or more often following the Data-space model (eq. 3.2) [55].

The latter alternates the computation of a reference shape (or control shape) from the matched shape
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data and the computation of transformations relating each date to the reference.

ER(T,M) =
∑
‖Ti ·Di −M‖ . (3.1)

ED(T,M) =
∑
‖Di − T−1i ·M‖ . (3.2)

With M the reference shape, Di the ith data shape and Ti the rigid transform that maps Di onto M .

The GPA formulation is well suited to the iterative nature of ICP and [56] proposes an embedding

of GPA Reference-space model within the iterative process of ICP. It has to be noted that in Euclidean

transformation case, both model’s cost are identical [55].

However, since the Data-space model formulates the sensor noise as occurring in the observations we

choose this formulation to later include the sensor model parameters as variables of the optimization

process. For that reason we use Nonlinear Least Square (NLS) on the SE(2) manifold to solve 3.2.

As aforementioned, the GPA algorithm is composed of three parts. First the data association aims

at finding the correspondences between two scans to be registered. This is done by mean of a nearest

neighbor search for which we plan on using the metric-based point-to-point. In the plan, a sensor pose is

represented by an Euclidean transformation defined by a vector q = (x, y, θ). In the plan the metric-based

point-to-point measure [25] defines the norm of q as follows:

‖q‖ =
√
x2 + y2 + L2θ2 . (3.3)

With L a positive real number homogeneous to a length.

Given two points p1 = (p1x, p1y) and p2 = (p2x, p2y) the distance between p1 and p2 derived from 3.3 is

as follows:

dmb(p1, p2) =

√
δ2x + δ2y −

(δxp1y − δyp1x)2

p21x + p21y + L2
. (3.4)

where δx = p2x − p1x and δy = p2y − p1y.
This distance implies that the iso-distance curves relative to dmb(p1, p2) are ellipses centered on p1 thus

L acts as weighting factor between translation and rotation. Without further development, Equation 3.4

3D counter part is detailed in [57].

The second part of the GPA algorithm is the computation of the reference shape. Following the work

of [56] the point-to-point correspondences are established between every combination of pairs of scans

by means of a nearest neighbor search using the distance metric in Equation 3.3. Correspondences are

pruned in order to keep only those that are mutually matching in a given pair of scans (Figure 3.1a). From

the pruned correspondences we seek for independent sets of matched points as shown in Figure 3.1b. To

establish independent sets one may look at the problem as a sparsely connected graph where every points

of every scans represents a node and mutual matches represent edges. Independent sets can then be seen as

graph cliques, thus been established using algorithm for finding all maximal cliques in an undirected graph

[58, 59]. One may also approximates cliques as strongly connected components for less computationally

expensive algorithms such as [60]. Finally, for each independent set a centroid is computed and new

matches from each point of a set to their corresponding centroids are computed (Figure 3.1c). The set of

all centroids constitutes the reference shape.
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The third part of the GPA algorithm is then solving Equation 3.2 given the reference shape computed

at the previous step.

Notice that whereas the data association is performed using Equation 3.4, in the optimization process

we use the stricter Euclidean distance leading to a mixed-ICP such as proposed in [61].

The overall algorithm is summarized in Algorithm 1.

(a) Point-to-Point matching.
Dashed arrows mark non-mutual
matching.

(b) Selected independent sets. (c) Centroids correspondences.

Figure 3.1: Independents sets computation steps highlight between three scans.

input : currentScan, the currently evaluated scan.
input : keyScans, N key-scans.
output : T , estimated robot pose.
parameter: maxIteration, maximum number of iterations

do

for (i← 1, j ← 1) to N , i 6= j do
matches [i, j]← FindNearestNeighbor(keyScans [i], keyScans [j]);

end

[controlScan, controlMatches ]← ComputeControlScan(matches);

[T1, ..., Tn−1]← EstimatesRTS(controlScan, controlMatches);

converged ← HasConverged([T1, ..., Tn−1]);

while not converged or maxIteration;

if IsKeyScan(Tn−1) then
AddKeyScan(currentScan);

end

return currentKeyPose ·Tn−1;
Algorithm 1: Pose optimization LRF odometry

LRF-based Odometry as a Joint Optimization of Laser Readings and Robot Poses

The algorithm presented in Section 3.1.1 can be further extended toward a complete local optimization.

We propose to include in the optimization problem the refinement of the laser readings. By doing so,

we expect to to compensate for the sensor noise which in turn will lead to refined readings hence clearer

occupancy-grid - in the sense of reducing its entropy. We plan on following the line of work presented

in [62]. In this work the authors model the relation between the environment and the sensor readings using
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a surface-based sensor model. Such model is twofold. First the environment is assumed to be man-made

hence that it is mainly composed of smooth surface locally approximated by a tangent line segment.

This tangent is approximated by the smallest eigenvector of a covariance matrix centered on the laser

reading of interest and capturing its neighborhood. Secondly, the sensor model is so that each laser beam is

considered to have a conic shape. Such assumption implies that the beam do not hit the surface in a single

point but rather on an elliptical surface. The ellipse’s shape is then driven by three parameters, the laser

aperture together with the distance separating the sensor to the surface it hits and the incidence angle to

the surface. The distance is therefore averaged over large region, leading to less accurate measurements.

Unlink [62] whom performs a global optimization off-line after an initial optimization over the Pose-graph,

we aim at performing the joint optimization online within the local optimization window used to compute

the multi-scan ICP.

3.1.2 Loop-Closure

The loop closure module is probably the stricter module in terms of precision of the overall SLAM frame-

work. Indeed wrong loop-closure may have a catastrophic effect on the problem estimation while outlier

loop-closures are difficult to identify and filter-out. Its precision must then been strengthen targeting

99 + % precision while maintaining a satisfactory recall so that as many loops as possible are closed. 1.

Feature Comparison for BoW-based Visual Place Recognition

As mentioned in Section 2.2.3 modern V-SLAM rely on the BoW scheme for their loop-closure module.

In the BoW framework, the objective is to find a document in a database with the largest similarity

score to a query document. For that end, it includes two distinct elements. First, a vocabulary, W =

{w1, ..., wk}, composed of cluster centers or words, wk, representing the feature space. The vocabulary of

words is built offline from a dataset unrelated to the later use by mean of a hierarchical k-means [43, 63].

The second element consists of a database composed of documents, D = {d1, ..., dN}, where each document

dj represents the BoW associated to a sensor reading at a known pose of the robot in the current map.

That is, the set of local features in the vocabulary detected in a given sensor reading and their local

coordinates.

The database keeps a record of each word occurrence in every document by means of two frequency

scores. The term frequency (tf ) refers to how frequent a single word is within a document, and the inverse

document frequency (idf ) refers to how frequent is a single word in the whole database. Given a word wi

in document dj , these frequencies are computed as follows:

tf ij =
nij∑
i nij

, (3.5)

idf i = log

(
|D|∑

j |nij > 0|

)
, (3.6)

where nij is the occurrence of the word i in document j, |D| the size of the database and |nij > 0|
evaluates to 1 if wi occurs in dj and 0 otherwise. The weight of every word wi in each document dj is

1With precision = true positive
true positive + false positive

and recall = true positive
true positive + false negative
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given by its tf-idf score, which is computed with

xij = tf ij · idf i . (3.7)

A document is characterized by its signature, a vector containing its tf-idf weights, sigj = [xj1, xj2, ..., xjk]
T .

The document comparison is performed by computing the cosine similarity of their signatures:

sim lm =
sigTl sigm
‖sig l‖‖sigm‖

. (3.8)

Given a new sensor reading (a query), its feature descriptors are extracted, quantized into words, and

its signature compared to those of every document in the database; the N most similar documents are

returned by the BoW scheme.

Finally, a consistency check needs to be made to assert which if any of the returned documents is a

good match to the query sensor reading. In the case of visual place recognition, the consistency check can

be for instance the estimation of an Essential matrix, a trifocal tensor [64] or a PnP projection [65].

Following the work of [66] we first aimed at producing an extended comparison of visual local features

for BoW-based place recognition. The comparison helps to better understand how the choice of a given

features influence the recognition performance, together with the execution time. The comparison is

perform against 15 meaningful combinations of the point-based local feature algorithms available in the

OpenCV library [67]. Table 3.1 summarizes the available algorithms while Figure 3.2 lists the tested

combination. The experiments were conducted on the Kitti dataset [68] and can be summarized as follows:

- A large and random image dataset is used to train the BoW vocabulary for each feature type.

- The Kitti sequences are pre-processed in order to select a subset of images that are going to compose

the BoW databases.

- Each sequence is processed by the BoW framework for each feature type. The BoW geometrical

check if perform by estimating an Essential matrix in a Random Sample Consensus (RANSAC)

scheme. Given the images position ground-truth are provided by the dataset, the precision and

recall scores are computed for each feature type.

Detectors orb sift surf KAZE akaze brisk mser fast ed agast

Descriptors orb sift surf KAZE akaze brisk daisy latch rootsift brief

Table 3.1: Local features detectors and descriptors available in OpenCV.

All user-defined parameters of the RANSAC scheme were set so that the precision scores are above 99%

as one would expect in a SLAM loop-closure context. Early results show that despite its common usage,

the ORB feature may not the best suited for this task. The combination of the AGAST detector and the

BRIEF descriptor increases the recall by ∼ 10% for a very similar cost in terms of execution time. These

results are shown in Figure 3.2. Notice that the four combinations of detector and descriptor performing

better than AGAST+BRIEF are an order of magnitude slower.
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Figure 3.2: Comparison of OpenCV features for BoW-based place recognition recall at 99+% precision.

A related media is available online:

TiaGo visual place recognition. : https://www.youtube.com/watch?v=jDFwzBNhNek

BoW-based Loop-Closure with 2D Laser Scan

Unlike V-SLAM, the following focuses on the creation of a BoW for the treatment of 2D laser range data.

There is little published work on appearance-based place recognition using 2D laser scans, possibly due to

the fact that reliable feature detectors/descriptors were developed later than their image based counter-

parts. The local feature Fast Laser Interest Point Transform (FLIRT) is robust to scale and orientation

changes [69] and thus allows a direct application of BoW for the problem of place recognition [70]. As for

global descriptors, the Geometrical Landmark Relations (GLARE) [71] encodes the geometrical relations

of FLIRT corners in an histogram of relative distance over relative orientation. Extending GLARE, the

Geometrical Surface Relations [72] descriptor considers every reading of the 2D laser scan rather than

extracted corners.

In contrast with other sensing modalities, 2D LRF data present a natural (counter-)clockwise ordering

of its local features which can be easily exploited to reinforce the computation of scan similarity. We hence

draw some empirical observations regarding this ordering, and use them in an algorithm that computes

the best feature correspondence assignment between two scans.

The observations are the following, given local features extracted from a 2D scan (quantized into

words) they are ordered clock-wise in a sequence. This ordering must remain the same for a given scene

observed from slightly different viewpoints. As the viewpoint change increases, features can disappear,

shift their location in the sequence or reorder.
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Feature Sequence Encoding as a Hidden Markov Model Feature matching is done directly on

words. So, a given descriptor quantized into a particular word w, can only match features also quantized

as w and in no case could match another word in the vocabulary. This is exemplified in Fig. 3.3 (top).The

problem of scan alignment is then analogous to finding the path that maximizes the sequence of feature

matches in a Hidden Markov Model (HMM). Consider the query laser scan li and its extracted words

w1i, . . . , wNi as the set of states SN in the model. Consider also the candidate match lj with its words

w1j , . . . , wMj as a set of observations OM . We can define our HMM such that:

- We have equal initial probabilities δsn = 1
N .

- The transition from one state to another solely goes forward with respect to the clockwise ordering

of the states. Self transitions have a lower probability to enforce the importance of alignments

φsn|sn = 0.5
F , φsn|sn+x

=
1+ 0.5

F−1

F , and φsn|sn−x
= 0, where F is the number of states following the

currently evaluated state in the ordered sequence.

- The output probability is defined such that a word mismatch has null probability whereas a word

match has equal probability. Hence our emission probabilities are θsn|om = 1
C for a match, and

θsn|om = 0 for a mismatch, where C is the number of matches of the currently evaluated word.

Fig. 3.3 (middle) gives an unnormalized representation of the HMM produced by the matching of

words in scans li and lj . Black downward pointing arrows indicate feasible transitions, and red upward

pointing arrows indicate non-feasible transitions. Each cell is then filled by the product φsn−x|sn · θsn|om ,

where sn is the currently evaluated state, sn−x is the previous most likely state and θsn|om the output

probability. Columns are filled recursively based on the previous iteration.

Unlike [73], the HMM is built based on the inner ordering of two independent set of features extracted

from raw sensor readings, whereas [73] builds a HMM based on the inner ordering of two independent

sequences of key-frames, hence not impacting the frame-to-frame similarity measure. Once the HMM is

built, the goal is then to find a sequence of states that maximizes the probability of a path across it.

The Viterbi Algorithm In order to find the most probable path at a reasonable cost in terms of

computation, we propose the use of the Viterbi algorithm [74]. This dynamic programming algorithm

searches recursively for the most likely sequence of states given a sequence of events, by computing for

each observation the partial probability with respect to the previous state that optimally induced the

current state. Such sequence is called the Viterbi path. It is commonly used in speech recognition, speech

synthesis and decoding [75, 76].

Crossing edges in Fig. 3.3 (top) highlight mismatches. These might occur either because different

features are quantized to the same word (e.g., words C and F ), or because the feature is on a moving

object. The work in [70] does not discard such mismatches while constructing the offset histogram, and

thus they can not be taken into account to compute a consistent relative transform. Thanks to the

constraint of forward state transition, the Viterbi algorithm naturally discards such crossing edges. Note

that in our example, crossing edges for the sequence C-D-E can be resolved in two different ways, either

by removing the match C and keeping D and E, or removing the latter keeping only C. The Viterbi

algorithm maximizes the sequence of states in the Viterbi path and hence it would prefer, in this case, to

keep matches D and E and discard C.

21



S
ta

te
s

Observations

A B C D E F F G H I

Y A B D E C F F H J K L

J

Y A B D E C F F H J K L

A

B

C

D

E

F

F

G

H

I

J

0

1

1*1

1

1

1

1

1 0.5

0.5 1

1

1

1*0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

00000000000

0 0 0 0 0 0 0 0 0 0 0

00000000000

0 0 0 0 0 0 0 0 0 0

0000000000

0 0 0 0 0 0 0 0 0 0 0 0

00000000000

0 0

0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 0

0 0

0

Clockwise-ordered words

xi

xj

A A B D E E F F H J J J

Final Viterbi’s Path

Figure 3.3: Top: Clockwise ordered
words of two scans and their

matches. Middle: The resulting
hidden Markov model. Each cell

represents the product
φsn−x|sn · θsn|om e.g cells Y-A &

A-A. Green squared cells represent
the best path across the complete

graph. Bottom: The final sequence
of states given the observations On

Scoring Once the Viterbi path is obtained, the candidate

is scored based on three criteria:

- the number of correct matches that have not been dis-

carded by the Viterbi algorithm,

- the number of sequences of consecutive words that have

a correct match, and

- the distribution of matches in the laser scans. The wider

the better.

The second point is similar to the concept of phrases

in [70], where a phrase represents a sequence of consecutive

words, analogous to a n-grams model.

Considering such sequences and weighting them accord-

ing to their length we can add an extra layer of constraints

to our geometric check. These criteria evaluate respectively

to: scorejk = |M |
|C| , where |M | is the number of correct

matches and |C| the number of features in the candidate scan;

weight jk = |CM |
|C| , where |CM | is the number of sequences of

consecutive correct matches, e.g., sequences A-B & D-E in

Fig. 3.3 (top); and ratiojk = Idr−Id l
|C| , where Idr and Id l are

the indices of the rightmost- and leftmost- correct matches in

the Viterbi path, respectively. These three criteria are aggre-

gated into a final geometric score,

gjk =
scorejk + weight jk

2
· ratiojk . (3.9)

While querying the BoW database, both the tf-idf -based similarity and the geometric score in (3.9) are

computed for each document in the database. The two are then aggregated into a single similarity term,

sgjk = simjk · gjk . (3.10)

This aggregated similarity term is then used to rank BoW candidates instead of the tf-idf -based similarity.

Pose-Graph Database Augmentation In this section we detail a topological augmentation of the BoW

database. By augmentation we refer to the fact of benefiting from common features in adjacent poses in

the pose-graph of our map for the computation of the tf-idf weights. Since the pose-graph is computed

by our SLAM front end, our database augmentation involves no computation overhead.

In pose-graph SLAM, every node holds a robot pose and a sensor measurement, and every edge

between two nodes represents a spatial constraint –a relative transform– usually computed from the

sensor measurements. The most likely map is obtained by jointly optimizing for all pose constraints in

the graph.
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Database augmentation taking the form of a similarity graph has been proposed in [77] and [78] for

the task of image recognition. Graph edges are created by matching image features and asserting an affine

transform between images through RANSAC. Direct edges represent document adjacencies; documents

connected to an adjacent document then represents 2-adjacencies, and so on. The set Ej of adjacencies

of document dj is used to emphasize the tf weight of the document,

mij = nij +
∑
k∈Ej

nik , (3.11)

atf ij =
mij∑
imij

. (3.12)

These normalized scores (3.12) constitute the adjacency tf used as a direct drop-off replacement for (3.5)

in (3.7), so that the tf-idf weight becomes

xij = atf ij · idf ij . (3.13)

While for object recognition the database augmentation is based on object appearance similarity, in the

case of place recognition within a SLAM framework the topological distribution of the places matters.

Since an edge in a pose-graph SLAM is computed from sensor readings and represents a spatial constraint,

it embeds both the appearance-based similarity required by the BoW scheme (consecutive nodes share

some common features) and the topological information that we want to emphasize by the database

augmentation.

Whereas object recognition usually considers a pre-trained database for which an offline database

augmentation can be computed [77, 78], in the case of place recognition within a SLAM framework the

database together with its augmentation are constructed online. Using the SLAM pose-graph built online

by another module of the SLAM framework allows for a database augmentation at no extra cost.

Finally, [78] identifies useful features (features belonging to a transformation inlier set) from the

document adjacencies and discards the others. Since we build the database online, we keep all of them,

as they can become useful later on during mapping.

Implementation The overall aforementioned algorithm have been developed in C++ in such way that

it is agnostic to the SLAM front-end and limits its interaction with the core module to:

- receiving new key-frames’ raw data sensor and its direct adjacency with the previous key-frame.

- informing of loop-closure detections, in the form of pose-graph constraints.

Further Work The overall framework being developed for the use of 2D LRF we now aim at extending

its use to other sensors. Targeting first camera but also 3D LRF, this leads to the the development of

a multi-modal place recognition using several sensors at once, each sensor compensating for each other’s

drawbacks.

Moreover, whereas BoW relies on low-level features extracted from the sensor readings (e.g. corners),

our second line of development aims at using higher-level features such as texture or objects.
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3.2 Publications

The preliminary work presented in Section 3.1.2 has given rise to the following publication.

”Word Ordering and Document Adjacency for Large Loop Closure Detection in 2D Laser Maps”

J. Deray, J. Solà, J. Andrade-Cetto. IEEE Robotics and Automation Letters, vol. PP, no. 99, pp 1-1,

2017. [79]

Abstract – We address in this paper the problem of loop closure detection for laser-based simultaneous

localization and mapping (SLAM) of very large areas. Consistent with the state of the art, the map is

encoded as a graph of poses, and to cope with very large mapping capabilities, loop closures are asserted

by comparing the features extracted from a query laser scan against a previously acquired corpus of scan

features using a bag-of-words (BoW) scheme. Two contributions are here presented. First, to benefit from

the graph topology, feature frequency scores in the BoW are computed not only for each individual scan

but also from neighboring scans in the SLAM graph. This has the effect of enforcing neighbor relational

information during document matching. Secondly, a weak geometric check that takes into account fea-

ture ordering and occlusions is introduced that substantially improves loop closure detection performance.

The two contributions are evaluated both separately and jointly on four common SLAM datasets, and

are shown to improve the state-of-the-art performance both in terms of precision and recall in most of

the cases. Moreover, our current implementation is designed to work at nearly frame rate, allowing loop

closure query resolution at nearly 22 Hz for the best case scenario and 2 Hz for the worst case scenario.

Media related to the publication are available online:

Many BoW-based Loop Closure with Laser Scan only. : https://www.youtube.com/watch?v=EZoCmsXixp0

BoW-based Loop Closure with Laser Scan only. : https://www.youtube.com/watch?v=O4xRdzUYAQs
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Chapter 4

Research Plan Summary

4.1 Work Plan

Figure 4.1: Work plan of the proposed research.
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