
UNIVERSITAT POLITÈCNICA DE CATALUNYA

Doctoral Programme

AUTOMATIC CONTROL, ROBOTICS AND COMPUTER VISION

Ph.D. Thesis

KINODYNAMIC PLANNING AND CONTROL

OF CLOSED-CHAIN ROBOTIC SYSTEMS

Ricard Bordalba Llaberia

Advisors:
Lluís Ros and Josep M Porta

May 2022

Kinodynamic Planning and Control of Closed-chain Robotic Systems

by Ricard Bordalba Llaberia

A thesis submitted to the Universitat Politècnica de Catalunya
for the degree of Doctor of Philosophy

Doctoral Programme:
Automatic Control, Robotics and Computer Vision

This thesis has been completed at:
Institut de Robòtica i Informàtica Industrial, CSIC-UPC

Advisors:
Lluís Ros and Josep M Porta

Dissertation Committee:
Prof. Pablo González de Santos
Prof. Federico Thomas Arroyo
Prof. Steven LaValle

The latest version of this document is available through
http://www.iri.upc.edu/people/rbordalba/Thesis.pdf.

http://www.iri.upc.edu/people/rbordalba/Thesis.pdf

KINODYNAMIC PLANNING AND CONTROL
OF CLOSED-CHAIN ROBOTIC SYSTEMS

Ricard Bordalba Llaberia

Abstract

This work proposes a methodology for kinodynamic planning and trajectory control in robots
with closed kinematic chains. The ability to plan trajectories is key in a robotic system, as it pro-
vides a means to convert high-level task commands—like “move to that location”, or “throw
the object at such a speed”—into low-level controls to be followed by the actuators. In contrast
to purely kinematic planners, which only generate collision-free paths in configuration space,
kinodynamic planners compute state-space trajectories that also account for the dynamics and
force limits of the robot. In doing so, the resulting motions are more realistic and exploit grav-
ity, inertia, and centripetal forces to the benefit of the task. Existing kinodynamic planners are
fairly general and can deal with complex problems, but they require the state coordinates to be
independent. Therefore, they are hard to apply to robots with loop-closure constraints whose
state space is not globally parameterizable. These constraints define a nonlinear manifold on
which the trajectories must be confined, and they appear in many systems, like parallel robots,
cooperative arms manipulating an object, or systems that keep multiple contacts with the envi-
ronment. In this work, we propose three steps to generate optimal trajectories for such systems.
In a first step, we determine a trajectory that avoids the collisions with obstacles and satisfies all
kinodynamic constraints of the robot, including loop-closure constraints, the equations of mo-
tion, or any limits on the velocities or on the motor and constraint forces. This is achieved with
a sampling-based planner that constructs local charts of the state space numerically, and with an
efficient steering method based on linear quadratic regulators. In a second step, the trajectory
is optimized according to a cost function of interest. To this end we introduce two new collo-
cation methods for trajectory optimization. While current methods easily violate the kinematic
constraints, those we propose satisfy these constraints along the obtained trajectories. During
the execution of a task, however, the trajectory may be affected by unforeseen disturbances or
model errors. That is why, in a third step, we propose two trajectory control methods for closed-
chain robots. The first method enjoys global stability, but it can only control trajectories that
avoid forward singularities. The second method, in contrast, has local stability, but allows these
singularities to be traversed robustly. The combination of these three steps expands the range of
systems in which motion planning can be successfully applied.

i

KINODYNAMIC PLANNING AND CONTROL
OF CLOSED-CHAIN ROBOTIC SYSTEMS

Ricard Bordalba Llaberia

Resum

Aquest treball proposa una metodologia per a la planificació cinetodinàmica i el control de
trajectòries en robots amb cadenes cinemàtiques tancades. La capacitat de planificar trajectòries
és clau en un robot, ja que permet traduir instruccions d’alt nivell—com ara “mou-te cap aque-
lla posició” o “llença l’objecte amb aquesta velocitat”—en senyals de referència que puguin ser
seguits pels actuadors. En comparació amb els planificadors purament cinemàtics, que només
generen camins lliures de col·lisions a l’espai de configuracions, els planificadors cinetodinàmics
obtenen trajectòries a l’espai d’estats que són compatibles amb les restriccions dinàmiques i els
límits de força del robot. Els moviments que en resulten són més realistes i aprofiten la gravetat,
la inèrcia i les forces centrípetes en benefici de la tasca que es vol realitzar. Els planificadors cine-
todinàmics actuals són força generals i poden resoldre problemes complexos, però assumeixen
que les coordenades d’estat són independents. Per tant, no es poden aplicar a robots amb restric-
cions de clausura cinemàtica en els quals l’espai d’estats no admeti una parametrització global.
Aquestes restriccions defineixen una varietat diferencial sobre la qual cal mantenir les trajec-
tòries, i apareixen en sistemes com ara els robots paral·lels, els braços que manipulen objectes
coordinadament o els sistemes amb extremitats en contacte amb l’entorn. En aquest treball,
proposem tres passos per generar trajectòries òptimes per a aquests sistemes. En un primer pas,
determinem una trajectòria que evita les col·lisions amb els obstacles i satisfà totes les restric-
cions cinetodinàmiques, incloses les de clausura cinemàtica, les equacions del moviment o els
límits en les velocitats i en les forces d’actuació o d’enllaç. Això s’aconsegueix mitjançant un
planificador basat en mostratge aleatori que utilitza cartes locals construïdes numèricament, i
amb un mètode eficient de navegació local basat en reguladors quadràtics lineals. En un segon
pas, la trajectòria s’optimitza segons una funció de cost donada. A tal efecte, introduïm dos
nous mètodes de col·locació per a l’optimització de trajectòries. Mentre els mètodes existents
violen fàcilment les restriccions cinemàtiques, els que proposem satisfan aquestes restriccions
al llarg de les trajectòries obtingudes. Durant l’execució de la tasca, tanmateix, la trajectòria
pot veure’s afectada per pertorbacions imprevistes o per errors deguts a incerteses en el model
dinàmic. És per això que, en un tercer pas, proposem dos mètodes de control de trajectòries
per robots amb cadenes tancades. El primer mètode gaudeix d’estabilitat global, però només
permet controlar trajectòries que no travessin singularitats directes del robot. El segon mètode,
en canvi, té estabilitat local, però permet travessar aquestes singularitats de manera robusta. La
combinació d’aquests tres passos amplia el ventall de sistemes en els quals es pot aplicar amb
èxit la planificació cinetodinàmica.

iii

Acknowledgements

I would like to thank my supervisors, Lluís Ros and Josep M Porta, for their valuable guidance
and support during these years. I wouldn’t have made it this far if it hadn’t been for their
constant dedication, and for always having their door open for questions and discussions.

I am grateful and indebted to Moritz Diehl (University of Freiburg), who welcomed me to
work with his group during several months in what became a very fruitful research stay.

I also wish to express my gratitude to the members of the dissertation committee for the time
they have devoted to reading the thesis, and for their encouraging comments on the research
reported.

I very much appreciate the great group of colleagues and friends that I met at IRI, who were
part of countless lunches, board game sessions and football matches, which made my office days
more enjoyable.

Finally, I am also thankful to my family, for the encouragement that I received during my
work, and specially to Alba, who is always on my side.

This work has been partially supported by an FPI grant (BES-2015-074238) of the Spanish Ministry of Economy,
Industry and Competitivity under the research projects:

- DPI2017-88282-P KINODYN: Kinodynamic planning of efficient and agile robot motions.

- DPI2014-57220-C2-2-P RobCab: Control strategies for cable-driven robot for low-gravity simulation.

v

Contents

Abstract i

Resum iii

Acknowledgements v

1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 4
1.3 Assumptions and Scope . 4
1.4 Outlook at the Dissertation . 5

1.4.1 Approach . 5
1.4.2 Organization . 7

2 Closed-chain Systems 9

2.1 Kinematic Spaces . 9
2.1.1 The Configuration Space . 9
2.1.2 The State Space . 11
2.1.3 The Acceleration Space . 11

2.2 Singularities . 13
2.2.1 C-space Singularities . 13
2.2.2 Forward Singularities . 14
2.2.3 A Geometric Interpretation of Forward Singularities 17

2.3 Dynamic Model . 19
2.3.1 Lagrange’s Equation with Multipliers . 19
2.3.2 Forward Dynamics . 20
2.3.3 Inverse Dynamics . 22

2.4 Recursive Dynamic Algorithms . 25
2.4.1 Spatial Quantities and Notation . 25
2.4.2 Modeling Closed-Chain Systems . 28
2.4.3 Computing the Kinematic, Gravity and Coriolis Terms 33
2.4.4 Computing the Mass Matrix . 35
2.4.5 Computing Constraint Forces . 37

3 Trajectory Planning 41

3.1 Related work . 41
3.2 The Trajectory Planning Problem . 43
3.3 Limitations of Prior RRT Methods . 44
3.4 Mapping and Exploring the State Space . 48

3.4.1 Atlas Construction . 48
3.4.2 Incremental Atlas and RRT Expansion . 51
3.4.3 Chart Coordination . 52

3.5 Steering Methods . 53
3.5.1 A Randomized Steering Method . 53
3.5.2 An LQR Steering Method . 53

vii

viii CONTENTS

3.6 Planner Implementation . 59
3.6.1 Sampling . 61
3.6.2 Tree Extension . 62
3.6.3 Setting the Planner Parameters . 65

3.7 Probabilistic Completeness . 67
3.8 Dealing with Forward Singularities . 68

3.8.1 Planning in the Singularity-free State Space 69
3.8.2 Smoothness of Xsfree . 70

3.9 Planning Examples . 71
3.9.1 Weight Lifting with a Four-bar Robot . 75
3.9.2 Weight Throwing with a Five-bar Robot 80
3.9.3 Pick-and-place Operations with a Cable-driven Robot 84
3.9.4 Conveyor Switching with a Delta robot . 86
3.9.5 Truck Loading with Cooperative Arms . 88

4 Trajectory Optimization 91

4.1 Related Work . 92
4.2 The Trajectory Optimization Problem . 94
4.3 Transcription Techniques . 95

4.3.1 Problem Discretization . 95
4.3.2 Transcription of Differential Constraints 96

4.4 Conventional Collocation Schemes . 98
4.4.1 Basic Collocation . 98
4.4.2 Collocation with Baumgarte Stabilization 100

4.5 New Collocation Schemes . 101
4.5.1 The Projection Method . 102
4.5.2 The Local Coordinates Method . 103

4.6 Implementation Details . 107
4.6.1 Explicit versus Implicit Dynamics . 108
4.6.2 Ensuring Proper Projections . 109
4.6.3 Computing a Basis of the Tangent Space 110
4.6.4 Accuracy Metrics . 111
4.6.5 Including Obstacles . 111

4.7 Performance Tests . 112

5 Trajectory Tracking 121

5.1 Related Work . 121
5.2 The Trajectory Control Problem . 122
5.3 Computed-torque Control . 123

5.3.1 The Feedback Law in Open-chain Robots 123
5.3.2 The Feedback Law in Closed-chain Robots 124
5.3.3 Computing Λ and Λ̇ . 126
5.3.4 Degeneracy of the Feedback Law Near Singularities 127

5.4 Linear Quadratic Regulators . 128
5.4.1 Stabilization at an Equilibrium Point . 129

CONTENTS ix

5.4.2 Trajectory Stabilization . 132
5.4.3 Integral Action . 134

5.5 Examples . 135
5.5.1 Stabilization of an Equilibrium Point . 136
5.5.2 Trajectory Tracking . 139

6 Conclusions 141

A List of Publications 145

References 147

Notation 157

1
Introduction

“Dynamics opens a world of opportunity for robotics.

Robots that move dynamically can go where other robots can’t go,

handle larger payloads with smaller footprint and smaller robot mass,

and move faster to get work done more quickly".

— Marc Raibert, CEO of Boston Dynamics

1.1 Motivation

Since its formalization in the early nineties by Donald et al. [1] the kinodynamic planning prob-

lem remains as one of the most challenging open problems in robotics. The problem entails

finding feasible trajectories connecting two given states of a robot, each defined by a configura-

tion and a velocity of the underlying mechanical structure. To ensure feasibility, the trajectory

should fulfill all kinematic constraints of the system (like loop-closure or velocity constraints),

satisfy the equation of motion, avoid the collisions with obstacles, and be controllable with the

limited force of the actuators. In many contexts, moreover, the trajectory should also be op-

timal in some sense, minimizing the time, energy, or control effort required for its execution

for example. All of these constraints and cost functions are relevant in many factory and home

environments in which Robotics is called to play a role in the near future.

The ability to plan trajectories is key in a robotic system. Above all, it endows the system

with a means to convert high-level commands—like “move to a certain location”, or “throw the

object at a given speed”—into appropriate reference signals to be followed by the actuators. By

accounting for the robot dynamics and force limits at the planning stage, moreover, the motions

2 Introduction

Figure 1.1: Top: A robot moving a load from one conveyor to another using a straight-to-the-
goal motion. Bottom: A man loading two heavy gas bottles on a truck. While the robot trajectory
is suitable for the shown payload, the same trajectory may be unusable to lift heavier loads, or
may require a more powerful robot. Note how the man resorts to dynamics instead, to make
optimal use of his limited strength through a swinging motion.

are easier to control, and they often look more graceful, or physically natural [2], as they tend

to exploit gravity, inertia, and centripetal forces to the benefit of the task (Fig. 1.1).

The kinodynamic planning problem can be viewed as a full motion planning problem in the

state space, as opposed to a purely kinematic problem that only requires the planning of a path

in configuration space (C-space). This makes the problem harder, as the dimension of the state

space is twice that of the C-space, and the obstacle region is virtually larger, involving states

that correspond to an actual collision, but also those from which a future collision is inevitable

due to the system momentum. The planning of steering motions is considerably more difficult

as well. While direct motions suffice in the C-space, steering motions in the state space need to

conform to the vector fields defined by the equations of motion and force limits of the robot.

Despite the previous difficulties, existing kinodynamic planners are fairly general and can

deal with relatively complex problems. The vast majority of such planners, however, have an

important limitation: they assume that the state space is globally parametrizable, i.e., that the

states can be represented by a unique set of independent coordinates that are valid over the

whole motion range. While parametric state spaces arise frequently, for example in robots with

1.1 Motivation 3

Figure 1.2: Example systems involving closed kinematic chains. The chains may be intrinsic
to the robot structure, as in parallel robots (left picture), or they may result from manipulation
constraints during a task, as in multi-limbed systems transporting an object, or keeping their
feet attached to the environment (right pictures). From left to right: A Delta parallel robot [3],
the Atlas robot from Boston Dynamics lifting a heavy load[4], the Robonaut 2 robot with two
legs clamped to the International Space Station [5], and SpiderFab Bot, a conceptual design
for self-fabricating space systems [6]. Pictures courtesy of ABB, Boston Dynamics, NASA, and
Tethers Unlimited, Inc, respectively.

tree topology moving in free space, kinematic loop-closure constraints relating the state space

coordinates in intricate ways may also appear. This occurs in many robotic systems, including

parallel manipulators, robot arms manipulating an object, or in multi-limbed systems keeping

contacts with the environment (Fig. 1.2). In these situations the system is said to be closed-

chain, and its state space becomes a nonlinear manifold defined implicitly by the loop-closure

constraints. This manifold is a zero-measure set in a larger ambient space, which complicates

the design of a motion planner able to explore the manifold efficiently. Moreover, if the dynamic

model of the robot is not properly handled, the obtained trajectories may deviate substantially

from the manifold, leading to unrealistic trajectories, or to a failure to reach the goal. Even if

the trajectory is kept on the manifold, the design of a robust controller able track the trajectory

is also problematic. Closed kinematic chains exhibit so-called forward singularities, which make

traditional computed-torque controllers fail in their vicinity, being unable to correct errors along

certain directions, or producing large control efforts that can harm the robot structure. It is

probably for all these reasons that, to date, mature algorithms for kinodynamic planning and

control have not been developed for closed kinematic chains. Our purpose in this work is to

help filling this gap to the largest possible extent.

4 Introduction

1.2 Objectives

The goal of this thesis is to provide reliable algorithms to solve the following two problems for

general closed-chain robotic systems:

• Kinodynamic motion planning: Given the kinematic and dynamic models of the robot,

and a geometric model of its environment, find a trajectory that is both feasible and opti-

mal to bring the robot from a start to a goal state. By feasible we mean that the trajectory

must avoid the collisions with obstacles while satisfying all kinematic and dynamic con-

straints of the robot, including loop-closure constraints, the equations of motion, or any

limits on the velocities or on the motor or constraint forces. By optimal we mean that the

trajectory should minimize, at least locally, a given cost function of interest.

• Tracking control: Given a solution trajectory for the earlier problem, find a feedback

controller that is able to track the trajectory in the presence of unmodeled disturbances or

model errors, even across forward singularities of the robot.

Although the current knowledge in motion planning and control may allow solving these prob-

lems in particular systems (for example by exploiting explicit state-space parameterizations

when they exist) our goal is to find a general solution for the entire class of systems we consider.

1.3 Assumptions and Scope

For the purpose of this work, a robotic system is a multibody system composed of rigid bodies

and lower-pair joints, where some of the joints are actuated. We restrict our attention to closed-

chain systems, i.e., those that must fulfill a number of loop-closure constraints modeling cyclic

sequences of bodies and joints that must remain closed during a task. Such constraints can be

inherent to the robot structure, as in parallel robots, or may result from manipulation constraints

needed to fulfill the task, as in multi-limbed systems transporting an object, or keeping they

feet attached to the environment (Fig. 1.2). In all cases we shall consider the constraints to be

permanent, as opposed to intermittent constraints that arise, for example, when the robot makes

or breaks contact with the ground. Robots subject to impact dynamics will also be excluded from

our study.

While other holonomic constraints could also be handled by our framework, we concen-

trate on loop-closure constraints due to the growing interest they arouse [7–12]. We also leave

nonholonomic constraints out of our scope, although, as detailed in Chapter 6, they could be

accommodated in most of our methods with small modifications.

1.4 Outlook at the Dissertation 5

Our main focus is on robots with, at least, as many actuators as the number of degrees of

freedom to be controlled. In most cases the actuator forces are limited to a prescribed range,

and limits may also be imposed in the internal constraint forces if required. While the former

account for limited motor capacities, the latter ensure the resistance and smooth functioning of

the robot parts.

Our entire approach is model-based. We assume that proper models of the robot and its

environment are available. This implies that the robot dimensions and dynamic parameters, as

well as the geometry and location of all obstacles, will be known with sufficient accuracy. Thus,

the problems of system identification, calibration, or environment modeling are out of the scope

of this work.

The goal of our planning algorithms will be to compute the actions required to bring the

robot from a start to a goal state with minimum cost. The output of the algorithms will be

a time history of such actions and the corresponding trajectory in state space. The obtained

trajectory has to respect all kinematic and dynamic constraints imposed by the problem.

The goal of our controllers will be to stably track the trajectory in the presence of unmod-

eled perturbations or model errors. The controllers will be closed loop, i.e., they will consist of a

feedback law providing, for each time and state in a neighborhood of the trajectory, appropriate

corrective actions to get the robot in synchrony with the trajectory. Obstacles, motor torque lim-

its, and constraint force limits will not be handled by the controllers. Instead, we assume these

constraints to be enforced at the planning stage, leaving sufficient clearance or force margins so

as to be able to reject unmodeled disturbances or model errors during trajectory tracking.

1.4 Outlook at the Dissertation

1.4.1 Approach

Sampling-based planners are among the most popular methods for solving the general motion

planning problem [13]. A strong point of these planners is they do not construct explicit repre-

sentations of the obstacle region. Instead, their search is conducted by probing the state space

with a sampling scheme, which leads to highly-efficient resolution- or probabilistically-complete

algorithms. The simultaneous treatment of loop-closure and dynamic constraints, however, has

remained open for these methods [12], and the trajectories they obtain tend to be jerky or

far-from-optimal in many cases. With the aim of obtaining optimal trajectories, a recent fam-

ily of planners directly resort to trajectory optimization methods [14–16]. These methods are

powerful, but their convergence can only be ensured if they depart from good approximations

of the solution, or if the problem is sufficiently relaxed so as to afford poorer approximations.

6 Introduction

The planners in [14–16] opt for the latter and relax the obstacle-avoidance and loop-closure

constraints by adding them as penalty terms in the cost function, so these constraints may not

be satisfied exactly in their computed trajectories. The equations of motion and motor force

limits are also neglected, and only velocity or acceleration penalty terms are added to favor the

emergence of smooth motions.

In this Thesis we try to combine the benefits of sampling-based and optimization approaches

while avoiding their drawbacks. To obtain optimal solutions without relaxing the kinodynamic

constraints, we solve the kinodynamic planning problem by applying two modules in sequence:

• A sampling-based trajectory planner that searches for a collision-free trajectory connect-

ing the start and goal states while satisfying the kinodynamic constraints of the robot. This

planner does not obtain an optimal solution in general, but if finds a feasible one if it exists

and enough computing time is available.

• A trajectory optimizer that locally improves the trajectory returned by the planner until

it minimizes a cost function of interest. This optimizer enforces the same kinodynamic

constraints as the planner, and admits a large variety of cost functions to optimize, for

example, the time, energy, or control effort employed during the trajectory, or the smooth-

ness of the control actions. Since the optimizer departs from a feasible trajectory, its

convergence to a minimum-cost solution is greatly facilitated.

To construct these two modules we have extended state-of-the-art methods for randomized kin-

odynamic planning and trajectory optimization to be able to deal with closed kinematic chains.

When used in conjunction, the two modules provide a probabilistically-complete kinodynamic

planner for closed-chain robotic systems.

Once a trajectory has been obtained with the earlier modules, two strategies are proposed to

control its tracking. On the one hand, it is well known that computed-torque methods generate

feedback laws with global basins of attraction towards the desired trajectory [17], which makes

them very attractive when large perturbations need to be counteracted during the motion. How-

ever, we show that these controllers do not behave well near forward singularities, so to be able

to employ them we have extended our kinodynamic planning algorithms to compute singularity-

free motions. On the other hand, restricting the motions to the singularity-free C-space implies

a loss of motion capabilities in general, so we have designed an additional controller that, de-

spite it shows local convergence only, allows a stable traversal of forward singularities even in

the presence of unforeseen perturbations or model errors. To obtain this controller we have

extended the theory of linear quadratic regulators to deal with closed kinematic chains.

1.4 Outlook at the Dissertation 7

1.4.2 Organization

The rest of the thesis is organized as follows:

Chapter 2 gives a detailed description of the formulation required to model closed-chain robotic

systems. Both the kinematic and dynamic equations of these systems are presented, together

with the main motion spaces and singularities they define. Existing dynamics algorithms to

obtain the equations of motion using spatial vector algebra are also summarized.

Chapter 3 develops the trajectory planner we propose. Unlike previous sampling-based plan-

ners, ours can satisfy all kinematic and dynamic constraints simultaneously. The planner does

not produce optimal solutions, but it is probabilistically complete in its fully randomized version,

so it always returns a solution if one exists and enough computing time is available. The chapter

also shows how the planner can be used to obtain singularity-free motions, and demonstrates

its performance in several test cases.

Chapter 4 presents two new methods for trajectory optimization that locally minimize a general

class of integral cost functions. While existing methods tend to produce kinematic errors in

closed-chain systems, those we propose eliminate these errors along the discrete trajectory or

even the continuous one depending on the method. The chapter can be seen as an extension of

direct collocation methods to deal with closed kinematic chains.

Chapter 5 reviews computed-torque methods and shows how they can be adapted to closed-

chain robotic systems. It then explains how forward singularities seriously affect such controllers

and proposes a new control method that is immune to such singularities.

Chapter 6 finally summarizes the main contributions of this work and highlights points that

deserve further attention.

2
Closed-chain Systems

This chapter provides preliminary background for the rest of the thesis. We start by describing

three spaces that are necessary to model the motions of a closed-chain system: the C-space, the

state space, and the acceleration space. While path planning typically operates in the C-space,

our kinodynamic planning and control problems are naturally solved in the state space, so an

understanding of this space is necessary to construct our algorithms. The acceleration space,

in turn, is useful to deal with the special geometry of accelerations in closed-chain systems.

We then describe C-space and forward singularities, which are critical configurations that are

problematic for our purposes. While the former generate nonsmoothnesses in the configuration

and state spaces, the latter complicate the control of the robot substantially. The equations of

motion of a closed-chain robot are then presented along with the solutions to the forward and

inverse dynamics. The chapter finally includes a summary of recursive dynamics algorithms,

which are efficient tools to compute the terms of the dynamic equations.

2.1 Kinematic Spaces

2.1.1 The Configuration Space

Let us describe our robot configuration by means of a tuple q of nq generalized coordinates that

determine the position and orientation of all links at a given instant of time. There is much

freedom in choosing the form of q (for example one can resort to minimal, reference point, or

natural coordinates [18]), but we will here assume that q contains, among other coordinates,

the actuated coordinates of the robot. We restrict our attention to robots with closed kinematic

chains, in which q must satisfy a system of ne nonlinear equations

Φ(q) = 0 (2.1)

10 Closed-chain Systems

CC TqC

NqC

q(t)

q

q̇(t)

t
R

Figure 2.1: The tangent and normal spaces to C at a point q. When Φq is full rank, TqC can be
viewed as the set of velocity vectors q̇(t) for all possible curves q(t) going through q for some t.
The normal space NqC is the orthogonal complement of TqC relative to R

nq .

enforcing the closure conditions of the chains. Equation (2.1) is holonomic, as it does not

include the time derivative of q, and so it is usually called the position constraint of the system.

The configuration space of the robot, or C-space for short, is then the set

C = {q : Φ(q) = 0},

which may be quite complex in general. Around the points q ∈ C in which the Jacobian Φq = ∂Φ/∂q

is full rank, however, C is a smooth manifold of dimension dC = nq − ne.

By differentiating Eq. (2.1) with respect to time, we obtain the velocity constraint

Φq(q) q̇ = 0, (2.2)

which characterizes the set of feasible velocity vectors q̇ at q ∈ C:

TqC = {q̇ ∈ R
nq : Φq(q) q̇ = 0}.

This set is also known as the tangent space of C at q, and when Φq(q) is full rank TqC is

dC-dimensional and well-defined, so each q̇ ∈ TqC corresponds to the time derivative of some

curve q(t) ⊂ C (Fig 2.1). In such a situation, one also defines the normal space to C at q,

NqC = {v ∈ R
nq : v = Φq(q)

⊤λ for some λ ∈ R
ne},

which contains all vectors v that are orthogonal to TqC. Note that, while TqC = Ker (Φq), NqC
coincides with the row space of Φq.

2.1 Kinematic Spaces 11

2.1.2 The State Space

Now let

F (x) = 0

denote the system formed by Eqs. (2.1) and (2.2), where

F (x) =

[

Φ(q)

Φq(q) q̇

]

,

x = (q, q̇) ∈ R
nx is the robot state, and nx = 2nq. The state space of the robot is then the set

X = {x : F (x) = 0}.

If Φq(q) is full rank, the Jacobian

F x(x) =

[

Φq(q) 0

Φ̇q(q, q̇) Φq(q)

]

is also full rank at x ∈ X , so X is a smooth manifold in a neighborhood of x, whose dimension

is dX = nx − 2ne. This implies that the tangent space of X at x,

TxX = {ẋ ∈ R
nx : F x(x) ẋ = 0},

is also well-defined and dX -dimensional, a property we often exploit in this thesis.

2.1.3 The Acceleration Space

For later developments it will also be necessary to consider the time derivative of Eq. (2.2),

Φq(q) q̈ − ξ(q, q̇) = 0, (2.3)

where ξ(q, q̇) = −Φ̇q(q, q̇) q̇. This equation is called the acceleration constraint and we can use

it to define

Ax = {q̈ : Φq(q) q̈ = ξ(q, q̇)},

which provides the set of feasible accelerations of the robot at x = (q, q̇).

12 Closed-chain Systems

C

q̈‖

q̈⊥
q̈

TqC

NqC

Figure 2.2: Decomposition of q̈ into its normal and parallel components. The motor actions can
only modify q̈‖, as q̈⊥ is fully determined by the geometry of C and the value of the current
state.

Note that, since Ax is the solution of a linear system of equations, it must be an affine space

with the same dimension as Ker (Φq). In particular, any q̈ ∈ Ax can be uniquely decomposed

into a sum of the form

q̈ = q̈⊥ + q̈‖

where q̈⊥ and q̈‖ are vectors of NqC and TqC respectively (Fig. 2.2). The component q̈⊥ is

given by

q̈⊥ = Φq(q)
+ ξ(q, q̇),

where Φq(q)
+ is the Moore-Penrose pseudoinverse of Φq(q). The component q̈‖, in turn, can

be expressed as

q̈‖ = Λ(q) α,

where Λ(q) is an nq × dC matrix that has, by columns, a basis of TqC, and α is a vector of RdC .

Thus, the elements of Ax can be expressed parametrically in terms of α,

q̈ = Φq(q)
+ ξ(q, q̇)

︸ ︷︷ ︸

q̈⊥

+Λ(q) α
︸ ︷︷ ︸

q̈‖

, (2.4)

which shows that Ax is of dimension dC . From this equation we also see that q̈⊥ solely depends

on the geometry of C and on the value of the current state, so q̈‖ is the only component of q̈ that

can be modified by the motor actions of the robot.

2.2 Singularities 13

2.2 Singularities

Singularities are critical configurations in which the solution of the forward or the inverse instan-

taneous kinematic problems is undetermined. Depending on their nature, these configurations

yield dexterity or velocity control losses, but they also have an impact on the robot dynamics.

This section aims at briefly introducing the two types of singularities that are most relevant to

our work. An exhaustive analysis and computation of all possible singularities is out of our

scope, and we refer the reader to [19–21] for details.

2.2.1 C-space Singularities

The first type of singularity to be distinguished is the C-space singularity, which is a configuration

in which the Jacobian Φq is rank deficient. In such a configuration TqC is ill defined, as some

of its vectors q̇ do not correspond to the time derivative of any parametric curve q(t) ⊂ C.
These singularities typically correspond to bifurcations, cusps, ridges, or dimension changes

of C (Fig. 2.3). In this thesis, however, we shall assume that Φq is full rank for all q ∈ C so C,
and thus X , will both be smooth manifolds with well defined tangent spaces. This assumption

is not too restrictive, as C-space singularities only arise for nongeneric robot dimensions and

thus they can be removed by proper mechanical design. Figure 2.4 illustrates this point with

an example. The shown robot presents a C-space singularity when all links are aligned [19],

but the alignment can only occur for specific link lengths (left figure) so generic variations in

such lengths will remove the singularity (right figure). Even so, if our robot presents C-space

singularities we will still be able to plan its motions by actively avoiding such configurations

(Section 3.8).

C

C C
C

q

q

q
q

Figure 2.3: Examples of C-space singularities. They correspond to points q where C may lose
the manifold structure, such as bifurcations, cusps, ridges, or dimension changes [19].

14 Closed-chain Systems

With C-space singularity Without C-sapce singularity

Figure 2.4: Left: a planar five-bar robot presents a C-space singularity when the link lengths
allow the alignment of all joints [19]. Right: a slight variation of the lengths removes the
possibility of such an alignment.

2.2.2 Forward Singularities

The removal of C-space singularities does not rule out a second type of critical configuration

called forward singularity, which depends on the choice of actuated coordinates. To define this

singularity, let us decompose the q vector as follows

q =
[

Qu Qr

]
[

qu

qr

]

, (2.5)

where qu and qr respectively contain the nu actuated coordinates and the nr = nq−nu remaining

coordinates of q, and [Qu Qr] is a permutation matrix used to allow an arbitrary ordering of q.

If we obtain the time derivative of Eq. (2.5) and insert it into Eq. (2.2), the velocity constraint

then takes the form
[

Φqu
(q) Φqr

(q)
]

︸ ︷︷ ︸

Φq(q)

[

q̇u

q̇r

]

= 0. (2.6)

Suppose additionally that the forward instantaneous kinematic problem (FIKP) is defined as

follows:

Given a point q ∈ C, and some q̇u ∈ R
nu , find all vectors of the form q̇ = (q̇u, q̇r)

that satisfy Eq. (2.6), i.e., solve

Φqr
(q) q̇r = −Φqu

(q) q̇u (2.7)

for q̇r, assuming q̇u is a known value.

2.2 Singularities 15

shaky mechanism

ground joint (locked)

Figure 2.5: Forward singularity in a parallel 3-RRR mechanism. Assuming that the ground joints
are actuated, the 3-RRR mechanism exhibits a forward singularity when the lines of support of
the three distal links are concurrent. Top: away from a forward singularity, the mechanism is
rigid when the ground joints are locked, so the mechanism can counteract any force applied to
its platform in principle. Bottom: In a forward singularity, instead, the mechanism is shaky after
locking such joints. See https://youtu.be/xV3m6ioilnc for an animation.

https://youtu.be/xV3m6ioilnc

16 Closed-chain Systems

(b) (c)(a)

nu = dC nu > dCnu < dC

shaky
finite

motion

Figure 2.6: Examples of forward singularities in a five-bar robot, for the three cases nu < dC ,
nu = dC , and nu > dC . The black circles indicate the actuated joints, which are assumed to be
locked in all cases. In (a) nu < dC , so the mechanism is not rigid, even away from the shown
configuration. In (b) and (c) the mechanism is shaky, or even can move in (c), but away from
such configurations it would be rigid.

Then, forward singularities are defined as the points q ∈ C in which Eq. (2.7) has infinitely-

many solutions for some q̇u ∈ R
nu . In such points, thus, a feasible actuator velocity q̇u does

not determine the robot velocity q̇, so we lose control (or observability) of q̇ by controlling (or

observing) q̇u.

From the theory of linear systems we know that Eq. (2.7) will have infinitely-many solutions

for some q̇u ∈ R
nu if, and only if,

rank(Φqr
) < nr. (2.8)

The fact that Φqr
loses rank at a forward singularity implies that the kernel of Φqr

is of

dimension one or higher, so if we set q̇u = 0 in Eq. (2.7), there will be infinitely-many values

of q̇r satisfying the equation. Physically, this implies that the robot is shaky when we lock its

actuators. Fig. 2.5 illustrates this phenomenon in a particular mechanism.

It is worth noting that a forward singularity is not necessarily a C-space singularity, as the

rank deficiency of Φqr
does not imply the rank deficiency of Φq. However, the converse is true:

a C-space singularity is always a forward singularity.

While the condition in (2.8) allows us to detect whether a point q ∈ C is a forward singularity,

this condition can be checked in different ways depending on the shape of Φqr
. This matrix is

always of size ne×nr, but it can be fat (ne < nr), square (ne = nr), or tall (ne > nr), depending

on the number nu of actuated coordinates. By noting that ne = nq − dC and nr = nq − nu, the

following applies:

2.2 Singularities 17

• If nu < dC , Φqr
is fat and it has rank

(
Φqr

)
< nr irrespective of q, so the robot is always

in a forward singularity.

• If nu = dC , Φqr
is square and q ∈ C is a forward singularity if and only if

det
(
Φqr

(q)
)
= 0.

• If nu > dC , Φqr
is tall and q ∈ C is a forward singularity whenever

det
(

Φqr
(q)⊤ ·Φqr

(q)
)

= 0.

Fig. 2.6 provides an example of a singular configuration for each one of the earlier cases.

2.2.3 A Geometric Interpretation of Forward Singularities

Before closing this section, we must recall a geometric interpretation of forward singularities

that will be used in Section 2.3.3 to discuss the solvability of the inverse dynamic problem.

From the results in [22][Section 2.2.3] it can be shown that, when q ∈ C is not a forward

singularity, the projection of all vectors q̇ ∈ TqC onto their qu coordinates spans a vector space

of dimension dC , whereas such a projection is lower-dimensional at a forward singularity. That

is, if Λ is an nq × dC matrix that has, by columns, a vector basis of TqC, then

rank(Λ⊤Qu) = dC

if and only if q is not a forward singularity, and

rank(Λ⊤Qu) < dC

otherwise.

Figure 2.7 illustrates this interpretation using simple manifolds, in each of the cases nu < dC ,

nu = dC , and nu > dC . In Fig. 2.7 (a) we assume C is a sphere defined in the (x, y, z) space,

and y is the only actuated coordinate, so dC = 2 and nu = 1. Irrespective of the position of

q on C, the projection of all vectors q̇ ∈ TqC onto their y coordinate spans a vector space of

dimension at most one in this case (the y axis). Since the sphere is two-dimensional, and the y

axis is one-dimensional, all points in the sphere are forward singularities. In Fig. 2.7 (b), the

C-space is the same sphere, but now we actuate both x and y, so nu = dC = 2. The projection of

TqC onto the (x, y) plane is two-dimensional in a generic point q1, but only one-dimensional in

q2, so q2 is a forward singularity. In Fig. 2.7 (c), the C-space is a curve lying in a plane Π, and

x and y are both actuated, so this case corresponds to a robot with redundant actuation (nu = 2

and dC = 1). In a generic configuration like q1, the projection of TqC onto the (x, y) plane yields

a one-dimensional vector space, so q1 is not a forward singularity. Points like q2 in which the q̇

vectors project to the zero vector are forward singularities.

18 Closed-chain Systems

(a)

(b)

(c)

x

x

x

x

x

y

y

y

y

y

z

z

z

z

z

C

CC

CC

q

q1

q1

q2

q2

ΠΠ

Figure 2.7: Geometric interpretation of forward singularities. At such singularities, the projec-
tion of TqC onto the space R

nu of the qu coordinates spans a subspace of dimension smaller
than dC . In (a) dC = 2 but only the y coordinate is actuated, so nu < dC and all q ∈ C are
forward singularities. In (b) and (c) both x and y are actuated, so these figures depict the case
of a robot with nu = dC and nu > dC respectively, in which q1 is a regular configuration and q2
is a forward singularity.

2.3 Dynamic Model 19

2.3 Dynamic Model

2.3.1 Lagrange’s Equation with Multipliers

The kinematic equations in Section 2.1 characterize the feasible motions of the robot, but not the

relationship between the actual motions and the forces that generate them. Such a relationship

is given by the dynamic model of the robot, which can be formulated using Lagrange’s equation

with multipliers [23, 24]. In an inertial reference frame, this equation takes the form

d
dt

∂K(q, q̇)

∂q̇
− ∂K(q, q̇)

∂q
+

∂U(q)

∂q
+Φq(q)

⊤ λ = Qu u+ τ fric(q, q̇), (2.9)

where K(q, q̇) and U(q) are the kinetic and potential energy functions of the robot, λ ∈ R
ne

is a vector of Lagrange multipliers, τ fric(q, q̇) is the generalized force of friction, and u is the

action vector. Assuming that each actuator modifies just one coordinate of q, and that the robot

contains nu actuators, we have

u = (u1, . . . , unu) ∈ R
nu ,

where ui is the force or torque acting on the i-th coordinate of qu.

Using the fact that the kinetic energy takes the form

K(q, q̇) =
1

2
q̇⊤ M(q) q̇,

where M(q) is a symmetric and positive-definite mass matrix, Eq. (2.9) can be expressed as

M(q) q̈ +C(q, q̇) q̇ +G(q) +Φq(q)
⊤ λ = Qu u+ τ fric(q, q̇), (2.10)

where

G(q) =
∂U

∂q
,

and C(q, q̇) is the so-called Coriolis matrix. The elements of C(q, q̇) can be computed using the

following formula from [24]:

Ci,j(q, q̇) =
1

2

nq∑

k=1

(
∂M i,j

∂qk
+

∂M i,k

∂qj
− ∂Mk,j

∂qi

)

.

20 Closed-chain Systems

Equation (2.10) can now be used to solve the following problems for a given state x = (q, q̇):

• Forward dynamics: given u, compute q̈.

• Inverse dynamics: given q̈, compute u.

The solution to the first problem allows us to define a state space model for the robot, which

will be necessary in Chapters 3, 4 and 5 to develop our trajectory planning and LQR control

methods. The solution to the second problem, in turn, will be used in Chapter 5 to present a

computed-torque controller for closed-chain robotic systems. Let us see how the two problems

can be solved.

2.3.2 Forward Dynamics

Note that when q, q̇, and u have a known value, Eq. (2.10) is a system of nq equations in nq+ne

unknowns (the nq coordinates of q̈ and the ne Lagrange multipliers) so we need additional

equations to be able to determine q̈. These are provided by Eq. (2.3), which ensures that q̈ will

be a feasible acceleration. Equations (2.10) and (2.3) then give rise to the system

[

M(q) Φq(q)
⊤

Φq(q) 0

][

q̈

λ

]

=

[

τFD(q, q̇, u)

ξ(q, q̇)

]

, (2.11)

where

τFD(q, q̇,u) = Qu u+ τ fric(q, q̇)−G(q)−C(q, q̇) q̇.

Note that, since we assumed Φq to be full rank for all q ∈ C, the matrix on the left-hand side of

Eq. (2.11) is invertible, so we can write

q̈ =
[

Inq 0

]
[

M(q) Φq(q)
⊤

Φq(q) 0

]−1 [

τFD(q, q̇,u)

ξ(q, q̇)

]

, (2.12)

where Inq is the nq × nq identity matrix. Equation (2.12) already provides the solution to the

forward dynamics, but for planning and control purposes it is often transformed into a first-order

ordinary differential equation of the form

ẋ = g(x,u). (2.13)

2.3 Dynamic Model 21

X
ẋ

Figure 2.8: For each value of u, Eq. (2.13) defines a vector field over X .

Geometrically, this equation defines an action-dependent vector field over X (Fig. 2.8) whose

integral curves correspond to the feasible trajectories of the robot. Thus, a feasible trajectory

x(t) will be one that, for all t, satisfies the differential algebraic equation

{
F (x(t)) = 0

ẋ = g(x(t),u(t))

(2.14a)

(2.14b)

for some control function u(t).

In many works, the trajectory x(t) that results from u(t) is obtained by simply integrating

Eq. (2.14b) numerically, without enforcing Eq. (2.14a) during the process. This is done on

the grounds that Eq. (2.14a) is already accounted for implicitly by Eq. (2.14b), but note that

Eq. (2.14b) only contains the acceleration constraint in Eq. (2.3) and not the position and ve-

locity constraints in Eqs. (2.1) and (2.2). Thus, any integration method applied to Eq. (2.14b)

alone will generate trajectories x(t) that, sooner or later, will inevitably drift away from X ,

which results in physically inconsistent motions not fulfilling the assembly constraints of the

robot. To avoid this problem one must rely on numerical methods that actively take Eq. (2.14a)

into account [25–30]. In particular, in this thesis we make an extensive use of integration in lo-

cal coordinates [25]. The idea consists in using local charts of X to express Eq. (2.14b) in some

set of local parameters of X , to then perform the numerical integration in such parameters and

map the result back to X . In our implementations, we use the version in [30] of this technique,

which constructs the necessary maps using tangent-space parameterizations. Details on these

techniques will be recalled as needed in the following chapters.

22 Closed-chain Systems

2.3.3 Inverse Dynamics

To solve for u in Eq. (2.10), let Λ be the nq × dC matrix we defined in Section 2.2.3, which

contains, by columns, a basis of TqC. This matrix can be obtained from the QR decomposition

of Φ⊤
q for example [31, 32].

If we multiply the equation by Λ
⊤ and rearrange the terms we have

Λ
⊤Qu

︸ ︷︷ ︸

N (q)

u = Λ
⊤
(

M(q)q̈ +C(q, q̇) q̇ +G(q) + τ fric(q, q̇)
)

︸ ︷︷ ︸

τ ID(q,q̇,q̈)

−Λ
⊤
Φq(q)

⊤ λ
︸ ︷︷ ︸

0

,

where Λ
⊤
Φq(q)

⊤ λ must be zero, as Φq(q)
⊤ λ is a vector of NqC that is orthogonal to the

columns of Λ. By defining N(q) and τ ID(q, q̇, q̈) as indicated, we then see that the u values that

are compatible with q̈ are those that satisfy

N(q) u = τ ID(q, q̇, q̈). (2.15)

Two situations are possible when analyzing the solvability of Eq. (2.15) at x = (q, q̇) ∈ X :

either the equation will be solvable for all q̈ ∈ Ax, or there will be some q̈ ∈ Ax for which

no compatible u exists. By analogy to the open-chain case, we will refer to these situations by

saying that the robot is “fully actuated at x” or “underactuated at x”, respectively.

It is important to characterize the states x in which the robot is underactuated, as in such

states we will not be able to command all possible accelerations, thus losing the ability to control

position or velocity errors along some directions. In order to do so, note that N(q) is a dC × nu

matrix and τ ID(q, q̇, q̈) ∈ R
dC . Using Eq. (2.4), moreover, it is easy to see that τ ID(q, q̇, q̈) is

surjective, so it spans the entire space R
dC as q̈ varies inside Ax. This must be true as, by

substituting Eq. (2.4) into τ ID(q, q̇, q̈), we get

τ ID(q, q̇, q̈) = Λ
⊤
(

M(q)
(
q̈⊥ +Λα

)
+C(q, q̇) q̇ +G(q) + τ fric(q, q̇)

)

,

so

τ ID(q, q̇, q̈) = M̄(q) α+ bID(q, q̇, q̈⊥), (2.16)

where

M̄(q) = Λ
⊤M(q) Λ,

and

bID(q, q̇, q̈⊥) = Λ
⊤
(

M(q) q̈⊥ +C(q, q̇) q̇ +G(q) + τ fric(q, q̇)
)

.

2.3
D

ynam
ic

M
odel

23

System
dimensions

System
shape

Rank
of N

Dim. of
Ker N

Number of solutions u for
the given q̈ ∈ Ax

Actuation
type

nu

nu
dC dC

N
u

τ IDnu < dC

nu 0
The system is unsolvable for almost
all q̈, and the solution u is unique

when τ ID is in C(N)

Underactuated

< nu > 0
The system is unsolvable for almost
all q̈, and there are infinitely-many
solutions u when τ ID is in C(N)

nu

nu dCdC N u τ ID

nu = dC

dC 0
A unique u exists for

every q̈ ∈ Ax

Properly
actuated

< dC > 0

For almost all q̈ there is no
corresponding u. For those q̈ that

make τ ID into C(N), there are
infinitely-many u

Underactuated

nu

nu

dCdC N
u

τ ID

nu > dC

dC nu − dC
For all q̈, there

are infinitely-many u
Overactuated

< dC > nu − dC

The system is unsolvable for almost
all q̈, and when τ ID in C(N), there

are infinitely-many u

Underactuated

Table 2.1: Structure of the solution set of Eq. (2.15) depending on nu and the rank of N . C(N) indicates the column space of N .

24 Closed-chain Systems

At a given
configuration q
the system is







Underactuated

if rank(N(q)) < dC
(irrespective of nu)

Fully actuated

if rank(N(q)) = dC







Properly actuated

If, in addition, nu = dC

Overactuated

If, in addition, nu > dC

Figure 2.9: Actuation types of a robot at a given q ∈ C.

Since M(q) is positive definite, M̄(q) must be positive-definite and thus full rank, so the

mapping from α to τ ID defined by Eq. (2.16) has to be surjective as we claimed. It is clear then

that the robot is underactuated at x = (q, q̇) if, and only if,

rank
(

N(q)
)

= rank
(

Λ
⊤Qu

)

< dC .

In particular, when nu < dC , N(q) is a tall matrix whose rank is always less than dC , so in this

case the system is underactuated for all x ∈ X .

By the result in Section 2.2.3, we also see that the robot is underactuated at x = (q, q̇)

if, and only if, q is a forward singularity. Thus, whether the robot is underactauted or not is a

property of the configuration rather than the state, and depends on the actual choice of actuated

coordinates.

Fully-actuated robots are further classified into properly actuated or over-actuated depend-

ing on whether Eq. (2.15) has just one, or infinitely-many solutions for u respectively. Clearly, if

rank (N(q)) = dC , the equation can only have infinitely-many solutions if the kernel of N(q) is

of dimension one or higher, which occurs whenever nu > dC . Table 2.1 and Figure 2.9 provide

visual summaries of this classification.

2.4 Recursive Dynamic Algorithms 25

vO

ω

τO

f

Velocities Forces

Point OPoint OF

Figure 2.10: 3D vectors forming a spatial velocity (left) and a spatial force (right) on a rigid
body. The coordinate system on which the quantities are expressed has its origin at some point
O, and its axes aligned with three orthonormal vectors of R3 (not drawn). Spatial velocities and
accelerations are relative to the reference frame F from where they are being measured.

2.4 Recursive Dynamic Algorithms

The previous section presented a compact formulation of the dynamics of closed-chain systems

using the Lagrange formulation, but not the means to compute all of the terms involved. To

cover this gap, we next recall various algorithms [33] for efficiently computing such terms.

Most of these algorithms exploit the Newton-Euler formulation, which is based on the balance

of forces and torques in every rigid body of our robot. They also rely on recursive formulations

using spatial vector algebra, which is a concise notation that uses 6D vectors and matrices to

represent dynamics quantities. The notation and algorithms we use follow those of Featherstone

in [33], but further details can be found in [34, 35]. Equivalent Lie-theoretic algorithms can

also be found in [36].

2.4.1 Spatial Quantities and Notation

We start summarizing the spatial quantities that are necessary to work with the dynamic equa-

tions. All of such quantities will be denoted with a hat and they will be expressed in some

coordinate system A defined by an origin O and an othonormal basis of R3. Such a system will

be indicated with a leading superscript, so Av̂ will refer to the spatial quantity v̂ expressed in A

coordinates. When working with spatial velocities or accelerations, however, the notion of coor-

dinate system must not be confused with that of a reference frame. The latter refers to the body

26 Closed-chain Systems

from which a particular velocity or acceleration is being measured or observed, the result being

expressible in any coordinate system of choice. The reference frame F from which a velocity

or acceleration is being measured will be mentioned explicitly or understood by context. The

following quantities can be defined:

• The spatial velocity of a rigid body is the 6D vector

Av̂ =

[

ω

vO

]

,

where ω ∈ R
3 is the angular velocity of the body and vO ∈ R

3 is the linear velocity

of the body-fixed point that instantaneously coincides with O (Fig. 2.10, left). Both ω

and vO are assumed to be measured from some reference frame F and expressed in A

coordinates. Relative to F , the body can be thought of as moving with linear velocity

vO while simultaneously rotating with angular velocity ω about an axis through O. Since

the velocity of any point P on the body is vP = vO + ω × −−→OP , Av̂ actually encodes the

overall velocity distribution of the body. A spatial velocity is also called a twist in screw

theory [37, 38].

• The spatial acceleration of the previous body relative to F is simply the time derivative

of Av̂ in F . If we define the pseudoacceleration of a point P of the body as the quantity

aP = aP − ω × vO,

where aP is the conventional acceleration of P , it can be shown that the spatial accelera-

tion of the body takes the form

Aâ =

[

α

aO

]

,

where α = ω̇ and aO is the pseudoacceleration of the body-fixed point that instanta-

neously coincides with O. As with spatial velocities, α and aO determine the pseudoaccel-

eration of any point P of the body via aP = aO+α×−−→OP . Further details on the difference

between pseudoaccelerations and conventional accelerations are given in [39].

• A spatial force acting on a rigid body, and expressed in A coordinates, is given by

Af̂ =

[

τO

f

]

,

2.4 Recursive Dynamic Algorithms 27

where τO is a pure couple and f is a 3D force acting on a line passing through O (Fig. 2.10,

right). The spatial force Af̂ is used to represent the resultant of any system of forces acting

on the rigid body: while f represents the resultant force, τO represents the resultant

moment with respect to O. A spatial force is also called a wrench in [37, 38].

• The spatial inertia of a rigid body represents, in a single 6 × 6 matrix, the mass, the

location of the center of mass (CM), and the moments of inertia of the body. Given the

mass m, the inertia tensor ICM about the CM, and the position ~pCM of the body’s CM relative

to O, the spatial inertia of the body in A coordinates is given by

AÎ =

[

ICM +m S(~pCM) S(~pCM)
⊤ S(~pCM)

S(~pCM)
⊤ m I3

]

,

where ICM and ~pCM are both expressed in the basis of A, and S(~p) is the skew-symmetric

matrix defined by

S(~p) =







0 −pz py

pz 0 −px
−py px 0






.

In some situations a spatial quantity will be expressed in some coordinate system B, and

we will need to re-express it in a new coordinate system A. Different quantites obey different

transformation rules to this end. The transformation of spatial velocities is given by

Av̂ = AXB
Bv̂,

where

AXB =

[

I 0

S(A~pB) I

][
ARB 0

0
ARB

]

=

[
ARB 0

S(A~pB)
ARB

ARB

]

.

In this equation, ARB is the rotation matrix that expresses the basis of B in the basis of A,

and A~pB is the position vector of the origin of B relative to the origin of A and expressed

in A coordinates. The transformation of spatial accelerations follows the same previous rule.

Similarly, if Af̂ and Bf̂ refer to a same spatial force expressed in A and B coordinates, we have

Af̂ = AX∗
B

Bf̂ ,

where
AX∗

B = AX−⊤
B .

28 Closed-chain Systems

The transformation rule for spatial inertias is finally given by

AÎ = AX∗
B

BÎ BXA.

2.4.2 Modeling Closed-Chain Systems

The first step to model a closed-chain system is to select appropriate q coordinates to define

the system configuration. The main choices in multibody dynamics include relative joint coordi-

nates, reference point coordinates, and natural coordinates [18]. In our case we adopt relative

joint coordinates because they provide compact formulations that ease the modeling of actuation

and friction joint forces.

We next see how to formulate the loop-closure constraints and the equation of motion of

a robot. For simplicity, we assume the robot has just one kinematic loop. If more loops were

present we would just collect the closure constraints for a maximal set of independent loops in

the robot, and the equation of motion would involve minor modifications. We also treat revolute

or prismatic joints only, and assume that one of the links is fixed to the ground. More complex

joints and mobile robots could also be accommodated using the results in [33].

Formulating the Loop-closure Constraints

A kinematic loop can be regarded as a serial chain in which the base and tip links are forced to

coincide. Fig. 2.11 shows such a chain in exploded view, with our notation depicted. The links

are labeled from L0 to Ln, where L0 and Ln refer to the base and tip links respectively. The

joints are labeled from J1 to Jn, with Ji being the joint that connects links Li−1 and Li. We let

qi refer to the turning angle or displacement of Ji, so the overall loop configuration is given by

q = (q1, . . . , qn).

We also define two coordinate systems on each link: one attached to the joint that is closest to

the base, and one attached to the joint that is closest to the tip. On link Li−1, these two systems

are called the (i − 1) and (i − 1)′ coordinates respectively. As a result, on joint Ji we have the

(i− 1)′ and i coordinate systems, which coincide when qi = 0. In an assembled configuration of

the loop, the n coordinates of the tip link must coincide with 0 coordinates of the base link.

With the previous definitions, the spatial transformation that locates the i coordinates rela-

tive to the (i− 1) ones is given by

i−1Xi =XLi−1
·Xz(qi) (2.17)

2.4 Recursive Dynamic Algorithms 29

Link L1

Link L0

(Base link)

Link Ln

(Tip link)

same link

Joint Ji

Link Li−1

Link Li

yi−1

y′i−1

xi−1
x′
i−1

xi

yi

xn

yn

x0

y0

Xz(qi)XLi−1

Figure 2.11: A kinematic loop in exploded view. The tip link is a copy of the base link. In an
assembled configuration, these two links are forced to coincide.

where Xz(qi) is the joint transformation about the zi axis given in Table 2.2, and XLi−1
is a

constant spatial transformation that locates the (i − 1)′ coordinates relative to the (i − 1) ones.

Then, the transformation of the whole loop is given by

0Xn(q) =
0X1 · 1X2 · . . . · n−1Xn,

which can be decomposed as

0Xn(q) =

[
0Rn 0

S(0~pn)
0Rn

0Rn

]

.

Thus, the loop closure constraint can be imposed by setting

0Rn = I3 (2.18)

and
0~pn = 0.

30 Closed-chain Systems

Joint type Xz(qi)
iŜi

qi

qix
′
i−

1

x i

y ′
i−1

yi

zi zi−1′

Link Li

Link Li−1














c(qi) −s(qi) 0 0 0 0

s(qi) c(qi) 0 0 0 0

0 0 1 0 0 0

0 0 0 c(qi) −s(qi) 0

0 0 0 s(qi) c(qi) 0

0 0 0 0 0 1



























0

0

1

0

0

0














qi

x
′
i−

1

x i
y ′
i−1

yi

zi z′i−1

Link Li

Link Li−1














1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 −qi 0 1 0 0

qi 0 0 0 1 0

0 0 0 0 0 1



























0

0

0

0

0

1














Table 2.2: Expressions of the joint transform Xz(qi) and unit joint velocity iŜi, where
s(qi) = sin(qi) and c(qi) = cos(qi)

Eq. (2.18) is a system of 3×3 scalar equations of which only three are independent. One can

take, for example, the equations corresponding to the elements (3, 2), (1, 3) and (2, 1) of 0Rn as

representative of the 9 equations [40]. Thus, Eq. (2.1) can be formulated as

Φ(q) = 0 (2.19)

with

Φ(q) =














0Rn(3,2)

0Rn(1,3)

0Rn(2,1)

0~pn(1)
0~pn(2)
0~pn(3)














, (2.20)

where the subindices refer to the selected elements of 0Rn and 0~pn.

The velocity constraint in Eq. (2.2) could be obtained by differentiating Eq. (2.19) symboli-

cally with respect to time, but we can also obtain Eq. (2.2) in closed form as follows.

2.4 Recursive Dynamic Algorithms 31

Note on the one hand that, since the tip and base links must coincide in Fig. 2.11, the

absolute velocity of link Ln (i.e., relative to L0) must be null:

0v̂n = 0. (2.21)

On the other hand, 0v̂n can be expressed in terms of q̇ = (q̇1, . . . , q̇n) using

0v̂n = 0Ŝ1 q̇1 + · · ·+ 0Ŝn q̇n, (2.22)

where 0Ŝi is the unit spatial velocity of Li relative to Li−1 (i.e., assuming q̇i = 1), but expressed

in 0 coordinates. This velocity can be obtained using the coordinate transformation

0Ŝi =
0Xi

iŜi, (2.23)

where iŜi is the same velocity but expressed in i coordinates (Table 2.2). Then, Eq. (2.22) can

be compactly written as
0v̂n = Jn q̇, (2.24)

where

Jn =
[
0Ŝ1 · · · 0Ŝn

]

(2.25)

is the screw Jacobian of the kinematic loop. If we finally combine Eqs. (2.21) and (2.24), we

obtain the desired closed-form expression for the velocity constraint:

Jn q̇ = 0. (2.26)

Note that, since we assumed the loop to be assembled when obtaining Eq. (2.26), it must be

Φq = Jn when Φ(q) = 0, so Eq. (2.26) can really be used as a proper velocity constraint.

The acceleration constraint can be obtained in a similar manner. We know that the spatial

acceleration of the tip link relative to the base link must be null, i.e.,

0ân = 0. (2.27)

Also, the time derivative of Eq. (2.24) gives

0ân = Jn q̈ + J̇n q̇, (2.28)

where

J̇n =
[

0 ˙̂S1 · · · 0 ˙̂Sn

]

,

32 Closed-chain Systems

Base link Tip link

f̂c −f̂c

Figure 2.12: A kinematic loop can be thought of as being cut at some link, but subject to the
spatial constraint forces f̂ c and −f̂ c.

and the columns of J̇n satisfy 0 ˙̂Si = v̂i × 0Ŝi [33]. By combining Eqs. (2.27) and (2.28) we see

that the acceleration constraint is

Jn q̈ = ξ(q, q̇),

where

ξ(q, q̇) = −J̇n q̇.

From Eq. (2.28), we also see that ξ(q, q̇) is the negative of the spatial acceleration of the

tip link when q̈ = 0, which is a quantity that is recursively obtained during the calculation of

C(q, q̇) and G(q), as part of the Newton-Euler method of inverse dynamics later described in

Section 2.4.3. This observation is crucial to avoid redundant calculations.

Formulating the Equation of Motion

To formulate the equation of motion, we view the loop in Fig. 2.11 as being cut at some link,

but subject to the spatial constraint forces f̂ c and −f̂ c that the half links exert on each other

(Fig 2.12). Geometrically, the half links play the same role as the base and tip links in Fig. 2.11,

but each has half the inertia of the original link. Under this view, thus, the equation of motion

of the loop will be that of the equivalent serial chain shown in Fig 2.12, with an additional

2.4 Recursive Dynamic Algorithms 33

generalized force τ c modeling the joint effect of f̂ c and −f̂ c :

M(q) q̈ +C(q, q̇) q̇ +G(q) = τ (q, q̇,u) + τ c. (2.29)

Note here that M(q), C(q, q̇) q̇ and G(q) only depend on the inertial properties of the links,

and thus they can be computed assuming τ c = 0 in the open chain. Efficient algorithms to

obtain these quantities are given in the following two sections. The term τ (q, q̇,u), in turn, is

easy to formulate, as its i-th coordinate is simply the sum of the motor force or torque applied

at the i-th joint (which is null if the joint is passive) and the friction force or torque at the joint.

Finally, [33] shows that

τ c = J
⊤
n f̂ c,

so by comparing Eq. (2.29) with Eq. (2.10), and knowing that Φq = Jn when q ∈ C, we have

f̂ c = −λ, where λ is the vector of Lagrange multipliers.

2.4.3 Computing the Kinematic, Gravity and Coriolis Terms

In the previous section we showed that the gravity and Coriolis terms of the loop mechanism,

G(q) and C(q, q̇) q̇, correspond to those of the serial chain obtained from cutting the loop at a

link and assuming τ c = 0. This allows us to use the recursive Newton-Euler algorithm (RNEA)

to compute the sum of such terms [33]. This algorithm solves the inverse dynamics of an open

chain, and thus it obtains

τopen(q, q̇, q̈) =M(q) q̈ +C(q, q̇) q̇ +G(q),

which is the vector of joint torques that produce q̈ in such a chain. Thus, if we apply the

algorithm using q̈ = 0, we will obtain the desired sum of Coriolis and gravity terms:

τopen(q, q̇,0) = C(q, q̇) q̇ +G(q) (2.30)

In addition, we will see that the kinematic functions Φ(q), Φq(q) and ξ(q, q̇) can also be

obtained recursively when applying the RNEA for q̈ = 0. We next explain the RNEA by dividing

it in two parts.

Forward Propagation of Link Velocities and Accelerations

In the first part, the RNEA computes the absolute velocities and accelerations of each link Li in

the open chain, starting from the fixed base and going forward towards the tip. For each link

Li, we express these quantities in i coordinates.

34 Closed-chain Systems

Since 0v̂0 = 0, the absolute velocity of Li can be obtained using the recurrence

iv̂i =
iXi−1

i−1v̂i−1 +
iŜi q̇i, (2.31)

where iŜi q̇i is the velocity of Li relative to Li−1, and iŜi is given in Table 2.2. By differentiating

Eq. (2.31) with respect to time we also obtain the recurrence

iâi =
iXi−1

i−1âi−1 +
iŜi q̈i +

i ˙̂Si q̇i, (2.32)

Thus, the acceleration of Li can also be obtained recursively starting from 0â0 = 0 and using
i ˙̂Si = v̂i × iŜi [33]. However, since our goal is to compute τopen(q, q̇,0) in Eq. (2.30), we have to

set q̈ = 0 in Eq. (2.32), and the recurrence simplifies to

iâi =
iXi−1

i−1âi−1 +
i ˙̂Si q̇i. (2.33)

In this forward pass, we can also compute 0Xi recursively using

0Xi =
0Xi−1

i−1Xi, (2.34)

which allows us to formulate Φ(q) as in Eq. (2.20) once 0Xn is obtained. Moreover, we can use

Eqs. (2.34) and (2.23) to obtain the loop Jacobian Jn of Eq. (2.25):

Jn =
[
0X1

1Ŝ1 · · · 0Xn
nŜn

]

.

Finally, by recalling that ξ(q, q̇) is the negative spatial acceleration of the tip link in 0 coordinates

when q̈ = 0 (Section 2.4.2), we can use Eqs. (2.33) and (2.34) to obtain

ξ(q, q̇) = −0Xn
nân.

Backward Propagation of Forces

In the second part, the force transmitted across each joint Ji is recursively computed, starting

from the tip and going backwards towards the base. For each link Li, we express these quantities

in i coordinates.

From the Newton-Euler equation for a rigid body [33], note that the net force acting on link

Li is given by
if̂ i,net =

iÎi
iâi +

iv̂i × iÎi
iv̂i, (2.35)

2.4 Recursive Dynamic Algorithms 35

where iÎi is the spatial inertia of the link, and iv̂i and iâi were already computed in the forward

pass using Eqs. (2.31) and (2.33), respectively.

The net force acting on the last link of the serial chain can be decomposed into a sum of the

externally-applied force nf̂n,ext, which includes gravity, and the force nf̂n transmitted across

joint Jn (Fig. 2.13):
nf̂n,net =

nf̂n,ext +
nf̂n.

Thus, the force transmitted across Jn is

nf̂n = nf̂n,net − nf̂n,ext.

Note that the constraint force f̂ c closing the loop is not included in this equation, as this proce-

dure computes the dynamic terms assuming τ c = 0.

For the remaining links, the net force on link Li is the sum of the externally-applied force,

and the forces across joints Ji and Ji+1,

if̂ i,net =
if̂ i,ext +

if̂ i − iX∗
i+1

i+1f̂ i+1,

so the force transmitted across joint Ji is

if̂ i =
if̂ i,net − if̂ i,ext +

iX∗
i+1

i+1f̂ i+1.

Finally, once the forces exerted by each joint are available, the i-th component of τopen(q, q̇,0)

is obtained using the reciprocal product

τopen, i =
iŜ

⊤
i

if̂ i.

2.4.4 Computing the Mass Matrix

The mass matrix M(q) of a serial chain can be computed using the composite-rigid-body al-

gorithm (CRBA) that we next outline [33]. Since all computations are performed using the 0

coordinates, we will often omit the leading superscript 0 for simplicity.

Recall from Section 2.3 that the kinetic energy of a robot can always be expressed as

K(q, q̇) =
1

2

n∑

i=1

n∑

j=1

q̇i M i,j q̇j . (2.36)

36 Closed-chain Systems

Link Li Link Li+1

Link Ln

Joint Ji
Joint Ji+1

Joint Jn

Link Li−1
f̂ i+1f̂ i

f̂ i,ext

f̂n

f̂n,ext

Figure 2.13: Force diagram for the open chain. The net force acting on link Li can be decom-
posed into the sum of the forces f̂ i and −f̂ i+1 transmitted across joints Ji and Ji+1, and the
resultant of the externally-applied forces f̂ i,ext (including gravity).

However, since K(q, q̇) must be the sum of the kinetic energies of all links, we can also write

K(q, q̇) =
1

2

n∑

k=1

v̂⊤k Îk v̂k, (2.37)

where v̂k and Îk are the velocity and spatial inertia of link Lk in 0 coordinates. The velocity of

link Lk, in turn, can be written as

v̂k =
k∑

i=1

0Ŝ1q̇i. (2.38)

Substituting Eq. (2.38) into Eq. (2.37) gives

K(q, q̇) =
1

2

n∑

k=1

k∑

i=1

k∑

j=1

q̇i
0Ŝ

⊤
i Îk

0Ŝj q̇j ,

which can be rearranged to obtain

K(q, q̇) =
1

2

n∑

i=1

n∑

j=1

n∑

k=max(i,j)

q̇i
0Ŝ

⊤
i Îk

0Ŝj q̇j . (2.39)

Comparing Eq. (2.39) with Eq. (2.36), we see that

M i,j =
0Ŝ

⊤
i

(∑
n
k=max(i,j)Îk

)

︸ ︷︷ ︸

Î
c

max(i,j)

0Ŝj , (2.40)

2.4 Recursive Dynamic Algorithms 37

where Î
c

max(i,j) is the inertia of all links that go from max(i, j) towards the tip n, treated as a

single composite rigid body (hence, the name of the algorithm). This inertia can be computed

recursively starting from the tip and going backwards to the base using

Î
c

i = Îi +
n∑

j=i

Î
c

j , (2.41)

with Î
c

n = În. Both Eqs. (2.40) and (2.41) form the basic equations of the CRBA that recursively

computes the mass matrix.

2.4.5 Computing Constraint Forces

As in all mechanisms, the interaction of rigid bodies in a closed-chain system produces constraint

forces across the joints that could stress the mechanism excessively. In many applications, such

forces will have to remain inside prescribed bounds determined by the resistance of the robot

parts, or by working constraints of the robot (e.g., in a cable-driven robot the cable tensions

must remain positive in general). Thus, it is important to provide tools to compute the constraint

forces in all joints, so we can use them to enforce the mentioned bounds during motion planning.

Given the configuration and velocity vectors q and q̇, and the input vector u, our aim is to

compute the constraint forces transmitted across each joint of the robot. The procedure will

involve three steps:

• Solution of the forward dynamics to obtain the joint acceleration vector q̈.

• Forward propagation of the link velocities and accelerations determined by q, q̇ and q̈.

• Backward propagation of the forces transmitted across the joints and extraction of the

constraint forces from them.

Although the last steps are similar to those used in Section 2.4.3 to compute C(q, q̇) q̇ +G(q),

q̈ is not null now, and we must also include the constraint force f̂ c closing the loop in the

backward propagation of forces. We next explain these steps in detail.

Forward Dynamics

The first step consists in solving the forward dynamics of the closed-chain system to obtain the

joint acceleration q̈. This is achieved using Eq. (2.12),

q̈ =
[

Inq 0

]
[

M(q) J⊤n

Jn 0

]−1 [

τFD(q, q̇, u)

ξ(q, q̇)

]

, (2.42)

38 Closed-chain Systems

where Jn, ξ(q, q̇), and the term C(q, q̇)q̇ +G(q) included in τFD are computed following Sec-

tion 2.4.3, and M(q) is obtained as in Section 2.4.4.

Forward Propagation of Link Velocities and Accelerations

In the second step, the velocities and accelerations of all bodies are recursively computed, start-

ing from the base and working towards the tip. These quantities are expressed in i coordinates

as in Section 2.4.3, with the difference that q̈ is now given by Eq. (2.42). Therefore, to obtain
iv̂i and iâi we resort to Eqs. (2.31) and (2.32),

iv̂i =
iXi−1

i−1v̂i−1 +
iŜi q̇i,

iâi =
iXi−1

i−1âi−1 +
iŜi q̈i +

i ˙̂Si q̇i,

where q̈i is the ith component of the joint acceleration computed in Eq. (2.42).

Backward Propagation of Forces across the Joints

In the third step, the force if̂ i transmitted across each joint Ji is recursively computed starting

from the tip and working backwards towards the base. To this end, we use the Newton-Euler

equation in Eq. (2.35) to compute the net force if̂ i,net acting on link Li,

if̂ i,net =
iÎi

iâi +
iv̂i × iÎi

iv̂i,

where iv̂i and iâi are those we obtained in the earlier step. In order to find the force trans-

mitted across each joint, note now that, unlike in Section 2.4.3, me must take into account the

constraint force f̂ c at the cut link. From Section 2.4.2 we know that such a force is given by

f̂ c = −λ,

where

λ =
[

0 Ine

]
[

M(q) J⊤n

Jn 0

]−1 [

τFD(q, q̇, u)

ξ

]

,

so the spatial force transmitted across joint Jn will be

nf̂n = nf̂n,net − nf̂n,ext +
nX∗

0 f̂ c.

2.4 Recursive Dynamic Algorithms 39

We can now compute the spatial force across the remaining joints working backwards to the

base via the recursion
if̂ i =

if̂ i,net − if̂ i,ext +
iX∗

i+1
i+1f̂ i+1,

Note that the total force transmitted across joint Ji is the sum of the constraint force if̂ i,constr

and the axial component if̂ i,axial accounting for friction and motor joint forces:

if̂ i =
if̂ i,constr +

if̂ i,axial.

Since
if̂ i,axial =

iŜ
⊤
i

if̂ i
iŜi,

the constraint force at joint Ji is finally given by

if̂ i,constr =
if̂ i − iŜ

⊤
i

if̂ i
iŜi.

If necessary, we can always express f̂ i,constr in 0 coordinates using

0f̂ i,constr =
0X∗

i
if̂ i,constr.

3
Trajectory Planning

We next develop a sampling-based planner for closed-chain robotic systems. After reviewing

the state of the art on the topic, we formulate the problem to be solved, and explain why

previous sampling-based methods, while powerful, find difficulties in systems with loop-closure

and dynamic constraints. The state space of such systems is an implicitly-defined manifold that

complicates the sampling and steering procedures, and leads to trajectories that deviate from

the manifold if standard integration methods are used. To address these issues, we construct

an atlas of the state space incrementally, and use this atlas to generate random states, and to

steer the system towards such states. The planner we obtain is probabilistically complete, and

it can avoid forward singularities if required. We finally illustrate the planner performance of

the planner in significantly complex tasks involving planar and spatial robots that have to lift

or throw a load using torque-limited actuators. The planner can be seen as an extension of the

one in [41] to deal with closed kinematic chains, or of the one in [9] to deal with dynamic

constraints.

3.1 Related work

C-space approaches

The sheer complexity of kinodynamic planning is usually managed by decomposing the problem

into simpler subproblems [13]. For example, path planning approaches concentrate on finding

a collision-free path in the C-space while satisfying the kinematic constraints [7, 9, 42, 43],

which is already a challenging issue by itself. In these approaches, the dynamic constraints of

the robot are neglected with the hope they will be enforced in a postprocessing stage. A typical

approach for such stage is to resort to time scaling methods [44–49]. These methods regard the

path as a function q = q(s) in which q is the robot configuration and s is some path parameter,

and then find a monotonic time scaling s = s(t) such that q(t) = q(s(t)) connects the start and

42 Trajectory Planning

(a) (b)

Figure 3.1: A four-bar pendulum modeling a swing boat ride. A kinematic trajectory (a) and
a trajectory also fulfilling dynamic constraints due to torque limitation (b) may be quite dif-
ferent. The time-scaling of (a) will not be able to produce the swinging motion in (b). See
youtu.be/vhBc6bH8jiw for an animated version of this figure.

goal configurations in minimum time. Although the generated trajectory is only time-optimal

for the computed path, this approach makes the trajectory planning problem more tractable, so

it can be solved in systems with many degrees of freedom like humanoids, legged robots, or

mobile robot formations [50]. Time scaling methods, in addition, have recently been extended

to compute the feasible velocities at the end of a path given an initial range of velocities [51],

which is useful in the context of randomized planning [50].

Despite their advantages, the previous methods essentially work in the C-space, which makes

them limited in some way or another. For instance, path planning approaches are not likely

to generate the swinging paths that may be required in highly dynamic tasks like lifting a

heavy load under torque limitations. Moreover, it is not difficult to find situations in which

a kinematically-feasible path becomes unusable because it does not account for the system dy-

namics (Fig. 3.1). In other approaches, start or goal states with nonzero velocity cannot be

specified, which is necessary in, for example, catching or throwing objects at a certain speed

and direction. Time scaling methods, in turn, require the robot to be fully actuated. While

this is rarely an issue in robot arms or humanoids under contact constraints [10, 11], parallel

robots with passive joints are underactuated at forward singularities. These configurations are

https://youtu.be/vhBc6bH8jiw

3.2 The Trajectory Planning Problem 43

problematic when managed in the C-space as they can only be traversed under particular veloc-

ities and accelerations, as described in Sections 2.2 and 2.3.3. As it will turn out, however, the

previous limitations do not apply if, as we do, robot trajectories are directly planned in the state

space.

State space approaches

Since its introduction in [41], the rapidly-exploring random tree (RRT) has emerged as one

of the most powerful methods for planning in the state space. Kinodynamic RRT planners are

conceptually simple, easy to implement, and can handle dynamic constraints and actuator force

limits if desired. They can also solve problems in relatively high dimensions and are probabilis-

tically complete. A main issue of such planners, however, is that exact steering methods are

not available for nonlinear dynamical systems. The usual RRT method tries to circumvent this

problem by simulating random actions for a given time, and then selecting the action that gets

the system closest to the target [41]. For particular systems, better solutions exist though. For

instance, the approach in [52] assumes double integrator dynamics and exploits the fact that

the minimum-time problem has an efficient solution in this case. The resulting planner is fast,

but the full dynamics of the system can only be coped via feedback linearization, which requires

the inverse dynamic problem to be solvable. As an alternative, the method in [53] linearizes

the system dynamics and uses an infinite-horizon LQR controller to define a steering method,

but such a controller can only be used to reach goal states at rest. In contrast, the methods in

[54–56] use finite-horizon LQR controllers that can converge to arbitrary states.

Note that, as designed, none of the previous methods can handle closed kinematic chains,

as they assume the state coordinates to be independent. The planner we propose in this chapter

covers this gap by extending the methods in [41] and [56] to deal with dependencies on the

state coordinates.

3.2 The Trajectory Planning Problem

Recall from Section 2.3.2 that the time evolution of a closed-chain system is determined by the

system of differential-algebraic equations

{
F (x) = 0,

ẋ = g(x,u),

(3.1a)

(3.1b)

44 Trajectory Planning

where Eq. (3.1a) is the kinematic constraint that forces the states x to remain in X , and

Eq. (3.1b) is the differential constraint that models the robot dynamics. To model the fact

that the actuator forces are limited, we assume that u can only take values inside the box

U = [−u1,max, u1,max]× [−u2,max, u2,max]× . . .× [−unu,max, unu,max] (3.2)

of Rnu , where ui,max denotes the limit force or torque of the i-th motor. Furthermore, we as-

sume that the robot states x(t) can only evolve inside a region Xfeas ⊆ X of collision-free states

respecting any desired limits on q and q̇, and maintaining all constraint forces within admissible

bounds.

With the previous definitions, the trajectory planning problem can be stated as follows:

Given the kinematic and dynamic models of a robot, a geometric model of the environment,

and two states xs and xg of Xfeas, find a control function u = u(t) such that the trajectory

x = x(t) determined by Eqs. (3.1) for x(0) = xs fulfills x(tg) = xg for some time tg > 0, with

x(t) ∈ Xfeas and u(t) ∈ U for all t ∈ [0, tg].

3.3 Limitations of Prior RRT Methods

Observe that the previous formulation is more general than the one assumed in earlier RRT

planners. In particular, the approaches in [9, 42, 57–59] are purely kinematic, so they disregard

the dynamics in Eq. (3.1b), and the force bounds in Eq. (3.2). As a result, they only compute

paths in C, and such paths might be unfeasible dynamically. In contrast, planning approaches

with dynamic constraints like [41, 53, 55, 56, 60, 61] consider Eq. (3.1b) and the bounds in

(3.2), but neglect Eq. (3.1a), which impedes the handling of robots with closed kinematic

chains. While [13] proposed a few extensions to deal with such chains using RRT methods, we

next see that these extensions are problematic in practice.

Recall from [13] that a usual RRT is initialized at xs, and is extended by applying four steps

repeatedly (see Fig. 3.2):

1. a guiding state xrand ∈ X is randomly selected;

2. the RRT state xnear that is closest to xrand is determined according to some metric;

3. a steering method is used to compute the action u ∈ U that brings the system as close as

possible to xrand in the absence of obstacles;

3.3 Limitations of Prior RRT Methods 45

xs

xg

xnew

xnear

xrand

Xfeas

Figure 3.2: Expansion of a unidirectional RRT [41]. First, a random state xrand ∈ Xfeas is
generated. Then, the state xnear that is closest to xrand is chosen. Finally, a trajectory trying to
connect these two states is generated yielding a new state xnew.

4. the movement that results from applying u during some time ∆t is obtained by integrating

Eq. (3.1b). This yields a new state xnew, which is added to the RRT if it lies in Xfeas, or it

is discarded otherwise. In the former case, u is stored in the new edge connecting xnear

to xnew. The process terminates when a tree node is close enough to xg.

It is worth noting that, in many implementations, steps 3 and 4 are repeated with xnew playing

the role of xnear, as long as xnew gets closer to xrand.

Three problems arise when applying the previous method to closed kinematic chains. First,

the points xrand are difficult to obtain in general, as X may be a manifold without explicit

parametrizations. To circumvent this issue, [13, Section 7.4.1] proposes to randomly pick xrand

from the larger ambient space R
nx (Fig. 3.3) and use, as a guiding state, the point x′

rand that

results from projecting xrand onto the tangent space of X at xnear. However, while x′
rand is easy

to compute, its pulling effect on the RRT may be small. The ambient space could be large in

comparison to X , resulting in points x′
rand that might often be close to xnear, which diminishes

the exploration bias of the RRT. This effect was analyzed in [9] and [42]. A second problem

concerns the dynamic simulation of robot motions. Existing RRT methods would only use the

dynamics in Eq. (3.1b) to generate such motions on the grounds that the kinematic constraints

46 Trajectory Planning

R
nx

X

xrand

xnear

x′
rand

Figure 3.3: Generation of a guiding sample according to [13].

in Eq. (3.1a) are implicitly accounted for by Eq. (3.1b) [13, Section 13.4.3.1]. However, from

multibody dynamics it is known that the motion of a closed-chain robot can only be predicted

reliably if Eq. (3.1a) is actively used during the integration of Eq. (3.1b) [30, 62]. Otherwise, the

inevitable errors introduced when discretizing Eq. (3.1b) will make the trajectory x(t) increas-

ingly drift from X as the simulation progresses (Fig. 3.4). Such a drift may even be large enough

to prevent the connection of xs with xg. As we will see in next chapter, the use of Baumgarte

stabilization to compensate this drift [35] is also problematic, as it may lead to instabilities [63]

or fictitious energy increments, and the stabilizing parameters are not easy to tune in general.

A third problem, finally, concerns the steering method. A shooting strategy based on simulating

several actions from U was proposed in [41], but this technique is inefficient when nu is large,

as the number of samples needed to properly represent U grows exponentially with nu. The

lack of a good steering strategy is a general problem of RRT methods, but it is more difficult to

address when closed kinematic chains are present.

Purely kinematic planners like [9, 42, 57–59] do not perform dynamic simulations, and

employ direct steering motions between configurations. Moreover, most of them sample in

ambient space. Thus, the previous three problems would also have to be solved when trying to

generalize these planners to deal with dynamic constraints. Among such planners, however, the

3.3 Limitations of Prior RRT Methods 47

X

Start state

Goal state

The mechanism breaks
when the RRT diverges
from X

Figure 3.4: Application of the planner in [41] to obtain a dynamically feasible trajectory for
a four-bar robot. The pendulum has to be moved from the start to the goal states indicated,
which correspond to the white dots in the manifold X shown in blue. As we see, an RRT built
using [41] easily diverges from X as the exploration proceeds (see the red points for example)
which difficults the connection of the query states and generates mechanism disassembles. See
youtu.be/nZrfgNN9Jhw for an animated version of this figure.

one in [9] is more amenable for generalization, as it employs atlas machinery that is applicable

to mechanisms of general topology. Such a machinery can be extended to tackle the more

general problem of Section 3.2. As we shall see, once an atlas of X is obtained, we will have the

necessary tools to

1. sample the X manifold directly instead of its ambient space R
nx;

2. integrate Eqs. (3.1) as a differential-algebraic equation to ensure driftless motions on X ;

3. define a proper steering method for closed kinematic chains.

We develop these tools in the following two sections, and later use them as basic building blocks

in our planner implementation.

https://youtu.be/nZrfgNN9Jhw

48 Trajectory Planning

3.4 Mapping and Exploring the State Space

This section addresses the sampling and drift issues by constructing an atlas of X . We first

define this atlas and show how to use it to both sample and integrate Eqs. (3.1) accurately on X
(Section 3.4.1). However, since it may take too long to construct a full atlas, we only build a

partial atlas incrementally as the RRT grows (Sections 3.4.2 and 3.4.3).

3.4.1 Atlas Construction

Formally, an atlas of X is a collection of charts mapping X entirely (Fig. 3.5(a)), where each

chart is a local diffeomorphism ϕc from an open set Vc ∈ X to an open set Pc ∈ R
dX :

ϕc : Vc → Pc.

The Vc sets can be thought of as partially-overlapping tiles covering X , in such a way that every

x ∈ X lies in at least one set Vc. The point y = ϕc(x) provides the local coordinates, or

parameters, of x in chart c. Since each map ϕc is a diffeomorphism, it has an inverse map

ψc : Pc → Vc

that provides a local parametrization of Vc ⊂ X . Since we assumed that X is a smooth manifold,

it is guaranteed that ϕc and ψc exist for any xc ∈ X [64].

For particular manifolds, ϕc and ψc can be defined in closed form (for example, by ex-

pressing some variables of Eq. (3.1a) as a function of the others). For the sake of generality,

however, we define them using the tangent space parametrization [65], which works for any

manifold. Under this parametrization, the map y = ϕc(x) around a given xc ∈ X is obtained by

projecting x orthogonally to TxcX (Fig. 3.5(b)), so this map takes the form

y = U⊤
c (x− xc), (3.3)

where U c is an nx × dX matrix whose columns provide an orthonormal basis of TxcX . This

matrix can easily be computed using the QR decomposition of the Jacobian F x(xc). The inverse

map x = ψc(y), in turn, is implicitly determined by the system of nonlinear equations

{
F (x) = 0,

U⊤
c (x− xc)− y = 0,

which, when x is close to xc, can be solved for x using the Newton-Raphson method.

3.4 Mapping and Exploring the State Space 49

X

X

(a)

(b)

x

y

ẋ

ẏ

R
dX

R
dX

R
dX

R
dX

Pc

Vc

ψc

ϕc

x

Txc
X y = U⊤

c (x− xc)

xc

Figure 3.5: (a) A collection of overlapping charts with the corresponding maps ϕc and inverse
maps ψc. When these charts cover X entirely, they form an atlas of X . (b) Using the tangent
space parametrization, ϕc is defined by the projection of x onto TxcX .

50 Trajectory Planning

xk

xk+1

yk

yk+1

ψc

ϕc

R
dX

R
dX

X

Figure 3.6: To integrate on X , we first obtain the local coordinate of xk using yk = ϕc(xk),
then compute yk+1 by integrating in local coordinates, and finally project yk+1 back to X using
xk+1 = ψc(yk+1).

Assuming that an atlas has been created, the problem of sampling X boils down to gener-

ating random points yrand in the Pc sets, as they can always be projected to X using the map

xrand = ψc(yrand). Also, the atlas allows the conversion of the vector field defined by Eq. (3.1b)

into one on the Pc sets of the charts. The time derivative of Eq. (3.3), ẏ = U⊤
c ẋ, gives the

relationship between the two vector fields, and allows writing

ẏ = U⊤
c g(ψc(y),u) = g̃(y,u), (3.5)

which is Eq. (3.1b), but expressed in local coordinates. This equation still takes the full dy-

namics into account, and forms the basis of geometric methods for the integration of ordinary

differential equations on manifolds [25, 26, 30]. Given a state xk and an action uk, xk+1 is

estimated by obtaining yk = ϕc(xk), then computing yk+1 using a discrete form of Eq. (3.5),

and finally getting xk+1 = ψc(yk+1) (Fig. 3.6). The procedure guarantees that xk+1 will lie

on X by construction, thus making the integration compliant with all kinematic constraints in

Eq. (3.1a).

3.4 Mapping and Exploring the State Space 51

xc

xk

xk+1

yk yk+1

α

ǫ

ρ

Txc
X

X

Figure 3.7: Thresholds determining the extension of the Pc set of the chart at xc. While yk lies
in Pc, yk+1 does not because it violates Eqs. (3.6)-(3.8).

3.4.2 Incremental Atlas and RRT Expansion

The previous approach relies on the availability of an atlas of X . However, the construction of

a full atlas is only feasible for low-dimensional state spaces. On the other hand, only part of

the atlas is necessary to solve a trajectory planning problem. For these reasons, as in [9], we

combine the construction of the atlas and the expansion of the RRT. In this approach, a partial

atlas is used to both generate random states and to expand the RRT branches. As described next,

new charts are also created as the RRT branches reach unexplored regions of the state space.

Suppose that xk and xk+1 are two consecutive states along an RRT branch and let yk
and yk+1 be their local coordinate vectors in TxcX . Then, a new chart at xk is created if the

inverse map xk+1 = ψc(yk+1) given by Eq. (3.4) cannot be solved for xk+1 using the Newton-

Raphson method, or if any of the following conditions is met

‖xk+1 − (xc +U c yk+1)‖ > ǫ, (3.6)

‖yk+1 − yk‖
‖xk+1 − xk‖

< cosα, (3.7)

‖yk+1‖ > ρ, (3.8)

52 Trajectory Planning

‖y
k
‖

2

‖y
c
‖

2

σσ yk yc

R
dXR

dX

Pc Pk

Figure 3.8: Half planes added to trim the Pc and Pk sets of two neighboring charts. Note that
yk = ϕc(xk) and yc = ϕk(xc).

where ǫ, α, and ρ are user-defined thresholds (Fig. 3.7). These conditions are introduced to

ensure that the Pc sets of the created charts capture the overall shape of X with sufficient detail.

The first condition limits the maximal distance between TxcX and the manifold X . The second

condition ensures a bounded curvature in the part of X that is covered by a chart, as well as

a smooth transition between neighboring charts. The third condition finally guarantees the

generation of new charts as the RRT grows, even for almost flat manifolds.

3.4.3 Chart Coordination

Since the charts will be used to generate samples on X , it is important to reduce the overlap

between new charts and those already present in the atlas. Otherwise, the areas of X covered by

several charts would be oversampled. To avoid this problem, the Pc set of each chart is initialized

as a ball of radius σ centered at the origin of RdX . This ball is progressively bounded as new

neighboring charts are created around the chart. If, while growing an RRT branch, a neighboring

chart is created at a point xk with parameter vector yk in Pc, the following inequality

y⊤yk −
‖yk‖2

2
≤ 0 (3.9)

is added as a bounding half-plane of Pc (Fig. 3.8). An analogous inequality is added to the Pk

set of the chart at xk, but using yc = ϕk(xc) instead of yk in Eq. (3.9). Note that the radius σ of

the initial ball must be larger than ρ to guarantee that the RRT branches covered by chart c will

eventually trigger the generation of new charts, i.e., to guarantee that Eq. (3.8) will eventually

3.5 Steering Methods 53

hold. Also, since Eq. (3.8) forces the norm of yk to be limited by ρ, the half-plane defined by

Eq. (3.9) will be guaranteed to clip Pc. Consequently, the Pc sets of those charts surrounded by

neighboring charts will be significantly smaller than the Pc sets of the charts at the exploration

border of the atlas. As we shall see in Section 3.6.1, this favors the growth of the tree towards

unexplored regions of X .

3.5 Steering Methods

The planner can adopt different strategies to steer the system from xnear to xrand. We briefly

summarize the standard approach (Section 3.5.1) and then propose an alternative strategy

based on linear quadratic regulators (Section 3.5.2).

3.5.1 A Randomized Steering Method

A simple strategy consists in simulating several constant actions from a discrete set Us ⊂ U
during ∆t, and then choosing the one that brings the robot closest to xrand [41]. While the

discrete set Us can be fixed beforehand (to include, e.g., the zero action that allows the system

to move by inertia) it is more common to let Us be a set of random actions selected from U with

uniform probability.

The advantage of this approach is that it is simple and works for any system. However, as

explained in Section 3.3, it becomes inefficient as the dimension of U increases, as the number

of samples in Us needed to properly represent U grows exponentially with nu. For instance,

if U is one-dimensional, 10 evenly-spaced actions would suffice to discretize U , whereas an

equivalent sampling of a five-dimensional U would require 105 actions. To mitigate the curse

of dimensionality, and following [13], we will define Us using 2 nu actions in what follows.

If U is an nu-dimensional cuboid, this corresponds to just taking the extreme actions for each

dimension, while keeping the rest at zero.

3.5.2 An LQR Steering Method

To obtain a steering method that scales better with the problem dimension, we next propose

an alternative strategy based on linear quadratic regulators (LQR). While LQR techniques are

classical steering methods for control systems [66], they assume the state coordinates to be

independent, so they are applicable to open chain robots only. However, we next show that,

using the atlas charts, they can be extended to the closed chain case. The idea is to exploit

system linearizations at the various chart centers so as to obtain a sequence of control functions

u(t) bringing the robot from xnear to xrand.

54 Trajectory Planning

System linearization at a chart center

To apply LQR techniques to our steering problem, we will linearize our system model at the

chart centers xc under the null action u = 0. To do so, note that we cannot linearize Eq. (3.1b),

as this would disregard the fact that the x variables are coupled by Eq. (3.1a). We must instead

linearize Eq. (3.5), which expresses Eq. (3.1b) in the independent y coordinates of TxcX . Since

x = xc corresponds to y = 0 in the local coordinates of TxcX , the sought linearization is

ẏ =
∂g̃

∂y

∣
∣
∣
∣
y=0

u=0
︸ ︷︷ ︸

A

y +
∂g̃

∂u

∣
∣
∣
∣
y=0

u=0
︸ ︷︷ ︸

B

u+ g̃(0,0)
︸ ︷︷ ︸
c

,

which can be written as

ẏ = Ay +Bu+ c. (3.10)

This system will be assumed to be controllable hereafter.

Observe that, in Eq. (3.10), the term

c = g̃(0,0) = U⊤
c g(xc,0)

is not null in principle, as (x,u) = (xc,0) is not necessarily an equilibrium point of the system

in Eq. (3.5). Moreover, by applying the chain rule, the A and B matrices are given by:

A =
∂g̃

∂y

∣
∣
∣
∣
y=0

u=0

= U⊤
c

∂g

∂x

∣
∣
∣
∣x=xc
u=0

∂ψc

∂y

∣
∣
∣
∣
y=0

, (3.11)

and

B =
∂g̃

∂u

∣
∣
∣
∣
y=0

u=0

= U⊤
c

∂g

∂u

∣
∣
∣
∣x=xc
u=0

.

It is easy to see that, in Eq. (3.11),

∂ψc

∂y
= U c.

To realize so, consider the parametrization

y = U⊤
c (x− xc) . (3.12)

3.5 Steering Methods 55

If we use the inverse mapping x = ψ(y) to rewrite Eq. (3.12) as

y = U⊤
c (ψc(y)− xc) , (3.13)

and compute the partial derivative of both sides of Eq. (3.13) with respect to y, we have

I = U⊤
c

∂ψc

∂y
,

which, upon multiplication by U c, and using U⊤
c U c = I, yields ∂ψc/∂y = U c as we claimed.

Notice, therefore, that A, B, and c can exactly be obtained by evaluating the original func-

tion g(x,u) and its derivatives ∂g/∂x and ∂g/∂u at (x,u) = (xc,0). In those systems in which

these derivatives are not easy to obtain in closed form, A and B can always be approximated

numerically using finite differences, or by using automatic differentiation [67].

Steering on a single chart

Suppose now that both xnear and xrand lie in a same chart c centered at xc ∈ X (Fig. 3.9). In this

case, the problem of steering the robot from xnear to xrand can be reduced to that of steering

the system in Eq. (3.10) from ynear = ϕc(xnear) to yrand = ϕc(xrand). This problem can be

formulated as follows: Find the control function u(t) = u∗(t) and time tf = t∗f that minimize

the cost function

J(u(t), tf) =

∫ tf

0

(

1 + u(t)⊤R u(t)
)

dt, (3.14)

subject to the constraints

ẏ = Ay +Bu+ c,

y(0) = ynear,

y(tf) = yrand. (3.15)

In Eq. (3.14), the unit term inside the integral penalizes large values of tf , while the term

u(t)⊤R u(t) penalizes high control actions. In this term, R is a symmetric positive-definite

matrix that is fixed beforehand.

The problem just formulated is known as the fixed final state optimal control problem [66].

We shall solve this problem in two stages. Initially, we will obtain u∗(t) assuming that tf is fixed,

and then we will find a time tf that leads to a minimum of J(u(t), tf).

56 Trajectory Planning

X

xrand

xnear

xc

y = 0

y
rand

y ne
ar Txc

X

Figure 3.9: When xnear and xrand are covered by a same chart, the steering of the system can be
reduced to a steering problem in TxcX .

Fixed final state and fixed final time problem

If tf is fixed, we can find the optimal action u(t) = u∗(t) by applying Pontryagin’s minimum

principle. Since the function u⊤(t)Ru(t) is convex, this principle provides necessary and suf-

ficient conditions of optimality in our case [68]. To apply the principle, we first define the

Hamiltonian function

H(y,u,λ) = 1 + u⊤ R u+ λ⊤ (Ay +Bu+ c) ,

where λ = λ(t) is an undetermined Lagrange multiplier. Then, the corresponding state and

costate equations [66] are

ẏ =
∂H

∂λ

⊤

= Ay +Bu+ c, (3.16)

λ̇ = −∂H

∂y

⊤

= −A⊤λ. (3.17)

For u = u∗(t) to be an optimal control function, H must be at a stationary point relative to u,

i.e., it must be
∂H

∂u

∣
∣
∣
∣

⊤

u=u∗(t)

= R u∗(t) +B⊤λ = 0,

3.5 Steering Methods 57

and thus,

u∗(t) = −R−1B⊤λ(t). (3.18)

Since Eq. (3.17) is decoupled from Eq. (3.16), its solution can be found independently. It is

λ(t) = eA
⊤(tf−t)λ(tf), (3.19)

where λ(tf) is still unknown.

To find λ(tf), let us consider the closed-form solution of Eq. (3.16) for u = u∗(t):

y(t) = eAty(0) +

∫ t

0
eA(t−τ) (Bu∗(τ) + c) dτ.

If we evaluate this solution for t = tf and take into account Eqs. (3.18) and (3.19), we arrive at

the expression

y(tf) = r(tf)−Gr(tf) λ(tf), (3.20)

where

r(tf) = eAtf y(0) +

∫ tf

0
eA(tf−τ) c dτ, (3.21)

and

Gr(tf) =

∫ tf

0
eA(tf−τ) BR−1B⊤ eA

⊤(tf−τ) dτ

=

∫ tf

0
eAτ BR−1B⊤ eA

⊤
τ dτ. (3.22)

Given that y(tf) is known from Eq. (3.15), we can solve Eq. (3.20) for λ(tf) to obtain

λ(tf) = Gr(tf)
−1

(
r(tf)− y(tf)

)
. (3.23)

Now, substituting Eq. (3.23) into (3.19), and the result into Eq. (3.18), we finally obtain the

optimal control function for the fixed final state and fixed final time problem:

u∗(t) = −R−1B⊤eA
⊤(tf−t) Gr(tf)

−1
(
r(tf)− y(tf)

)
. (3.24)

Note that this is an open-loop control law, as u∗ depends on t only. The values r(tf) and Gr(tf)

in Eq. (3.24) can be obtained by computing the integrals in Eqs. (3.21) and (3.22) numerically.

The matrix Gr(tf) is known as the weighted continuous reachability Gramian, and since the

system is controllable, it is symmetric and positive-definite for t > 0 [56], which ensures that

Gr(tf)
−1 always exists.

58 Trajectory Planning

Finding the optimal time tf

To find a time t∗f for which the cost J in Eq. (3.14) attains a minimum value, we substitute the

optimal control in Eq. (3.24) into Eq. (3.14), and take into account Eq. (3.22), obtaining

J(tf) = tf +
(
y(tf)− r(tf)

)⊤
Gr(tf)

−1
(
y(tf)− r(tf)

)
. (3.25)

The time t∗f is thus the one that minimizes J(tf) in Eq. (3.25). Assuming that t∗f lies inside a

specified time window [0, tmax], this time can be computed approximately by evaluating r(tf),

Gr(tf) and J(tf) using Eqs. (3.21), (3.22), and (3.25) for tf = 0 to tf = tmax, and selecting the

tf value for which J(tf) is minimum.

Finally, the values t∗f , r(t∗f), and Gr(t
∗
f) can be used to evaluate the optimal control function

in Eq. (3.24). By applying such a control to the full nonlinear system of Eq. (3.1b) during t∗f
seconds, we will follow a trajectory ending in some state y′rand close to yrand. This trajectory can

be recovered on the X space by means of the ψc map and, if it lies in Xfeas, the corresponding

branch can be added to the RRT.

Steering over multiple charts

If xrand is not covered by the chart c of xnear, we can iteratively apply the steering process as

shown in Fig. 3.10(a). To this end, we compute yrand = ϕc(xrand) and drive the system from

ynear = ϕc(xnear) towards yrand on TxcX , projecting the intermediate states y to X via ψc.

Eventually, we will reach some state xk ∈ X that is in the limit of the Vc set of the current

chart (see the conditions in Section 3.4.2). At this point, we generate a chart at xk and linearize

the system again. We then use this linearization to recompute the optimal control function to

go from xk to xrand. Such a “linearize and steer" process can be repeated as needed, until the

system gets closely enough to xrand.

Although the previous procedure is often effective, it can also fail in some situations. As

shown in Fig. 3.10(b), the initial steering on chart c might bring the system from xnear to xk

but, due to the position of xrand, a new control function computed at xk would steer the system

back to xnear, leading to a back-and-forth cycle not converging to xrand. Such limit cycles

can be detected however, because the time t∗f will no longer decrease eventually. As shown in

Fig. 3.10(c), moreover, the steering procedure can sometimes reach yrand, but we might find

that ψc(yrand) 6= xrand because, due to the curvature of X , several states can project to the

same point on a given tangent space. Even so, such situations do not prevent the connection

of xs with xg, as the steering algorithm is to be used inside a higher-level RRT planner. The

implementation of such a planner is next addressed.

3.6 Planner Implementation 59

(a)

(b) (c)

xnear

xnear

xnear

ynear

X

XX

xrand

xrand

xrand

y
rand

y rand

yrand

xk

xkxc xc

xc

New chart

New chart

Figure 3.10: (a) Steering towards states not covered by the chart of xnear. (b) Cyclic behavior
of the steering method. (c) Convergence to yrand but not to xrand.

3.6 Planner Implementation

Algorithm 3.1 gives the top-level pseudocode of the planner. At this level, the algorithm is al-

most identical to the RRT planner in [41]. The only difference is that, in our case, we construct

an atlas A of X to support the lower-level sampling, simulation, and steering tasks. As in [41],

the algorithm implements a bidirectional RRT where a tree Ts is rooted at xs (line 2) and an-

other tree Tg is rooted at xg (line 3). Consequently, the atlas is initialized with one chart centred

at xs and another chart centered at xg (line 1). Initially, a random state is sampled (xrand in

line 5), the nearest state in Ts is determined (xnear in line 6), and then Ts is extended with the

aim of connecting xnear with xrand using the CONNECT method (line 7). This method reaches

a state xnew that, due to the presence of obstacles, or to the particular features of the steering

method used, may be different from xrand. Then, the state in Tg that is nearest to xnew is deter-

mined (x′
near in line 8) and Tg is extended from x′

near with the aim of reaching xnew (line 9).

60 Trajectory Planning

Algorithm 3.1: The top-level pseudocode of the planner

PLAN TRAJECTORY(xs,xg)
input : The query states, xs and xg.
output: A trajectory connecting xs and xg.

1 A← INITATLAS(xs,xg)
2 Ts ← INITRRT(xs)
3 Tg ← INITRRT(xg)
4 repeat
5 xrand ← SAMPLE(A, Ts)
6 xnear ← NEARESTSTATE(Ts,xrand)
7 xnew ← CONNECT(A, Ts,xnear,xrand)
8 x′

near ← NEARESTSTATE(Tg,xnew)
9 x′

new ← CONNECT(A, Tg,x
′
near,xnew)

10 SWAP(Ts, Tg)

11 until ‖xnew − x′
new‖ < β

12 RETURN(TRAJECTORY(Ts,xnew, Tg,x
′
new))

Algorithm 3.2: Generate a random state xrand.

SAMPLE(A, T)
input : The atlas A and the tree T to be extended.
output: A guiding sample xrand.

1 repeat
2 c← RANDOMCHARTINDEX(A, T)
3 yrand ← RANDOMONBALL(σ)

4 until yrand ∈ Pc

5 xrand ← ψc(yrand)
6 if xrand = NULL then
7 xrand ← xc +U c yrand

8 RETURN(xrand)

This extension generates a new state x′
new. After this step, the trees are swapped (line 10) and,

if the last connection was unsuccessful, i.e., if xnew and x′
new are not closer than a user-provided

threshold (line 11), lines 5 to 10 are repeated again. If the connection was successful, a solu-

tion trajectory is reconstructed using the paths from xnew and x′
new to the roots of Ts and Tg

(line 12). Due to the particularities of the two steering methods, the CONNECT method is given

in Algorithm 3.3 or 3.4 for the randomized or LQR steering, respectively. Different metrics can

be used to determine the distance between two states without affecting the overall structure of

the planner. As in [41], we use Euclidean distance for simplicity.

3.6 Planner Implementation 61

σ

ρ

Figure 3.11: A partial atlas of a paraboloid, with its inner and border charts colored in blue and
red, respectively. Black dots indicate chart centers.

3.6.1 Sampling

The SAMPLE method is described in Algorithm 3.2. Initially, one of the charts covering the tree T

is selected at random with uniform distribution (line 2). A vector yrand of parameters is then

randomly sampled also with uniform distribution inside a ball of radius σ centred at the origin

of RdX (line 3). Chart selection and parameter sampling are repeated until yrand falls inside the

Pc set for the selected chart. This process generates a sample yrand with uniform distribution

over the union of the Pc sets covering T . Note here that the Pc set of a chart in the interior

of the atlas is included in a ball of radius ρ, while the Pc set of a chart at the border of the

atlas is included inside a ball of radius σ > ρ (Fig. 3.11). If we fix ρ but increase σ the overall

volume of the border charts increases, whereas that of the inner charts stays constant. Therefore,

by increasing σ we can increase the exploration bias of the algorithm. This bias is analogous

to the Voronoi bias in standard RRTs [69]. After generating a valid sample, the method then

attempts to compute the point xrand = ψc(yrand) (line 5) and returns this point if the Newton

method implementing ψc is successful (line 8). Otherwise, it returns the ambient space point

corresponding to yrand (line 7). This point lies on TxcX , instead of on X , but it still provides a

guiding direction to steer the tree towards unexplored regions of X .

62 Trajectory Planning

Algorithm 3.3: Try to connect xnear with xrand with randomized steering.

CONNECTRANDOM(A, T,xnear,xrand)
input : An atlas A, a tree T , the state xnear from which T is to be extended towards xrand.
output: The new state xnew.

1 dref ← ‖xnear − xrand‖
2 repeat
3 xnew ← xnear

4 dnew ←∞
5 foreach u ∈ Us do
6 (xsim,usim)← SIMULATE(A,xnear,xrand,u,∆t)
7 if xsim ∈ Xfeas then
8 d← ‖xsim − xrand‖
9 if d < dnew then

10 xnew ← xsim

11 unew ← usim

12 dnew ← d

13 if xnew 6= xnear then
14 T ← ADDEDGE(T,xnear,unew,xnew)

15 if dnew ≤ dref then
16 dref ← dnew
17 xnear ← xnew

18 until dnew > dref
19 RETURN(xnew)

3.6.2 Tree Extension

Algorithm 3.3 attempts to connect a state xnear to a state xrand using randomized steering. The

procedure simulates for a fixed time ∆t the motion of the system (line 6) for a set Us of constant

control policies, which can either be selected at random or be defined beforehand (line 5). The

action that yields a new state xnew closer to xrand is added to the RRT with an edge connecting

it to xnear (line 14). The action unew generating the transition from xnear to the new state xnew

is also stored in the tree so that an action trajectory can be returned after planning. This process

is repeated as long as there is progress towards xrand.

The analogous procedure using LQR steering is given in Algorithm 3.4. The algorithm im-

plements a loop where, initially, the optimal control policy u∗(t) and time t∗f to connect these

two states are computed (line 4). The control is a function of time given by Eq. (3.24). If t∗f is

lower than the optimal time t∗fp obtained in the previous iteration, the control is used to simulate

the evolution of the system from xnear (line 7). The simulation produces a state xnew which, if

3.6 Planner Implementation 63

Algorithm 3.4: Try to connect xnear with xrand with LQR steering.

CONNECTLQR(A, T,xnear,xrand)
input : An atlas A, a tree T , the state xnear from which T is to be extended towards xrand.
output: The new state xnew.

1 xnew ← xnear

2 t∗fp ←∞
3 repeat
4 (u∗, t∗f)← LQRCONTROL(A,xnear,xrand)

5 if t∗f ≤ t∗fp then

6 t∗fp ← t∗f
7 (xnew,unew)← SIMULATE(A,xnear,xrand,u

∗(t), t∗f)

8 if xnew ∈ Xfeas and xnew 6= xnear then
9 T ← ADDEDGE(T,xnear,unew,xnew)

10 xnear ← xnew

11 until t∗f > t∗fp or ‖ϕc(xnew)−ϕc(xrand)‖ ≤ δ or xnew /∈ Xfeas

12 xnew ← xnear

13 RETURN(xnew)

it is feasible and different from xnear, it is added to the tree. This involves the creation of an

edge between xnear and xnew (line 9), which stores the control sequence unew executed in the

simulation. The loop is repeated until t∗f is larger than t∗fp (line 11), or xrand is reached with

accuracy δ in parameter space, or the next state is unfeasible.

Algorithm 3.5 summarizes the procedure used to simulate a given control policy u(t) from

a particular state xk. The simulation progresses while the new state is valid, the target state is

not reached with accuracy δ in parameter space, and the integration time t is lower than tsim

(line 6). A state is not valid if is not in Xfeas due to obstacles or constraint forces out of bounds

(line 10). In that case, both the simulation and the connection between states are stopped. In

the case of non-constant policies, when the simulation reaches a new chart, the simulation is

stopped, but the connection continues after recomputing the optimal control, either on a newly

created chart (line 15) or on the neighboring chart.

Only when using LQR steering, a state is also not valid if it is not in the validity area of the

chart (line 17), or is not included in the current Pc set (line 24), i.e., it is parameterized by a

neighboring chart. In these two cases the simulation is stopped, but the connection continues

after recomputing the optimal control, either on a newly created chart (line 15) or on the

neighboring chart, respectively.

64 Trajectory Planning

Algorithm 3.5: Simulate an action.

SIMULATE(A,xk,xrand,u(t), tsim)
input : An atlas A, the state xk from where the simulation starts, the state xrand to be

approached, the control policy u(t) to be applied, the simulation time tsim.
output: The last state in the simulation and the executed control sequence.

1 t← 0
2 yk ← ϕc(xk)
3 uk ← ∅
4 c← CHARTINDEX(xnear)
5 STOP ← FALSE

6 while NOT STOP and ‖ϕc(xk)−ϕc(xrand)‖ > δ and |t| < tsim do
7 (xk+1,yk+1, h)← NEXTSTATE(xk,yk,u(t),F ,xc,U c, δ)
8 if xk+1 /∈ Xfeas then
9 xk ← xk+1

10 STOP ← TRUE

11 else
12 if ‖xk+1 − (xc +U c yk+1)‖ > ǫ or
13 ‖yk+1 − yk‖/‖xk+1 − xk‖ < cos(α) or
14 ‖yk+1‖ > ρ then
15 c← ADDCHARTTOATLAS(A,xk)
16 if NOT CONSTANT(u) then
17 STOP ← TRUE

18 else
19 xk ← xk+1

20 uk ← uk ∪ {(u(t), h)}
21 t← t+ h
22 if yk+1 /∈ Pc then
23 if NOT CONSTANT(u) then
24 STOP ← TRUE

25 else
26 c← NEIGHBORCHART(A, c,yk+1)

27 RETURN(xk,uk)

The key procedure in the simulation is the NEXTSTATE method (line 7), which provides the

next state xk+1, given the current state xk and the action u(t) at time t. The elements of u(t)

are saturated to their bounds in Eq. (3.2) if such bounds are surpassed. Then, the simulation is

implemented by integrating the dynamics in local coordinates as explained in Section 3.4.1. Any

numerical integration method could be used to discretize Eq. (3.5), either explicit or implicit.

We here apply the trapezoidal rule as it yields an implicit integrator whose computational cost

(integration and projection to the manifold) is similar to the cost of using an explicit method of

3.6 Planner Implementation 65

the same order [30]. Using this rule, Eq. (3.5) is discretized as

yk+1 = yk +
h

2
U⊤

c (g(xk,u) + g(xk+1,u)), (3.26)

where h is the integration time step. The value xk+1 in Eq. (3.26) is unknown but, since the ψk

map is defined implicitly by Eq. (3.4), it must fulfill

{
F (xk+1) = 0,

U⊤
c (xk+1 − xc)− yk+1 = 0.

Now, substituting Eq. (3.26) into Eq. (3.27) we obtain

{
F (xk+1) = 0,

U⊤
c

(

xk+1 −
h

2

(
g(xk,u) + g(xk+1,u)

)
− xc

)

− yk = 0,

where xk, yk, and xc are known values, and xk+1 is the unknown to be determined. We

could use a Newton method to solve this system, but the Broyden method is preferable as it

avoids the computation of the Jacobian of the system at each step. Potra and Yen [30] gave an

approximation of this Jacobian that allows finding xk+1 in only a few iterations. For backward

integration, i.e., when extending the RRT with root at xg, the time step h in Eq. (3.28) must

simply be negative.

3.6.3 Setting the Planner Parameters

The planner depends on eight parameters: the three parameters ǫ, α, and ρ controlling chart

creation, the radius σ used for sampling, the tolerances δ and β measuring closeness between

states and trees, respectively, and the LQR steering parameters R and tmax. All of them are

positive reals except R, which must be an nu × nu symmetric positive-definite matrix.

Parameters ǫ, α, and ρ appear, respectively, in Eqs. (3.6), (3.7), and (3.8). Parameter α

bounds the angle between neighboring charts. This angle should be small, otherwise the Vc sets

for neighboring charts might not overlap, impeding a smooth transition between the charts [65].

Such problematic areas can be detected and patched [9], but this process introduces inefficien-

cies. Thus, we suggest to keep this parameter below π/6. Parameter ǫ is only relevant if the dis-

tance between the manifold and the tangent space becomes large without a significant change

in curvature, which rarely occurs. Since this distance is computed in ambient space, if on aver-

66 Trajectory Planning

age we wish to tolerate an error of e in each dimension, we should set ǫ ≃ e
√
nx. In our test

cases we have used ǫ = 0.05
√
nx. Finally, ρ must be set by taking into account the curvature of

the manifold [65] and it must be smaller than σ to ensure the eventual creation of new charts.

In practice, it only plays a relevant role on almost flat manifolds. Following [9], we suggest to

set ρ = dX /2. With this value, charts are generally created before the numerical process imple-

menting the inverse map ψk in Eq. (3.4) fails and before Eqs. (3.6) and (3.7) hold. In this way,

the charting of the manifold tends to be more regular.

As explained in Section 3.6.1, the sampling radius σ used in line 3 of Algorithm 3.2 controls

the exploration bias of the algorithm. The role of σ is analogous to that of the parameter used

in standard RRTs to limit the sampling space (e.g., the boundaries of a 2D space where a mobile

robot is set to move). A too large σ complicates the solution of problems with narrow corridors.

Thus, we propose to set σ = 2 ρ since this a moderate value that still creates a strong push

towards unexplored regions, specially in large-dimensional state spaces. If necessary, existing

techniques to automatically tune this parameter [70] could be adapted to kinodynamic planning.

Parameter δ appears in line 11 of Algorithm 3.4 and in line 6 of Algorithm 3.5. An equivalent

parameter is present in the standard RRT algorithm [41]. If two states are closer than δ, they are

considered to be close enough so that the transition between them is not problematic. Thus, this

parameter is used as an upper bound of the distance between consecutive states along an RRT

branch. Therefore, the value of h in Eq. (3.28) is adjusted so that ‖ϕc(xk)−ϕc(xk+1)‖ < δ.

Moreover, to correctly detect the transition between charts, δ must be significantly smaller

than ρ. With these considerations in mind, we propose to set δ ≃ 0.02 ρ.

Parameter β appears in line 11 of Algorithm 3.1 and is the tolerated error in the connection

between trees. This parameter is also used in the standard RRT algorithm. A small value may

unnecessarily complicate some problems, specially if the steering algorithm is not very precise

(like in randomized steering), and a large value may produce unfeasible solutions. We suggest

to use β = 0.1
√
nx, but this value has to be tuned according to the particularities of the obstacles

in the environment.

Matrix R in Eq. (5.22) is used in the standard LQR to penalize the control effort employed

and is typically initialized using the Bryson rule [71]. Finally, tmax fixes the time window over

which J(tf) in Eq. (3.25) is to be minimized. Ideally, it should be slightly larger than t∗f . A much

larger value would result in a waste of computational resources and a too low value would

produce sub-optimal controls.

3.7 Probabilistic Completeness 67

3.7 Probabilistic Completeness

In its fully randomized version, i.e., when using randomized steering instead of LQR steering,

the planner is probabilistically complete. A formal proof of this point would replicate the same

arguments used in [72] with minor adaptations, so we only sketch the main points supporting

the claim.

Assume that the action to execute is selected at random from U , with a random time horizon.

Then, in the part of X already covered by a partial atlas, we are in the same situation as the

one considered in [72, Section IV]: X is a smooth manifold, we have a procedure to sample X ,

Euclidean distance is used to determine nearest neighbors, and the system motion is governed

by a differential equation depending on the state and the control inputs. The main relevant

difference is that our sample distribution is uniform in tangent space, but not on X . However,

the difference between the uniform distribution in parameter space and the actual distribution

on the manifold is bounded by parameter α [73]. Thus, the probability bounds given in [72]

may need to be modified, but their proof would still hold. Thus, under the same mild conditions

assumed in [72] (i.e., Lipschitz-continuity conditions), our planner with randomized steering

is probabilistically complete in, at least, the part of the manifold already covered by the atlas.

This implies that the planner will be probabilistically complete provided it is able to extend the

atlas to cover X completely. Since new charts are generated when the RRT branches reach the

border of the subset of X covered up to a given moment, the expansion of the atlas will stop

when the atlas has no border, i.e., when it fully covers X . The reasoning in [72] can also be

used to provide a formal proof that the tree will eventually reach the border regions of the atlas

just by defining goal areas in them. As described in [65], X will be correctly covered if ρ is

small relative to the curvature of the manifold in each Vc set. Despite the chart coordination

procedure described in Section 3.4.3 may leave uncovered areas of X of size O(α), such areas

can be detected during tree extension, and can be eliminated by slightly enlarging the Pc sets of

the charts around them, as described in [9].

In principle, the use of LQR steering instead of randomized steering can only result in better

performance, as it should facilitate the connection between the balls used in [72, Theorem 2] to

cover the solution trajectory: connecting them using LQR steering should be easier than doing

so with randomized steering. However, a formal proof of this point would require to provide

error bounds for the LQR steering controls analogous to those in [72, Lemma 3] for randomly-

selected constant actions. As in [72], the obtention of such bounds remains as an open problem,

so we only conjecture the planner to be probabilistically complete if LQR steering is used. Even

so, note we could always retain the probabilistic completeness by using randomized steering

once in a while, instead of using LQR steering exclusively.

68 Trajectory Planning

3.8 Dealing with Forward Singularities

As mentioned in Sections 2.2 and 2.3.3, systems with closed kinematic chains can exhibit for-

ward singularities, which are configurations in which the velocities of the actuators do not de-

termine the full configuration velocity of the robot. Such singularities also have an impact

on the system dynamics. In their proximity, the inverse dynamic problem yields very large or

unbounded motor actions, which can cause controllability issues [17, 19, 74, 75]. Moreover,

the robot becomes locally underactuated, being unable to traverse these configurations under

arbitrary accelerations.

The planner in Section 3.6, however, is robust to forward singularities. The exploration pro-

cess and the steering methods in Section 3.5 rely on the forward dynamics given by Eq. (3.1a),

which is always well defined as Φq was assumed to be always full rank. Therefore, the trajecto-

ries obtained by the planner are kinematically and dynamically feasible even in such configura-

tions, which are naturally crossed using feasible action from U always.

Once a trajectory has been planned, however, a control algorithm must be used to execute

it on the real robot, and it is at this point that forward singularities may become an issue.

Broadly speaking, controllers can be classified into those that are based on inverse dynamics,

and those that are based on forward dynamics. The former controllers are interesting due

to their global basins of attraction, but they cannot cope with forward singularities because

the inverse dynamics problem degenerates at such configurations and therefore, they cannot

stabilize trajectories obtained by the planner in principle. In contrast, the latter controllers

have smaller basins of attraction, but they are robust to forward singularities and thus can

stabilize any of the trajectories obtained by the planner (see Chapter 5 for details). Nonetheless,

if we prefer to use controllers based on inverse dynamics due to their attractive convergence

properties, we can still extend the formulation in Section 3.2 to avoid forward singularities

during the planning stage.

The approach relies on a system of equations characterizing the singularity-free state space

of the robot. The solution set of this system is a smooth manifold diffeomorphic to the classic

state space, but with all forward singularities removed. We also adapt the dynamic equations of

the robot to define an action-varying vector field on this manifold. This extended formulation

substitutes Eqs. (3.1a) and (3.1b) and allows us to use the planner in Section 3.6 to find

trajectories connecting two states, while avoiding forward singularities. We illustrate it using a

five-bar robot that has to perform a highly dynamic task in Section 3.9.2.

3.8 Dealing with Forward Singularities 69

3.8.1 Planning in the Singularity-free State Space

Recall from Section 2.2 that a forward singularity is a point q for which the Jacobian Φqr
is rank

deficient. To exclude these singularities from X , thus, we need to enforce det(Φqr
) 6= 0 if the

system is nonredundant, or det
(

Φ
⊤
qr
Φqr

)

6= 0 if the system is redundantly actuated. However,

the continuation method used by the planner requires to convert this condition into equality

form. To this end, we introduce the constraint

b · d(q) = 1, (3.29)

where b is a newly-defined auxiliary variable and d(q) = det (Φqr
) or d(q) = det

(

Φ
⊤
qr
Φqr

)

in

the case of nonredundant and redundant systems, respectively. Note that Eq. (3.29) defines a

hyperbola that never crosses the d = 0 axis of the (b, d) plane. Then, the singularity-free state

space Xsfree will be the set of extended states x = (q, q̇, b) satisfying

F (x) =







Φ(q)

Φq q̇

b · d(q)− 1






= 0, (3.30)

which includes the singularity avoidance constraint in Eq. (3.29) and the position and velocity

constraints in Eqs. (2.1) and (2.2).

We now need to extend the vector field defined by the dynamics in Eq. (3.1b) to include the

auxiliary variable b. This can be done by taking the time derivative of Eq. (3.29) to yield

ḃ = − b

d(q)
· ∂d(q)

∂q
q̇,

so the extended vector field becomes

ẋ =

[

g(x,u)

− b
d(q) ·

∂d(q)
∂q q̇

]

. (3.31)

Finally, we can simply substitute Eqs. (3.1a) and (3.1b) with Eqs. (3.30) and (3.31) to plan in

the singularity-free state space Xsfree.

The effect of the previous extensions is illustrated in Fig. 3.12. On the left figure we represent

X as a plane whose forward singularity locus is a closed curve. Without using the singularity-

avoidance constraints, the planner may find the red or green trajectories to go from xs to xg.

On the right figure, in contrast, the planner uses the singularity-avoidance formulation, so the

singularity locus becomes a surface that extends infinitely along the b dimension (a cylinder)

70 Trajectory Planning

X xs

xs

xg

xg

Forward
singularity
locus

Forward
singularity
locus

Xsfree

b

Figure 3.12: Singularity-avoidance planning. Left: The planning on the state space manifold X
defined by Eq. (3.1a) can yield trajectories either crossing (red) or avoiding (green) forward
singularities (X is drawn as a plane for simplicity). Right: If we use the auxiliary variable b and
the singularity avoidance formulation in Eq. (3.30), the new singularity-free manifold Xsfree will
go to infinity at the singularity. In this scenario, the planner will only find solutions avoiding
forward singularities (green).

without intersecting with X . In this situation the planner will only generate singularity-free

motions like the green curve, as motions like the red curve do not lead to feasible connections

with xg. The use of singularity avoidance constraints is illustrated in Section 3.9.2 with an

example.

Note that the previous procedure can also be used to avoid C-space singularities if necessary.

We just need to ensure Φq is full rank by defining d(q) as det (Φq Φ
⊤
q).

3.8.2 Smoothness of Xsfree

Recall that, to be able to construct the charts required by the planner, Xsfree must be a smooth

manifold. To see that this is indeed the case, observe that all functions defining F (x) are

differentiable, so the Jacobian

∂F

∂x
= F q,q̇,b =










Φq 0 0

∂Φq
∂q · q̇ Φq 0

b · ∂d
∂q 0 d










3.9 Planning Examples 71

is well defined at every x ∈ Xsfree. This Jacobian, moreover, is full rank for all x ∈ Xsfree because

each of the diagonal blocks contains a non-vanishing minor of maximal size, since d 6= 0 for all

x ∈ Xsfree, and Φq is guaranteed to be full rank on Xsfree. By the implicit function theorem,

these facts imply that Xsfree is smooth.

3.9 Planning Examples

The planner has been implemented in C and it has been integrated into the CUIK suite [76].

We next analyze its performance in planning five tasks of different complexities (Figs. 3.13

and 3.14). For each task, the figures show the start and goal states to be connected. The

first three tasks are to be solved with planar robots (Fig. 3.13), which are simple enough to

illustrate key aspects of the planner, like the performance of the steering method, the traversal

or avoidance of forward singularities, or the treatment of constraint forces. The fourth and fifth

tasks show the planner performance in computing collision-free motions for spatial robots of

considerable complexity (Fig. 3.14). The fifth task also shows how the LQR steering strategy

clearly outperforms the randomized one when nu is large.

In all tasks the robots are subject to gravity and viscous friction in all joints, and their action

bounds ui,max in in Eq. (3.2) are small enough so as to impede direct trajectories from xs to xg.

This complicates the problems substantially, and forces the generation of swinging motions to

reach the goal. The formulations used for the kinematic and dynamic constraints are those given

in Chapter 2.

The planner parameters have been set according to the guidelines in Section 3.6.3. In partic-

ular we have used cos(α) = 0.9, β = 0.1
√
nx, ǫ = 0.05

√
nx, ρ = dX /2, σ = 2 ρ, and δ = 0.02 ρ.

Matrix R in Eq. (3.14), in turn, has been chosen to be diagonal with Ri,i = 1/ui,max
2, and we

use tmax = 1.5. The planner performance, however, does not depend on these parameters ex-

clusively. The peculiarities of each problem, like the torque limits of the actuators, the system

masses, or the presence of obstacles also have a strong influence. The complete set of geometric

and dynamic parameters of all examples, as well as the planner implementation, are provided

in http://www.iri.upc.edu/cuik.

Table 3.1 summarizes the problem dimensions and performance statistics for the different

examples. The table provides the average performance over twenty runs using a MacBook Pro

with an Intel i9 octa-core processor running at 2.93 GHz. The column “Success” gives the per-

centage of planner runs that were able to solve each problem in at most one hour. Statistics

for both the randomized steering strategy and the LQR steering strategy of are given for com-

http://www.iri.upc.edu/cuik

72 Trajectory Planning

Figure 3.13: Example tasks solved with the planner. From left to right and columnwise: weight
lifting with a four-bar robot, weight throwing with a five-bar robot, and a pick-and-place task
with a cable-driven robot. The top and bottom rows show the start and goal states in each task.
The robot is assumed to be at rest in such states, except in the goal state of the second task, in
which the load has to be thrown at the shown velocity (in red).

3.9 Planning Examples 73

Figure 3.14: Example tasks solved with the planner on spatial robots. Left: conveyor switching
with a Delta robot. Right: truck loading with two cooperative arms. The top and bottom rows
show the start and goal states in each task. The robot is assumed to be at rest in such states,
except in the start state of the left task, in which the Delta robot has to pick a loudspeaker that
is moving to the right at the shown velocity (in red).

74 Trajectory Planning

Example Task Section nq ne dX nu Steering method Ns Nc Time [s] Success

Weight lifting
with a four-bar robot

3.9.1 4 3 2 1
Random 582 111 0.85 100%

LQR 180 63 0.61 100%

Weight throwing
with a five-bar robot

(crossing singularities)
3.9.2 5 3 4 2

Random 13119 9933 130.15 100%

LQR 10113 3763 49.23 100%

Weight throwing
with a five-bar robot

(avoiding singularities)
3.9.2 5 3 4 2

Random 28555 19618 475.60 100%

LQR 9104 3076 72.13 100%

Pick-and-place
with a cable-driven robot

3.9.3 4 2 4 2
Random 102163 5129 108.60 100%

LQR 21331 1048 158.32 100%

Conveyor switching
with a Delta robot

3.9.4 15 12 6 3
Random 15162 912 308.30 100%

LQR 3910 297 50.95 100%

Truck loading
with cooperative arms

3.9.5 10 6 8 10
Random 9455 1813 1967.27 40%

LQR 10882 1296 125.47 100%

Table 3.1: Problem dimensions and performance statistics for the different tasks to be planned.
For each task we provide the number of generalized coordinates in q (nq), the number of loop-
closure constraints (ne), the dimension of the state space (dX), and the dimension of the action
space (nu). For the two steering methods we also provide the average over twenty runs of the
number of samples (Ns) and charts (Nc), the planning time, and the success rate.

parison. The randomized strategy employs 2 nu random actions from U to obtain Us, which are

applied during ∆t = 0.1 seconds. As seen in the table, the LQR strategy is more efficient than the

randomized strategy in almost all cases, as it requires a smaller number of samples and charts,

and less time, to find a solution. In particular, the success rate of the randomized strategy is only

40% in the example of Section 3.9.5. Instead, the LQR steering is always successful. Only in the

example of Section 3.9.3 the randomized steering strategy outperforms the LQR steering one,

since the formulation of the latter does not account for the unilateral constraints of the problem

and, hence, many tree extensions yield infeasible solutions. Further details on the examples are

next provided.

3.9 Planning Examples 75

q1

q2

q3

q4

x1

x2

x3

x′
0

x′
1

x′
2

x′
3

x0 = x4

L0

L1

L2

L3

J1

J2
J3

J4

Figure 3.15: Geometry of the four-bar mechanism. For each coordinate system, only the x axis
is depicted.

3.9.1 Weight Lifting with a Four-bar Robot

In this example, we have to plan the trajectory of a weight lifting task to be done with a four-bar

robot (Fig. 3.13, left). The robot involves four links cyclically connected with revolute joints

(Fig. 3.15). Following Section 2.4, we label the links as L0, . . . ,L3, and the joints as J1, . . . , J4.

Only joint J1 is actuated. The relative angle with the following link is denoted by qi, and the

robot configuration is given by q = (q1, q2, q3, q4).

To formulate Eq. (2.1), we attach two coordinate systems to each link Li centered at joints Ji
and Ji+1 respectively. The former system is called the link i coordinates and has the xi axis

aligned with the link. The overall transformation through the kinematic loop is

0X4(q) =
4∏

i=1

XLi−1
·Xz(qi)

︸ ︷︷ ︸

i−1Xi

,

76 Trajectory Planning

where

XLi−1
=














1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 −Li−1 0 1 0

0 Li−1 0 0 0 1














and

Xz(qi) =














cos(qi) − sin(qi) 0 0 0 0

sin(qi) cos(qi) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos(qi) − sin(qi) 0

0 0 0 sin(qi) cos(qi) 0

0 0 0 0 0 1














are the transforms in Eq. (2.17), Li is the distance between the two revolute joints of link Li,

and

0X4(q) =





0R4 0

S(0~p4)
0R4

0R4



 .

To enforce the closure of the loop, we simply set 0R4 = I3 and 0~p4 = 0. Since the mechanism

is planar, only 3 scalar equations are independent. Thus, to form Eq. (2.1), it suffices to select

the scalar equations that correspond to the components (2, 1) of 0R4 and the first and second

components of 0~p4. Then, Eq. (2.1) results in








L0 + L1 c(q̄1) + L2 c(q̄2) + L3 c(q̄3)

L1 s(q̄1) + L2 s(q̄2) + L3 s(q̄3)

s(q̄4)







=








0

0

0







, (3.32)

where s(·) and c(·) denote the sine and cosine of their argument, respectively, and q̄i =
∑i

j=1 qj

gives the angle of link Li relative to ground.

Equation (2.2) could be obtained by taking the time derivative of Eq. (3.32), giving

Φq q̇ = 0,

3.9 Planning Examples 77

where

Φq =








−L1 s(q̄1)− L2 s(q̄2)− L3 s(q̄3) −L2 s(q̄2)− L3 s(q̄3) −L3 s(q̄3) 0

L1 c(q̄1) + L2 c(q̄2) + L3 c(q̄3) L2 c(q̄2) + L3 c(q̄3) L3 c(q̄3) 0

c(q̄4) c(q̄4) c(q̄4) c(q̄4)







. (3.33)

Alternatively, recall from Section 2.4 that Eq. (3.33) reduces to J q̇ = 0 when Φ(q) = 0,

where J is the screw Jacobian of the four-bar loop. This formulation of the velocity constraint

is often preferable, as J can be efficiently computed using the algorithms in Section 2.4. This

Jacobian has the form

J =







b1 b2 b3 b4

−a1 −a2 −a3 −a4
1 1 1 1






,

where (ai, bi) are the (x, y) coordinates of joint Ji in link 0 coordinates [37]. Using the fact that

(a1, b1) = (L0, 0), these coordinates can be written as

ai = ai−1 + Li−1 cos (q̄i−1),

bi = bi−1 + Li−1 sin (q̄i−1).

Then, the screw Jacobian becomes

J =







0 L1 s(q̄1) L1 s(q̄1) + L2 s(q̄2) 0

−L0 −L0 − L1 c(q̄1) −L0 − L1 c(q̄1)− L2 c(q̄2) 0

1 1 1 1






,

which is the same as Eq. (3.33) if Eq. (3.32) is satisfied.

Under the previous formulation we have nq = 4 and ne = 3, so in this case X is of dimension

dX = 2 dC = 2 (nq − ne) = 2. Finally, to set up the dynamics in Eq. (3.1b), we use the methods

in Section 2.4.

Figure 3.16, top, shows the shape of X when projected to the space defined by q1, q̇2, and q̇3,

with the start and goal states indicated. To design a trajectory connecting xs with xg, the

planner constructs the partial atlas that is shown in the figure. Since the motor torque at J1

is limited, quasi static trajectories near the straight line from xs to xg are impossible, and the

robot is deemed to perform pendulum-like motions to reach the goal. This translates into the

spirally tree trajectories that we observe in the figure. The trajectory returned by the planner

can be seen in Fig. 3.16, bottom.

78 Trajectory Planning

Start

Goal
q1

q̇2 q̇3

Figure 3.16: Top: A partial atlas (in dark blue) of the state space X (in light blue) used to plan
the lifting of a weight with the four-bar robot. The red and green trees are rooted at the start and
goal states respectively, and they are grown towards each other in parallel with the atlas. Each
polygon in dark blue corresponds to the Pc set of a given chart. Note that the validity of each
Pc set is larger in practice, but it is reduced here for illustrative purposes. Bottom: snapshots of
the solution trajectory found by the planner. In each snapshot, the trail depicts earlier positions
of the load. See youtu.be/6STb_FjgDJg for an animated version of this figure.

This example can also be used to illustrate the performance of the LQR steering strategy.

Fig. 3.17-left, shows an example in which this strategy successfully finds a trajectory connect-

ing xnear with xrand, with t∗f always decreasing. In contrast, Fig. 3.17-right shows another

example in which the process tends to a limit cycle like the one in Fig. 3.10(b), and is never

able to reach xrand. The steering method in Algorithm 3.4 would stop after a few iterations

because a point is reached in which t∗f no longer decreases.

https://youtu.be/6STb_FjgDJg

3.9 Planning Examples 79

0 1 2 3

-2

-1

0

1

2

3

0 2 4 6 8
0

1

2

3

0

1

2

3

4

4020 60

0 2 4 6 8 10

-3

-2

-1

0

1

2

xnear
xnear

xrandxrand

e
(t
)

e
(t
)

Position error Position error
Velocity error Velocity error

t [s]t [s]

t∗ f
[s

]

t∗ f
[s

]

iterationsiterations

Optimal time Optimal time

Robot state error x(t)− xrandRobot state error x(t)− xrand

Figure 3.17: Steering the four-bar robot from xnear to xrand. Left: The LQR strategy allows the
planner to connect xnear and xrand. Right: The strategy enters a limit cycle and is never able to
reach xrand. The right plot shows that t∗f no longer decreases after six iterations, so it would be
aborted at this point.

In Fig. 3.18 we also show the performance of the LQR strategy for states xrand that are

progressively further away from xnear. We have generated 5 batches of 100 random samples,

where the samples in each batch are at tangent space distances of 0.4, 1, 2, 3, and 4 from xnear.

As a reference, the distance from xs to xg is 3.7 in this example. The states xrand that could

be connected to xnear are shown in green, while those that could not are shown in red. As

expected for a local planner, the closer xrand from xnear, the higher the probability of success of

the steering process.

80 Trajectory Planning

xnear

xrand

Successful connection
Failed connection

Distance 0.4 1 2 3 4

Success rate 100% 99% 56% 26% 10%

Figure 3.18: Success rate of the LQR steering strategy for states xrand that are increasingly far
from xnear.

3.9.2 Weight Throwing with a Five-bar Robot

In this example, the planner has to compute a trajectory to throw a load with a five-bar robot,

assuming the start and goal states indicated in Fig. 3.13 (center). Initially, the load is at rest in a

bottom position, and the robot has to perform back-and-forth motions to bring it to the upright

position with the required velocity.

The planner will be set to compute the trajectory in two situations. In one of them it will

be allowed to cross forward singularities, so these trajectories will have to be stabilized with an

LQR controller later on (Chapter 5). In the other, the planner will have to avoid the singularities,

so a computed-torque controller will suffice for the purpose of trajectory tracking.

The geometry of the robot is shown in Fig 3.19. The mechanism involves one kinematic loop

with five links L0, . . . ,L4 pairwise connected by revolute joints. A load is mounted at point Q in

the figure (the axis of the third joint, which plays the role of the end-effector). In the figure, qi
denotes the relative angle at the i-th joint, which connects Li with Li−1. The robot configuration

is then given by q = (q1, q2, q3, q4, q5). Joints 1 and 5 are actuated, while the rest of joints are

passive. Note from Fig 3.19 (right) that the links and the load move in different planes, so

collisions need not be taken into account in this robot.

3.9 Planning Examples 81

x

Q

q1

q2

q3

q4

q5

Lb

Lp

Ld

L1

L2 L3

L4

L0

Figure 3.19: Geometry of a five-bar parallel robot. All joints are of revolute type. The joints of
q1 and q5 are actuated, and the remaining joints are passive. The motors are fixed to the ground,
which acts as a fifth bar.

The formulation of the kinematic constraints is analogous to the one in the previous example,

with the difference that the robot now has one additional link and joint. As a result, nq = 5,

ne = 3, and X is four-dimensional in this case. The loop closure constraint in Eq. (2.1) is thus

given by







Lp c(q1) + Ld c(q1 + q2) + Ld c(q1 + q2 + q3) + Lp c(q1 + q2 + q3 + q4) + Lb

Lp s(q1) + Ld s(q1 + q2) + Ld s(q1 + q2 + q3) + Lp s(q1 + q2 + q3 + q4)

s(q1 + q2 + q3 + q4 + q5)






=







0

0

0






, (3.36)

where Lb is the base distance, Lp is the length of the proximal links L1 and L4, and Ld is the

length of the distal links L2 and L3. By taking into account that the actuated and remaining

coordinates are qu = [q1, q5]
⊤ and qr = [q2, q3, q4]

⊤ respectively, we can determine the forward

singularity condition by taking the partial derivative of Eq. (3.36) with respect to qr to obtain

Φqr
=







−Ld s(q̄2)− Ld s(q̄3)− Lp s(q̄4) −Ld s(q̄3)− Lp s(q̄4) −Lp s(q̄4)

Ld c(q̄2) + Ld c(q̄3) + Lp c(q̄4) Ld c(q̄3) + Lp c(q̄4) Lp c(q̄4)

c(q̄5) c(q̄5) c(q̄5)






.

82 Trajectory Planning

Mode ++ Mode −−

Mode +− Mode −+
Figure 3.20: Left: The workspace (in gray) and forward singularities (in red) of the five-bar
robot. Right: the same singularities, classified according to the different working modes. For
each mode, we depict a robot configuration that corresponds to the solution of the inverse
kinematics for the shown position of Q under the assumed mode.

When Φqr
is rank deficient, i.e. when det(Φqr

) = 0, the robot is at a forward singularity. As

described in [77], this condition is fulfilled when q3 is either 0 or π, i.e., when the distal links get

aligned. The positions of Q for which such an event occurs are depicted in red in Fig. 3.20, left.

From this figure it appears that the workspace of Q (in gray) is severely limited by the presence

of forward singularities, but note that each position of Q can be attained by up to four inverse

kinematic solutions of the robot. Each solution corresponds to one working mode identified by

the signs of q4 and q2 in the range [−π, π]. If we separate the singularities according to these

signs, larger singularity-free regions arise (Fig. 3.20, right).

Figure 3.21 shows two trajectories obtained by the planner. In both cases, the robot oscil-

lates to gain momentum before throwing the load. While the upper trajectory is obtained by

planning in the state space X , the lower one is obtained by planning in the singularity-free state

space Xsfree, which uses the formulation given in Section 3.8. Note how the upper trajectory

easily crosses forward singularities while also changing the working mode. This occurs in the

second, third and fourth snapshots. In contrast, in the lower trajectory there are also many

working mode changes during the move but the robot never crosses the forward singularity lo-

3.9 Planning Examples 83

Trajectory crossing forward singularities

Trajectory avoiding forward singularities

Figure 3.21: Snapshots of a solution trajectory for the five-bar robot crossing (top) and avoiding
(bottom) forward singularities. The second, third and fourth top snapshots depict singularity
crossings. See youtu.be/QsiMc6bm21s for an animated version of this figure.

0 0.5 1 1.5 2 2.5 3

0

0 0.5 1 1.5 2 2.5

0

q 3
(t
)

q 3
(t
)

t [s]t [s]

−π−π

ππ Fwd. singularityFwd. singularity

Trajectory avoiding forward singularitiesTrajectory crossing forward singularities

Figure 3.22: Trajectory of q3(t) for the five-bar robot crossing (left) and avoiding (right) forward
singularities. Note that there is a singularity crossing when q3 is 0 or ±π.

cus. The crossing and avoidance of forward singularities can also be seen in the trajectory plot

of Fig. 3.22, which shows the trajectories of q3(t) corresponding to Fig. 3.21. Note there are

several singularity crossings when q3 is either 0 or ±π in Fig. 3.22, left, while this never occurs

in the singularity-free trajectory in Fig. 3.22, right.

https://youtu.be/QsiMc6bm21s

84 Trajectory Planning

F 1

F 2

u1

u2

F grav

l

l

dl − d l − d

Static Dynamic
workspaceworkspace

Figure 3.23: A 2-DOF cable-driven robot. This robot is subject to the gravitational force F grav

and the actuation forces u1 and u2. During operation, the cable tensions F 1 and F 2 must
remain positive and below admissible upper bounds. Traditionally, these robots are moved in
their static workspace (of width d in the figure), but our planner allows to extend their motions
to the dynamic workspace (of width 2l − d).

3.9.3 Pick-and-place Operations with a Cable-driven Robot

Consider the robot in Fig. 3.23 now, which consists of a moving load suspended from two cables,

each connected to a vertical slider actuated by a DC motor. While in our previous examples we

did not limit the constraint forces, in this robot we have to keep the cable tensions F 1 and F 2

positive to maintain the load under control. Also, the tensions must be below certain limits

to avoid breaking the cables. Thus, this example serves to illustrate the ability of the planner

to keep constraint forces within bounds. For each state visited by the RRT, these forces are

computed using the methods in Section 2.4.5, and the state is judged as unfeasible if they

surpass the allowed limits. If that happens, the expansion of the RRT has to continue in other

directions.

3.9 Planning Examples 85

Figure 3.24: Left: A dynamic trajectory computed by the planner. Right: The RRT generated to
obtain the trajectory. See youtu.be/DlxlQ3TSQ-I for an animated version of this figure.

The example also shows the potential of the planner in cable-driven robotics. Traditionally,

cable-suspended robots like this one are used as robotic cranes, operating them in quasi-static

conditions in which gravity is the sole source of tension [78, 79]. While this simplifies the

planning and control of the motions, it also confines them to the static workspace (the region

between bars in Fig. 3.23). More recently, however, inertia has also been proposed as another

source of tension [80], which allows more complex motions in the dynamic workspace [81].

This region is usually much larger, as it is the set of points that can be attained when load

accelerations are possible (the total area in Fig. 3.23). Using inertia and pendulum-like motions,

tasks outside the footprint of the robot can then be planned [82, 83]. While such trajectories

are often designed in an ad-hoc manner, our planner can generate them in a large variety of

mechanisms.

https://youtu.be/DlxlQ3TSQ-I

86 Trajectory Planning

The particular task to be planned consists in picking a load that is at rest in a bottom position

of the workspace, to later deliver it in a higher position also at rest. The two positions, shown in

Fig. 3.13 (right), are clearly outside the static workspace. We also assume that the cables and

the sliders move on different planes, so their collisions need not be checked during the planning.

To model this particular robot, we view each bar-cable connection as a prismatic and a revo-

lute joint in series. The robot configuration is then defined by the two slider displacements and

the angles of their revolute joints, which results in nq = 4 coordinates. Then, the formulation of

Eq. (2.1) simply consists in forcing the coincidence of the cables at the endpoints of the load.

This imposes two loop-closure constraints, so ne = 2 in this case. Therefore, dX = 2(nq−ne) = 4,

and, since the two sliders are actuated, nu = 2.

The planner obtains the trajectory shown in Fig. 3.24 (left). From this figure and its video

we see that the load is forced to oscillate in order to reach the goal. The planner has created

the RRT shown in Fig. 3.24 (right) to solve the problem, consisting of two trees rooted at the

start and goal states (in red and green respectively). While the robot has a limited footprint,

including dynamics has increased its usable workspace substantially.

3.9.4 Conveyor Switching with a Delta robot

So far, all robots have been single-loop mechanisms operating in obstacle-free environments. To

exemplify the planner in a multi-loop mechanism surrounded by obstacles, we next consider a

Delta robot that has to perform a conveyor (Fig. 3.14, left). The system is formed by a fixed

base connected to a moving platform by means of three legs. Each leg is an R-R-Pa-R chain,

where R and Pa refer to a revolute and a parallelogram joint respectively (Fig. 3.25, left).

R

R

R

R

Pa

U

U

Figure 3.25: A leg of a Delta robot (left) and its equivalent R-U -U chain (right).

3.9 Planning Examples 87

Figure 3.26: Snapshots of a solution trajectory for the conveyor switching task. An animated
version of this figure can be seen in youtu.be/gU0WBW2MlHI.

The Pa joint is a planar four-bar mechanism whose opposite sides are of equal length. While it

seems that such a leg should be modeled with seven joint angles, we use the fact that the leg

is kinematically equivalent to an R-U -U chain (Fig. 3.25, right), where U refers to a universal

joint. Since a U joint is equivalent to two R joints with orthogonal axes, we conclude that only

five angles are needed to define a leg configuration. Our q vector for the Delta robot will thus

involve nq = 3 · 5 = 15 angles in total. Only the revolute joints at the fixed base of the robot are

actuated, meaning that nu = 3 in this case.

To formulate the kinematic constraints, note that every spatial kinematic loop of the robot

defines a six-dimensional loop-closure constraint (Chapter 2), which gives a total of three loops.

However, only two of these loops are actually independent, so ne = 2 · 6 = 12 in this system.

This means that dX = 2 (nq − ne) = 2 (15− 12) = 6. As in all Delta robots, the robot dimensions

are such that the moving platform can only translate in its workspace.

The task to be planned consists in picking a loudspeaker from a conveyor belt moving at a

certain speed, to later place it inside a static box on a second belt. Obstacles play a major role

in this example, as the planner has to avoid the collisions of the robot with the conveyor belts,

the boxes, and the supporting structure, while respecting the joint limits. In fact, around 70%

of branch extensions are stopped due to collisions in this example. The resulting trajectory can

be seen in Fig. 3.26. Given the velocity of the moving belt, the planner is forced to reduce the

initial kinetic energy of the load before it can place it inside the destination box. The trajectory

follows an ascending path that converts the initial momentum into potential energy, to later

move the load back to the box at the goal location.

https://youtu.be/gU0WBW2MlHI

88 Trajectory Planning

Figure 3.27: Snapshots of a solution trajectory for the truck loading task. See
youtu.be/1Jm3HBM0koI for an animated version of this figure.

3.9.5 Truck Loading with Cooperative Arms

The last task to be planned involves two 7-DOF Franka Emika arms moving a gas bottle cooper-

atively (Fig. 3.14, right). The task consists in lifting the bottle onto a truck while avoiding the

collisions with the surrounding obstacles (a conveyor belt, the ground, and the truck). The first

and last joints in each arm are held fixed during the task, and the goal is to compute control

functions for the remaining joints, which are all actuated. The weight of the bottle is twice the

added payload of the two arms, so in this example the planner allows the system to move much

beyond its static capabilities.

In this problem, we have nq = 10 and ne = 6, so dC = nq − ne = 4, and dX = 2dC = 8.

Since all joints are actuated we have nu = 10 and there are no forward singularities. Clearly, the

resulting system is redundantly actuated, as nu > dC .

The example also illustrates that the randomized steering strategy performs poorly when nu

is large as in redundant manipulators. In this case, nu = 10, which is notably higher than in

the previous examples. Note that the number of random actions needed to properly represent U
should be proportional to its volume, so it should grow exponentially with nu in principle. To

alleviate the curse of dimensionality, however, [41] proposes to simulate only 2 nu random

actions for each branch extension. Our implementation adopts this criterion but, like [41], it

then shows a poor exploration capacity when nu is large, resulting in the excessive planning

times reported for the truck loading task (Table 3.1). We have also tried to simulate 2nu random

actions, instead of just 2nu, but then the gain in exploration capacity does not outweigh the large

computational cost of simulating the actions. In contrast, the LQR strategy only computes one

https://youtu.be/1Jm3HBM0koI

3.9 Planning Examples 89

control per branch extension, so an increase in nu does not affect the planning time dramatically

(Table 3.1, last column). Using this strategy, the planner obtained trajectories like the one shown

in Fig. 3.27, in which we see that, in order to gain momentum, the bottle is moved backwards

before lifting it onto the truck.

4
Trajectory Optimization

The planner in Chapter 3 obtains trajectories x(t) and u(t) that respect the kinodynamic con-

straints, but that are not optimal in any specific sense in principle. Their motions may be too

jerky, or require excessive time or control effort in comparison to those of other feasible trajecto-

ries. To improve them, we next provide optimization tools that locally modify x(t) and u(t) until

they minimize a predetermined cost function. For example, if the goal state must be reached

as rapidly as possible, we can minimize time, and bang-bang controls arise as a result. Alter-

natively, we can minimize the u(t) or u̇(t) values to obtain smoother, easier-to-track controls.

Weighted combinations of these or other cost functions can also be treated with the tools we pro-

vide. We begin with a short review of how our work fits in the context of earlier developments

(Sections 4.1), to then state the problem to be solved (Section 4.2) and provide background

techniques for the rest of the chapter (Section 4.3). Following a direct approach, we tackle

the problem by transcribing it into one of constrained minimization, which we then solve using

state-of-the-art methods of nonlinear programming. We use collocation for the transcription, but

we show how standard collocation schemes generate trajectories that substantially drift away

from X in closed-chain robots (Section 4.4). To overcome this problem we then develop two

new methods that do not generate drift along the obtained trajectories (Section 4.5). We also

mention a few points that must be considered when implementing the methods, and compare

their performance on optimizing the weight throwing task of the previous chapter (Sections 4.6

and 4.7).

92 Trajectory Optimization

4.1 Related Work

In essence, all trajectory optimization methods solve an instance of the variational problem of

optimal control. Two strategies are mainly followed [84, 85]. Indirect approaches initially de-

rive the Pontryagin conditions of optimality and then solve the resulting boundary-value problem

numerically. Direct approaches, in contrast, discretize the optimal control problem at the out-

set, and then tackle the discrete problem with nonlinear programming methods. While indirect

approaches tend to be more accurate on approximating the optimal trajectory, they also require

good initial guesses of the solution, which are difficult to provide in general. Direct approaches,

in contrast, may yield slightly suboptimal trajectories, but show larger regions of convergence,

which makes them preferable to solve problems in robotics. In these approaches, the dynamic

constraints can be discretized using shooting methods, which use explicit integrators to esti-

mate the evolution of the system, or collocation methods, which avoid costly integration rules

via spline approximations. Collocation methods are relatively fast and effectively solve a wide

variety of problems, which justifies the growing interest they arouse [86–90] and why they

constitute, in particular, the main tool to be used in this chapter.

When optimizing a trajectory, a main concern is to guarantee the consistency of the motor

actions with the trajectory states, so the actions can closely reproduce such states when exe-

cuted in the real robot. This calls for the use of realistic robot models, but also for an accurate

satisfaction of the kinematic and dynamic constraints in such models along the entire trajectory.

While direct collocation methods are good at ensuring dynamic accuracy, little work has been

devoted to also guarantee their kinematic accuracy on closed-chain robotic systems. In such

systems, the trajectories must stay on the X manifold we defined in Chapter 2, otherwise they

would be unrealistic and difficult to track with a controller [87, 89]. Existing strategies to avoid

drifting away from X fall into two categories. In a first group of methods, which we call basic

methods, the kinematic constraints are simply not enforced, but fine trajectory discretizations

or high-order integrators can be used to keep manifold drift to a minimum [88, 90–94]. This

approach is simple, but it increases the computational cost of solving the problem, and one

can find situations in which excessive drift accumulates despite the precautions [95]. A second

group of methods implements some sort of trajectory stabilization [87, 95–99]. The most pop-

ular technique is Baumgarte stabilization [100], which modifies the dynamic vector field of the

system to make it convergent to the manifold. The method is easy to implement, and keeps the

trajectory near the manifold, but it is also problematic in some ways: it adds artificial compli-

ance and energy dissipation to the system, its stabilizing parameters may be difficult to tune,

and trajectory instabilities may arise as a result [63].

4.1 Related Work 93

(a)

(b)

(c)

(d)

X

X

X

X

xg

xg

x0

x0

x0

x0

x1

x1

x1

x1

x2

x2

x2

x2

xN

xN

xN = xg

xN = xg

x(t)

x(t)

x(t)

x(t)

Figure 4.1: Qualitative form of the trajectories x(t) obtained by existing collocation methods
(a and b) and those we propose in this chapter (c and d). From top to bottom: output of the
“basic”, “Baumgarte”, “projection”, and “local coordinates” methods. The blue surface X is the
state space manifold on which x(t) should evolve. The start and goal states are x0 and xg. The
red dots indicate the knot states x0, . . . ,xN used to discretize x(t). In the basic method, the
knot states, and so x(t), may increasingly drift away from X . Both the knot states and x(t) are
kept near X in the Baumgarte method, but at the cost of modifying the system dynamics. In
contrast, the methods we propose fully eliminate drift at the knot states (c) or along the entire
trajectory (d) without modifying the system dynamics.

94 Trajectory Optimization

Our goal in this chapter is to review the foregoing methods and to propose new ones to

overcome their limitations. By using projections and local charts of the manifold, we present

two collocation methods that keep the discrete trajectory exactly on the manifold without adding

artificial terms to the system dynamics. The two methods are referred to as the “projection” and

“local coordinates” methods (Fig. 4.1). While the former is easier to implement, the latter

achieves full drift elimination even for the continuous-time trajectory. Both methods leverage

results and techniques from geometric integration on manifolds [25, 26].

4.2 The Trajectory Optimization Problem

Recall from Section 2.3.2 that the time evolution of closed-chain robot is determined by the

system of differential-algebraic equations

{
F (x) = 0,

ẋ = g(x,u),

(4.1a)

(4.1b)

where Eq. (4.1a) defines the state space X of the robot, and Eq. (4.1b) defines the robot dy-

namics on X . Besides being constrained by Eqs. (4.1a) and (4.1b), x and u are also subject to

a system of path constraints with the form

0 ≤ h(x,u), (4.2)

where h is a differentiable function used to encode, in a single constraint, the joint, force, or

velocity limits, the obstacle-avoidance constraints, or any other constraints imposing state or

action bounds. Thus, Eq. (4.2) can be used to define the sets Xfeas and U we considered in

Chapter 3.

With these definitions, our trajectory optimization problem can be formally posed as follows.

Given a running cost function L
(
x(t),u(t)

)
, and two states of X , xs and xg, find the state and

action trajectories x(t) and u(t), and a time tf , that

minimize
x(·),u(·), tf

∫ tf

0
L
(
x(t),u(t)

)
dt (4.3a)

subject to x(0) = xs, (4.3b)

x(tf) = xg, (4.3c)

tf ≥ 0, (4.3d)

0 ≤ h(x(t),u(t)), t ∈ [0, tf], (4.3e)

ẋ(t) = g(x(t),u(t)), t ∈ [0, tf]. (4.3f)

4.3 Transcription Techniques 95

It is important to realize that Eq. (4.1a) is not added to this continuous-time formulation, as

it is already accounted for implicitly by Eq. (4.3f) when xs ∈ X . Note also that, while the cost

function in (4.3a) is of Lagrange form, cost functions in the more general Bolza form could also

be considered, as they can always be re-expressed as in Eq. (4.3a) [101].

4.3 Transcription Techniques

4.3.1 Problem Discretization

To solve Problem (4.3) we will transcribe it into one of constrained minimization. This entails

approximating all functionals in Eqs. (4.3a)-(4.3f) by functions of discrete states and actions.

To achieve so, we discretize the time horizon [0, tf] into N + 1 time instants

t0, . . . , tk, . . . , tN ,

where t0 = 0 and tN = tf , and represent x(t) and u(t) by the N + 1 states

x0, . . . ,xk, . . . ,xN

and actions

u0, . . . ,uk, . . . ,uN

at those instants. The values t0, . . . , tN are known as the knot points, and we assume them to

be uniformly spaced for simplicity, so ∆t = tk+1 − tk takes the same value for k = 0, . . . , N − 1.

If ∆t is constant, the time horizon tf is fixed, but if ∆t is a decision variable of the problem, the

time horizon will (also) be variable [102].

The transcriptions of Eqs. (4.3a) and (4.3e) are relatively straightforward and less relevant

for the purpose of this chapter. They can be done, for example, by approximating the integral in

Eq. (4.3a) by means of some quadrature rule, and by enforcing 0 ≤ h(xk,uk) for k = 0, . . . , N .

Essentially, the different methods differ only on how Eq. (4.3f) is transcribed, so we devote the

rest of this section to recall background techniques to this end.

96 Trajectory Optimization

tk,0 = tk tk,1 tk,2 tk+1

xk = xk,0

xk,1 xk,2

xk+1

ṗk(tk,1) = g(xk,1,u(tk,1))

ṗk(tk,2) = g(xk,2,u(tk,2))

Figure 4.2: Collocation scheme for d = 2 in the interval [tk, tk+1]. The derivative of the polyno-
mial must match the dynamics at the collocation times.

4.3.2 Transcription of Differential Constraints

To approximate Eq. (4.3f), the first step is to define u(t) in terms of u0, . . . ,uN . While many

choices are possible here, we use a first-order hold filter due to its good balance between sim-

plicity and accuracy of representation. For all t ∈ [tk, tk+1] it will thus be

u(t) = uk +
t− tk
∆t

· (uk+1 − uk). (4.4)

The second step is to determine the state xk+1 that would be reached from xk under the

actions in Eq. (4.4). To this end we can use shooting or collocation methods, but in this work we

opt for the latter because they tend to be numerically preferable, and they allow larger regions

of convergence for the optimizer.

Transcription via collocation works as follows. The form of x(t) ∈ [tk, tk+1] is not known

a priori, but we assume it to be approximated by a polynomial pk(t) of degree d taking the

value xk for t = tk. Without loss of generality, we regard this polynomial as the one that

interpolates d+ 1 states

xk,0, . . . ,xk,d

corresponding to d+ 1 time instants

tk,0, . . . , tk,d

4.3 Transcription Techniques 97

in the interval [tk, tk+1] (Fig. 4.2), where tk,0 = tk, and

tk ≤ tk,1 < · · · < tk,d ≤ tk+1.

Using Lagrange’s interpolation formula [103] we thus can write

pk(t) = xk,0 · ℓ0(t− tk) + · · ·+ xk,d · ℓd(t− tk), (4.5)

where ℓ0(t− tk), . . . , ℓd(t− tk) is the basis of Lagrange polynomials of degree d defined in [0,∆t],

which only depend on tk,0, . . . , tk,d. Recall here that

ℓj(tk,i − tk) =







1, if j = i

0, otherwise

so pk(tk,i) = xk,i [103]. Since we wish pk(tk) = xk, it must be xk,0 = xk in Eq. (4.5), and we

shall assume so hereafter. The remaining parameters xk,1, . . . ,xk,d are unknown, but they can

be determined by forcing pk(t) to satisfy ẋ = g(x,u) for all t = tk,1, . . . , tk,d, which yields the d

collocation constraints

ṗk(tk,i) = g(xk,i,uk,i) for i = 1, . . . , d, (4.6)

where uk,i = u(tk,i). The values tk,1, . . . , tk,d are called the collocation points and they are fixed

beforehand. The state xk+1 is then given by the continuation constraint

xk+1 = pk(tk+1). (4.7)

In each interval [tk, tk+1], Eq. (4.3f) is thus transcribed into Eqs. (4.6) and (4.7), with pk(t)

being defined by Eq. (4.5). In the end, once the transcribed problem is solved, the trajectory

x(t) will be the continuous spline defined by p0(t), . . . ,pN−1(t).

It is worth adding that the left-hand side of Eq. (4.6) is easy to formulate, as ṗk(tk,i) can

always be written in the form

ṗk(tk,i) =D(tk,0, . . . , tk,d) ·







xk,0

...

xk,d






,

where D is a constant differentiation matrix that solely depends on tk,0, . . . , tk,d [86, 103].

98 Trajectory Optimization

The accuracy of the transcription depends on the particular choice of collocation points

tk,1, . . . , tk,d and the order d of pk(t). These can be selected according to multiple schemes, like

those leading to the trapezoidal or Hermite-Simpson rules, or any of the orthogonal collocation

methods [86]. In this work, we choose the Gauss-Legendre orthogonal collocation scheme due

to its low integration errors [26]. The order of the resulting integration is O(∆t2d), which is the

maximum possible for d collocation points. Also, the method is symmetric, A- and B-stable, and

symplectic [104], which results in accurate transcriptions.

4.4 Conventional Collocation Schemes

We next review the two conventional ways of transcribing Problem (4.3). The two methods are

referred to as the basic and Baumgarte methods (Sections 4.4.1 and 4.4.2 respectively).

4.4.1 Basic Collocation

A naive way of transcribing Problem (4.3) consists in directly applying the methods in the pre-

vious section to each one of its equations. This results in the optimization problem

minimize
w

C(w) (4.8a)

subject to x0 = xs, (4.8b)

xN = xg, (4.8c)

ṗk(tk,i) = g(xk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d, (4.8d)

pk(tk+1) = xk+1, k = 0, . . . , N − 1, (4.8e)

0 ≤ h(xk,uk), k = 0, . . . , N, (4.8f)

where C(w) is the discrete version of the integral cost in Eq. (4.3a), and w encompasses all the

decision variables intervening: the actions u0, . . . ,uN , the states x0, . . . ,xN , and all collocation

states xk,i for k = 0, . . . , N − 1, and i = 1, . . . , d.

While the previous transcription is straightforward, it also makes the problem difficult to

solve. Notice that Eq. (4.8c) contains nx−dX redundant constraints (as xN is implicitly restricted

to X by Eqs. (4.8d) and (4.8e)), so the formulation violates the linear independence constraint

qualification (LICQ) required by the Karush-Kuhn-Tucker conditions of optimality [105]. A way

around this problem consists in replacing Eq. (4.8c) by

U⊤
g (xN − xg) = 0, (4.9)

4.4 Conventional Collocation Schemes 99

X

Txg
X

xg

Figure 4.3: Equation (4.9) constrains xN to lie in the normal space of X at xg (the dashed
ray in the figure). Since this space can intercept X at points different from xg (for example the
green point), xN may converge to undesired states in the basic collocation method.

where U g is an nx × dX matrix whose columns provide an orthogonal basis of TxgX (Fig.

4.3). An advantage of Eq. (4.9) is that it locally constrains xN to xg by adding dX independent

constraints only. However, since Eq. (4.9) also holds for points in X different from xg, we also

include a small penalty proportional to

‖xN − xg‖2

in C(w) to favor the convergence of xN to xg. By applying these modifications to Problem (4.8)

we obtain a new optimization problem with the following form:

minimize
w

C(w) (4.10a)

subject to x0 = xs, (4.10b)

U⊤
g (xN − xg) = 0, (4.10c)

ṗk(tk,i) = g(xk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d, (4.10d)

pk(tk+1) = xk+1, k = 0, . . . , N − 1, (4.10e)

0 ≤ h(xk,uk), k = 0, . . . , N. (4.10f)

The process that consists in transcribing Problem (4.3) into Eqs. (4.10) will be called the basic

collocation method hereafter.

100 Trajectory Optimization

While the basic method is simple, it presents an important limitation. Note that the states

x0, . . . ,xN tend to drift off from X due to the discretization errors inherent to Eqs. (4.10d)

and (4.10e), which leads to unrealistic trajectories that can be difficult to control, or terminate

far from xg (see Section 4.7 for an example). Unfortunately, this problem cannot be solved by

just adding

F (xk) = 0, k = 1, . . . , N (4.11)

to the transcribed formulation, as Eqs. (4.10d) and (4.10e) already determine x1, . . . ,xN once

x0 and a control sequence is fixed. Thus, Eqs. (4.11) would again introduce redundant con-

straints violating the LICQ condition. Despite the problem of drift, however, the simplicity of the

basic method makes it a good tool to provide, e.g., initial guesses for more elaborate methods.

4.4.2 Collocation with Baumgarte Stabilization

An alternative to the basic method is to resort to Baumgarte stabilization. This technique consists

in altering the system dynamics in Eq. (4.1b) by adding artificial forces that damp the trajectory

deviations from X . To this end, recall from Section 2.3.2 that in order to obtain Eq. (4.1b), we

combined the acceleration constraint

Φq(q) q̈ − ξ(q, q̇) = 0, (4.12)

with the dynamic equation

M(q) q̈ +Φq(q)
⊤λ = τFD(q, q̇,u). (4.13)

The Baumgarte method basically consists on modifying Eq. (4.12) by adding stabilizing terms

for the residuals of the position and velocity constraints. The modified equation then takes the

form

Φq(q) q̈ − ξ(q, q̇) + α′
Φq(q) q̇ + β′

Φ(q) = 0, (4.14)

where α′ and β′ are constant parameters that have to be tuned to ensure a stable trajectory. The

modified acceleration constraint in Eq. (4.14) is combined with Eq. (4.13) to obtain a stabilized

dynamics equation

ẋ = gstab(x,u). (4.15)

4.5 New Collocation Schemes 101

Using Baumgarte stabilization, thus, the transcription in Problem (4.10) is improved by replac-

ing Eq. (4.10d) by

ṗk(tk,i) = gstab(xk,i,uk,i) for i = 1, . . . , d. (4.16)

The resulting problem then takes the form

minimize
w

C(w) (4.17a)

subject to x0 = xs, (4.17b)

U⊤
g (xN − xg) = 0, (4.17c)

ṗk(tk,i) = gstab(xk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d, (4.17d)

pk(tk+1) = xk+1, k = 0, . . . , N − 1, (4.17e)

0 ≤ h(xk,uk), k = 0, . . . , N. (4.17f)

The simplicity of this technique has made it a common approach to mitigate the problem of

drift, but the method also has several drawbacks. First of all, the tuning of α′ and β′ in Eq. (4.14)

is not trivial, as the dynamics from the stabilizing terms should be faster than the drift dynam-

ics produced by the transcribed equations, otherwise the trajectory might depart from X in an

unstable manner. So far, however, only heuristic rules are available to choose α′ and β′ [63].

Note also that Eq. (4.15) has a more complex structure than the one in Eq. (4.1b), which com-

plicates the computation of gradients and Hessians needed by the optimizer. The approach also

alters the energy of the system artificially. In fact, the use of Eq. (4.16) does not guarantee that

the original collocation constraint in Eq. (4.6) will be fulfilled, so some dynamic error is to be

expected at the collocation points (see Section 4.7 for an example).

4.5 New Collocation Schemes

We next propose two methods to solve the problem of drift. In both methods, Problem (4.8)

is modified by replacing the collocation and continuation constraints in Eqs. (4.8d) and (4.8e)

with alternative transcriptions of the dynamics in Eq. (4.3f). While the first method guarantees

that x0, . . . ,xN will lie on X exactly (Section 4.5.1), the second achieves full drift elimination

over the entire trajectory x(t) (Section 4.5.2). These two methods are called the projection and

local coordinates methods respectively.

102 Trajectory Optimization

4.5.1 The Projection Method

This method cancels the drift at each knot point by projecting the end state of each Lagrange

interpolation orthogonally to X . The method only requires modifying Problem (4.8) as follows.

We first add N additional states

x′
1, ...,x

′
N ,

and N auxiliary vectors

µ1, ...,µN ,

to the decision variables in w. We then replace the continuation constraint in Eq. (4.8e) by

x′
k+1 = pk(tk+1) k = 0, . . . , N − 1,

so the end state of the Lagrange interpolation is now x′
k+1, and introduce the constraints

xk+1 = x
′
k+1 + Fx(xk+1)

⊤µk k = 0, . . . , N − 1,

F (xk+1) = 0 k = 0, . . . , N − 1,

to ensure that xk+1 is the orthogonal projection of x′
k+1 on X (Fig. 4.4). Note that the rows

of Fx provide a basis of the normal space to X at xk+1, so Fx(xk+1)
⊤µk will be a normal

vector of X at xk+1. Thus, although x′
1, ...,x

′
N may deviate from X , the drift will not accumulate

because the joint effect of Eqs. (4.18) will fully remove it after every time step. The modified

Problem (4.8) then takes the form

minimize
w

C(w) (4.19a)

subject to x0 = xs, (4.19b)

xN = xg, (4.19c)

ṗk(tk,i) = g(xk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d, (4.19d)

pk(tk+1) = x
′
k+1, k = 0, . . . , N − 1, (4.19e)

xk+1 = x
′
k+1 + Fx(xk+1)

⊤µk, k = 0, . . . , N − 1, (4.19f)

F (xk+1) = 0, k = 0, . . . , N − 1, (4.19g)

0 ≤ h(xk,uk), k = 0, . . . , N. (4.19h)

4.5 New Collocation Schemes 103

X

xk

xk+1

x′
k+1

x′
k+2

xk+2

pk(t)
Fx(xk+1)

⊤µk

Figure 4.4: The projection method. The end state x′
k+1 of each polynomial pk(t) is projected

orthogonally to X to remove the accumulated drift.

The main advantage of the projection method over the basic and Baumgarte methods is that

it keeps x1, ...,xN exactly on X while satisfying xN = xg precisely. In contrast to the Baumgarte

method, moreover, this is achieved without modifying the system dynamics artificially. The

weak point is that some drift from X will persist despite the projections, as x(t) will have a

shape similar to the one in Fig. 4.1(c), with discontinuities at the knot points. If a driftless

continuous trajectory is required, however, we can always resort to the following method.

4.5.2 The Local Coordinates Method

The idea of this method is to transcribe the dynamics in Eq. (4.3f) using integration in local

coordinates. This tool was already used in the previous chapter to keep the trajectories x(t)

on X , and we now show how the same concept can be applied to trajectory optimization. To

make the presentation self-contained, a few concepts from Chapter 3 will be recalled where

needed. We first derive the collocation constraints using generic maps and then we rewrite the

constraints using tangent-space versions of such maps.

Collocation in Local Coordinates

Let y = ϕk(x) be a local chart of X defined around some point xk ∈ X , so

ϕk : Vk → Pk,

104 Trajectory Optimization

where Vk and Pk are open neighborhoods in X and R
dX respectively, including xk and ϕk(xk).

Without loss of generality, we will assume that ϕk(xk) = 0, so ϕk maps xk to the origin of RdX .

Also let

ψk : Pk → Vk

be the inverse map of ϕk, which provides a local parametrization of Vk ⊂ X .

Using ϕk and ψk we can use integration in local coordinates to compute the state xk+1 that

would be reached from xk while ensuring F (xk+1) = 0. To this end, we first take the time

derivative of y = ϕk(x) to get

ẏ =
∂ϕk(x)

∂x
· ẋ,

and using ẋ = g(x,u) we obtain

ẏ =
∂ϕk(x)

∂x
· g(x,u). (4.20)

The substitution of x = ψk(y) in Eq. (4.20) then yields

ẏ = g̃k(y,u), (4.21)

which provides the dynamic equation in y coordinates exclusively. We can use this equation

as follows to compute xk+1 [Fig. 4.5(a)]: we first map xk to the origin of RdX using ϕk; we

then integrate Eq. (4.21) to find the state y(tk+1) = yk+1 that would be reached from y(tk) = 0

under the actions u(t); and finally we project yk+1 back to X via

xk+1 = ψk(yk+1). (4.22)

Using this process, it is clear that F (xk+1) = 0 by construction.

To integrate Eq. (4.21) using collocation, we assume that the trajectory y(t) is well approxi-

mated by a polynomial that starts at the origin of RdX and interpolates d unknown states

yk,1, . . . ,yk,d

corresponding to d collocation times tk,1, . . . , tk,d from [tk, tk+1] (see Fig. 4.5(b)). This polyno-

mial can be written as

pk(t) = yk,1 · ℓ1(t− tk) + · · ·+ yk,d · ℓd(t− tk),

4.5 New Collocation Schemes 105

(a) (b)

R
dX

R
dX

X

xk xk+1 xk+2

0

0

0

yk,1

yk+1

yk+1

yk+2

ṗk(tk,1) = g̃k(yk,1,u(tk,1))

ψkϕk

Pk

Figure 4.5: The local coordinates method. (a) To obtain xk+1, we first map xk to ϕk(xk) = 0 ∈
R
dX , we then integrate Eq. (4.21) to find yk+1, and we finally project yk+1 to X using ψk. (b)

The collocation constraint is now enforced in R
dX . In the figure we assume d = 1, so ṗk(tk,1)

must match g̃k(yk,1,u(tk,1)).

which satisfies pk(tk) = 0 as required since ℓ1(t − tk), . . . , ℓd(t − tk) are all zero for t = tk. To

determine yk,1, . . . ,yk,d, we only have to impose the d collocation constraints

ṗk(tk,i) = g̃k(yk,i,uk,i), for i = 1, . . . , d.

The value of yk+1 will then be given by

yk+1 = pk(tk+1),

so Eq. (4.22) can be written as

xk+1 = ψk(pk(tk+1)).

With the earlier procedure, thus, we can achieve a drift-free transcription of Problem (4.3)

by replacing the collocation and continuation constraints in Eqs. (4.8d) and (4.8e) by

ṗk(tk,i) = g̃k(yk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d,

xk+1 = ψk(pk(tk+1)), k = 0, . . . , N − 1.

106 Trajectory Optimization

The resulting problem then takes the form

minimize
w

C(w) (4.24a)

subject to x0 = xs, (4.24b)

xN = xg, (4.24c)

ṗk(tk,i) = g̃k(yk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d, (4.24d)

xk+1 = ψk(pk(tk+1)), k = 0, . . . , N − 1, (4.24e)

0 ≤ h(xk,uk), k = 0, . . . , N. (4.24f)

Once the transcribed problem is solved we can even use p1(t), . . . ,pN (t) to construct a con-

tinuous spline for x(t) lying in X for all t, something that the earlier methods were unable to

obtain. This spline will be given by

ψ0(p0(t)), . . . ,ψN−1(pN−1(t)).

Finally note that, since we have integrated the dynamics in Eq. (4.3f) using the independent y

coordinates, the goal constraint in Eq. (4.24c) is not problematic in this method.

Collocation in Tangent Space Coordinates

As we know, in some robots it will be possible to define the maps ψk and ϕk using closed-form

expressions. However, in order to achieve a general trajectory optimizer, and following the same

criterion as in Chapter 3, we next define these maps using tangent space coordinates. When

using these coordinates, recall that the map y = ϕk(x) is obtained by projecting x orthogonally

onto Txk
X = R

dX and takes the form

y = Uk(xk)
⊤ (x− xk), (4.25)

where Uk(xk) is an nx × dX matrix whose columns provide an orthonormal basis of Txk
X .

Also recall that the inverse map x = ψk(y) is implicitly determined by the system of nonlinear

equations
{

y −Uk(xk)
⊤(x− xk) = 0,

F (x) = 0,

which we will write as

Hk(x,y) = 0 (4.27)

4.6 Implementation Details 107

for convenience. The time derivative of Eq. (4.25) now provides the particular form of Eq. (4.20),

ẏ = Uk(xk)
⊤ g(x,u),

where Uk(xk)
⊤ corresponds to ∂ϕk(x)/∂x.

Since the ψk map is only defined implicitly by Eq. (4.27), we cannot obtain the dynamics

in Eq. (4.21) in y coordinates explicitly. However, using Eq. (4.27), we can still impose the

collocation constraint in Eq. (4.24d) via

Hk(xk,i,yk,i) = 0, k = 0, . . . , N − 1, i = 1, . . . , d,

ṗk(tk,i) = Uk(xk)
⊤ g(xk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d,

and the continuation constraint in Eq. (4.24e) via

Hk(xk+1,pk(tk+1)) = 0, k = 0, . . . , N − 1,

where yk,1, . . . ,yk,d must be added to the decision variables w of the problem. The resulting

problem finally takes the form

minimize
w

C(w) (4.29a)

subject to x0 = xs, (4.29b)

xN = xg, (4.29c)

Hk(xk,i,yk,i) = 0, k = 0, . . . , N − 1, i = 1, . . . , d, (4.29d)

ṗk(tk,i) = Uk(xk)
⊤ g(xk,i,uk,i), k = 0, . . . , N − 1, i = 1, . . . , d, (4.29e)

Hk(xk+1,pk(tk+1)) = 0, k = 0, . . . , N − 1, (4.29f)

0 ≤ h(xk,uk), k = 0, . . . , N. (4.29g)

4.6 Implementation Details

To compare the conventional techniques in Section 4.4 with the new ones proposed in Sec-

tion 4.5, we have implemented them using the symbolic tool for nonlinear optimization and

algorithmic differentiation CasADi [67]. CasADi provides the necessary means to formulate

the problems, and to compute the gradients and Hessians of the transcribed equations using

automatic differentiation. These derivatives are necessary to solve the nonlinear optimization

108 Trajectory Optimization

problems that result, a task for which we rely on the interior-point solver IPOPT [106] in con-

junction with the linear solver MA-27 [107]. We next discuss important details that must be

taken into account when implementing and solving the transcribed problems, regardless of the

software platform employed.

4.6.1 Explicit versus Implicit Dynamics

In all transcriptions so far, the collocation constraints have been formulated using the explicit

form of the system dynamics in Eq. (4.1b). The derivation of Eq. (4.1b), however, requires

inverting an extended mass matrix, which often complicates the expressions of the gradients

and Hessians needed by the optimizer. Unless the mass matrix is simple enough, it is preferable

to write the collocation constraints using the implicit form of the dynamics given by Eqs. (4.12)

and (4.13). This can be done as follows.

Let us write Eqs. (4.12) and (4.13) compactly as

D(x, ẋ,u,λ) = 0.

Then, in the case of the basic and projection methods, the collocation constraint in Eq. (4.10d)

and (4.19d) respectively, can be replaced by
{
ṗk(tk,i) = ẋk,i,

D(xk,i, ẋk,i,uk,i,λk,i) = 0,

where ẋk,i and λk,i are decision variables now, so they will be part of w.

Similarly, in the Baumgarte method, the collocation constraint in Eq. (4.17d) would be

replaced by
{
ṗk(tk,i) = ẋk,i,

Dstab(xk,i, ẋk,i,uk,i,λk,i) = 0,

where Dstab(x, ẋ,u,λ) = 0 includes Eq. (4.13) and the stabilized acceleration constraint in

Eq. (4.14).

Finally, in the local coordinates method the collocation constraint in Eqs. (4.24d) and (4.29e)

would be substituted by
{

ṗk(tk,i) = Uk(xk)
⊤ ẋk,i,

D(xk,i, ẋk,i,uk,i,λk,i) = 0.

Clearly, the use of the implicit form of the dynamics adds more variables and equations to

the transcribed problems, but the resulting expressions are simpler and numerically more stable.

The optimization problem is larger but also sparser, which often improves the convergence.

4.6 Implementation Details 109

dk

dk
Txk
X

XX

xk
xk x′

k+1

xk+1

xk+1

yk+1

(a) (b)

Figure 4.6: Projection rays in the projection (a) and local coordinates (b) methods. Whereas in
(a) the ray is orthogonal to X , in (b) it is orthogonal to Txk

X . In both cases there may be more
than one solution to the projection step to X (red and green points). The transcriptions should
ensure the optimizer selects the red point for xk+1, i.e., the one that is closest to the projection
point (in white). See the text for details.

4.6.2 Ensuring Proper Projections

For both the projection and local coordinates methods, we may find situations in which the

projection ray intercepts the X manifold in multiple points (Fig. 4.6). In these situations, we

need to ensure that the position of xk+1 chosen by the optimizer (red point) is the one that is

closest to the projection point (white point), otherwise the trajectory would suddenly jump to

farther regions in X (green point). To this end, we define the distance dk from the projection

point to xk+1 as

dk = ‖x′
k+1 − xk+1‖

in the projection method, and as

dk = ‖(xk +Uk(xk) yk+1)− xk+1‖

in the local coordinates method. Then, we add a small penalty term proportional to

N∑

k=1

d2k,

in the cost function C(w) in Eqs. (4.19a) and (4.29a). In this way, the optimizer will select the

closest point to the projection point in the ray.

110 Trajectory Optimization

4.6.3 Computing a Basis of the Tangent Space

To compute a basis of Txk
X , i.e., of the null space of Fx(xk), we can use the QR decomposition.

Using this decomposition, the ne × nx matrix Fx(xk) can be expressed as

Fx(xk)
⊤ = Qk Rk, (4.33)

where Qk is an nx × nx orthonormal matrix, so Q⊤
kQk = Inx , and Rk is an nx × ne upper

triangular matrix. From Eq. (4.33) we have that

Fx(xk)Qk = R⊤
k ,

which can be written in block form as

Fx(xk) [V k Uk] = [Lk 0],

where V k includes the first ne columns of Qk, Uk includes the remaining dX columns, and Lk

is an ne × ne lower triangular matrix [31, 32]. Since Fx(xk) Uk = 0 and U⊤
kUk = IdX , Uk

provides the desired orthonormal basis of Txk
X .

Note that the basis Uk is not unique and typical implementations of the QR decomposition

apply column reordering with the aim of improving the numerical stability of the procedure.

Therefore, applying the process just described on nearby points may produce significantly dif-

ferent bases, so the procedure does not guarantee the continuity and smoothness of the outputs.

This is inconvenient for the optimization process, which requires the derivatives of Uk with re-

spect to xk. Therefore, once Uk is computed for a given point xk, i.e., after the initialization

of the optimization process, it is more convenient to use Gram-Schmidt orthonormalization to

update the basis U l for any point xl close enough to the previous estimation of xk. In this

process, the columns uj
l of U l for j = {1, . . . , dX } are computed in sequence from the columns

u
j
k of Uk in two steps. We first compute

w
j
l = u

j
k −El E

⊤
l u

j
k,

with El = [Fx(xl)
⊤ u1

l . . .u
j−1
l], and then obtain

u
j
l =

w
j
l

‖wj
l ‖

.

The first step projects uj
k to the null space of El, i.e., of Fx(xl) and the vectors of U l already

computed. The second step just normalizes the resulting vector. This process is well-defined as

long as none of the wj
l vectors is zero, i.e., provided Uk and U l are relatively similar.

4.6 Implementation Details 111

4.6.4 Accuracy Metrics

To evaluate the quality of a trajectory it is essential to define proper accuracy metrics. These

metrics allow us to compare the four transcription methods described in this chapter. We here

use two errors functions defined in [86, 102] to quantify how well x(t) and u(t) satisfy the

kinematic and dynamic constraints in Eqs. (4.1a) and (4.1b). The logic is that if these two

equations are accurately fulfilled (both at the knot points and in between them) then the spline

for x(t) will provide an accurate representation of the system motion under u(t). Therefore, the

lower the errors, the lower the control effort needed to stabilize the trajectories a posteriori.

Specifically, we define the kinematic error as

eK(t) = ‖F (x(t))‖,

and the dynamic error as

eD(t) = ‖ẋ(t)− g(x(t),u(t))‖.

The averages of these two errors over [0, tf],

EK =
1

tf

∫ tf

0
eK(t) dt,

ED =
1

tf

∫ tf

0
eD(t) dt,

provide global quantities summarizing the two types of errors over the whole trajectories x(t)

and u(t).

4.6.5 Including Obstacles

In our optimizations, we always use the trajectories from Chapter 3 as an initial guess. Since

such trajectories are collision-free, a simple strategy can be applied to also obtain optimized

collision-free trajectories. It consists in solving the optimization problem as if no obstacles were

present, but checking at each iteration whether the current trajectory is free from collisions. If a

collision is found in one iteration, we revert the trajectory to its previous form and split it at the

discrete state that converged to a collision. Then, the split segments are optimized separately

and the overall process is iterated until no reduction in cost is achieved. An alternative strategy

is to use the shortcut method in [108], which optimizes randomly-selected segments of the

trajectory while also neglecting the obstacles. If a collision is found when improving a segment,

the method reverts it to its earlier version and attempts to optimize another segment, repeating

the process until no improvement is possible. Both approaches are simple-enough, as they

112 Trajectory Optimization

do not require the formulation of obstacle-avoidance constraints in the optimization problem.

Other strategies directly formulate collision-avoidance in Problem 4.3, either as penalty terms

in the cost function or as path constraints in Eq. 4.3e [15, 109]. However, both approaches

have their shortcomings: while the former may converge to a collision trajectory, the latter can

be hard to implement, as it requires the formulation of collision constraints using differentiable

functions, which are difficult to obtain in general.

4.7 Performance Tests

We next compare the performance of the previous collocation methods in solving a trajectory

optimization problem in the five-bars robot shown in Fig 3.19. The task is to lift a load from

a bottom position in which the robot is at rest, to an upright position. To complicate the task,

the robot is set to move on a vertical plane, so it must overcome gravity, and we limit the motor

torques to a small range [−umax, umax] that impedes direct trajectories to the goal. We initialize

the optimization with the trajectories from the sampling-based planner of Chapter 3. These

trajectories will often be jerky, and far from optimal, but usually they will be good enough to

allow the convergence of the optimizer to a locally-optimal solution. All optimization problems

have been solved using a MacBook Pro with an Intel i9 6-core processor running at 2.9 GHz.

Except where noted, the final time tf will be fixed beforehand.

Fig. 4.7 shows weight-lifting trajectories obtained by the four methods using N = 137,

∆t = 0.035 [s], and the running cost L(x(t),u(t)) = u(t)⊤u(t) for Eq. (4.3a). As we see, in both

trajectories the torque limits force the generation of swinging motions to reach the goal. The

trajectory from the basic method shows that the drift inevitably accumulates, so the mechanism

disassembles and the goal state cannot be reached (see the mismatch between the expected and

obtained positions of the right motor joint in several snapshots, in red and white respectively).

The trajectory from the Baumgarte method reveals that, although the drift is being stabilized

(see how the 6-th snapshot presents the largest mismatch in the right joint position, and how

it decreases in the last snapshots), the mechanism is still slightly disassembled at the goal. In

contrast, the trajectories from the projection and local coordinates methods are able to reach

the goal precisely.

The kinematic error corresponding to the previous trajectories is shown in Fig 4.8. Note

that a large value of eK(t) implies that Eq. (4.1a) is violated, which results in unrealistic trajec-

tories that are difficult to control later on. Thus, a method resulting in low values of eK(t) is

preferable. From Fig. 4.8 we see that each method performs as expected. In the basic method,

eK(t) accumulates over time, which in the trajectory from the basic method of Fig 4.7 corre-

sponds to the progressive disassembly of the right motor joint. In the Baumgarte method, we

4.7 Performance Tests 113

Basic method

Local coordinates method

Baumgarte method

Projection method

Disassembled

Slightly
disassembled

Assembled

Assembled

Q

Figure 4.7: Trajectories obtained by the four methods in the weight lifting task. The grey area
in each snapshot is the workspace of the robot, i.e., the set of positions that point Q can attain.
The two base joints are actuated. The trajectory from the basic method shows that, due the
accumulation of drift, the mechanism disassembles at the right motor joint (see the mismatch
between the expected and obtained positions of this joint in the several snapshots, in red and
white respectively) so Q leaves its workspace at times and the goal state cannot be reached.
The trajectory from the Baumgarte method shows that, despite the stabilization of drift, the
mechanism slightly disassembles at some instants, even at the goal. In the projection and local
coordinates methods, in contrast, the goal state is reached exactly (compare the last snapshots
in each row). See youtu.be/BYGUlpkHFXs for an animated version of this figure.

see in Fig. 4.8 that the stabilizing terms prevent the accumulation of drift, but many knot points

deviate substantially from the manifold. In the projection method, the growth of eK(t) is also

prevented, but now all of the knot points lie on X by construction. Finally, eK(t) = 0 for all t

https://youtu.be/BYGUlpkHFXs

114 Trajectory Optimization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

0

0.05

0.1

0.15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-50

0

50

t [s]

t [s]

t [s]

t [s]

t [s]

e
K
(t
)

e
K
(t
)

e
K
(t
)

e
K
(t
)

q̇
[r

ad
/s

] q̇1
q̇2
q̇3
q̇4
q̇5

Kinematic error (Basic method)

Kinematic error (Baumgarte method)

Kinematic error (Projection method)

Kinematic error (Local method)

Velocity trajectory (Local method)

Figure 4.8: Top four plots: kinematic error eK(t) for the weight-lifting trajectories obtained
with the basic, Baumgarte, projection, and local coordinates methods, respectively (shown in
blue and obtained with d = 2). The black dots indicate the values of eK(t) at the knot points.
In the third plot, the red vertical segments correspond to the projections from x′

k to xk shown
in Fig. 4.4. Bottom plot: The values taken by q̇1, . . . , q̇5 along the trajectory. It can be seen that,
except in the local coordinates method, eK(t) tends to be larger when the robot velocities are
high.

4.7 Performance Tests 115

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0

10

20

30

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0

10

20

30

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0

10

20

30

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0

10

20

30

t [s]

t [s]

t [s]

t [s]

Dynamic error (Basic method)

e D
(t
)

e D
(t
)

e D
(t
)

e D
(t
)

Dynamic error (Baumgarte method)

Dynamic error (Projection method)

Dynamic error (Local method)

Figure 4.9: Dynamic error eD(t) for the weight-lifting task with d = 2. We only depict eD(t) for
the time span [1, 1.5] [s] to better appreciate this error at the knot points (in black) and at the
collocation points (in red). The four methods yield similar errors over the whole time horizon.

116 Trajectory Optimization

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0

0.02

0.04

0.06

0.08

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0

10

20

30

t [s]

t [s]

e D
(t
)

e K
(t
)

Dynamic error (Baumgarte method)

Kinematic error (Baumgarte method)

Figure 4.10: In the Baumgarte method, the presence of kinematic errors (top) introduces non-
null values for the stabilizing terms in Eq. (4.14). Thus the real dynamics is violated at the
collocation points (bottom). The black and red dots depict the error at the knot and collocation
points, respectively.

in the local coordinates method, so this is the most accurate of all methods. It is worth noting

that the error peaks arising in the basic, Baumgarte, and projection methods coincide with tra-

jectory times in which the values of q̇ are high (compare the error peaks with the bottom plot in

Fig. 4.8), a phenomenon to which the local coordinates method is immune.

Fig. 4.9 shows that the reduction in kinematic error of the projection and local coordinates

methods does not result in increments of the dynamic error eD(t). This error gives an idea of

how well the computed trajectories respect the robot dynamics, i.e. the vector field defined

by Eq. (4.1b). As we see, the methods do not differ significantly on this regard, as they all

resort to the same scheme of numerical integration (Gauss-Legendre collocation with d = 2

and a same time step ∆t). In principle, since the solution trajectories satisfy the collocation

constraints, the dynamic error should be zero at the collocation points (shown in red). This

is the case for all methods except for the Baumgarte method. The reason is that this method

4.7 Performance Tests 117

Method d EK ED C∗ topt [s]

Naive

2 69.06 · 10−3 75.31 1.04 4.28

3 15.00 · 10−3 47.03 1.18 9.63

4 9.18 · 10−3 42.61 1.19 18.74

Baumgarte

2 29.70 · 10−3 88.64 0.98 4.12

3 7.69 · 10−3 43.93 1.20 11.25

4 5.04 · 10−3 35.81 1.38 19.60

Projection

2 15.19 · 10−3 75.19 0.54 4.63

3 7.35 · 10−3 51.69 1.07 9.11

4 3.73 · 10−3 34.30 1.33 12.42

Local

2 4.66 · 10−9 48.04 1.61 22.18

3 5.93 · 10−9 36.07 1.70 29.89

4 5.74 · 10−9 21.07 1.81 37.54

Table 4.1: Weight lifting: Performance statistics of
the different methods when d increases.

forces the satisfaction of the modified dynamics in Eq. (4.15) rather than the actual dynamics

of Eq. (4.1b). In segments where the kinematic errors are high, the stabilizing terms are not

zero at the collocation points, which yields a non-vanishing value of eD(t) at such points. This

phenomenon is better illustrated in Fig. 4.10.

Table 4.1 provides global performance measures for the four methods when using polynomi-

als of increasing degree d. For each value of d we provide the average kinematic and dynamic

errors EK and ED given by Eqs. (4.34) and (4.35), the cost C∗ of the computed trajectory, and

the CPU time topt used by the optimizer. As expected, both EK and ED decrease when increas-

ing d in each method. For a same value of d, the projection method has a value of EK that is

slightly smaller to that of the basic and Baumgarte methods. In contrast, the local coordinates

method has a negligible EK value, which only depends on the tolerance used by the optimizer

when solving Eq. (4.27). For a same d, ED is comparable in all methods.

118 Trajectory Optimization

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-1

0

1

t [s]

t [s]

t [s]

t [s]

u
(t
)

u
(t
)

u
(t
)

u
(t
)

u1

u1

u1

u1

u2

u2

u2

u2

Initial guess

Solution with L2(x(t),u(t)) = u̇(t)
⊤u̇(t)

Solution with L1(x(t),u(t)) = u(t)
⊤u(t)

Solution with L3(x(t),u(t)) = 1

Figure 4.11: Top plot: the initial guess of the action trajectory u(t). Bottom plots: the optimized
function u(t) obtained by the projection method with d = 4 when using different running costs
L(x(t),u(t)). See youtu.be/HaUhwB_alCE for the animated trajectories corresponding to each
cost.

https://youtu.be/HaUhwB_alCE

4.7 Performance Tests 119

The different methods obtain solution trajectories in a same homotopy class. The slight

differences between the trajectories, and in the values of C∗, can in part be attributed to the

violation of the kinematic constraints, as only the local coordinates method can find a solution

that is fully compliant with such constraints. Moreover, the solved problems are slightly different

in the four methods. All methods include different penalty terms in their cost functions (either

to favor xN = xg, or proper projections on X). We also note that the time topt is significantly

higher in the local coordinates method, but this method obtains high-quality solutions in return.

Figure 4.11 illustrates the effect of different cost functions on the solutions obtained. The

figure shows the initial guess of the action trajectory (top plot) and the optimized action trajec-

tories u∗(t) that we obtain when using the following running costs in Eq. (4.3a):

L1(x(t),u(t)) = u(t)
⊤ u(t),

L2(x(t),u(t)) = u̇(t)
⊤ u̇(t),

L3(x(t),u(t)) = 1.

As we see, the use of L1 results in an action trajectory u∗(t) that is smoother in comparison to

the initial guess, so the control signal will be easier to follow. If further smoothing is needed,

we can use L2, which will minimize the derivative of u(t). Finally, if we need to minimize the

total trajectory time, we can free tf and ∆t and use L3 to obtain the optimized trajectory u∗(t)

of the fourth plot. A bang-bang control function arises in which at least one motor works at its

upper or lower torque limit, and the robot achieves the goal state in only two seconds.

5
Trajectory Tracking

The trajectories we have obtained so far are “open loop” so they need to be tracked with a con-

troller when executed in a real robot. We next develop techniques to design such a controller, so

we can achieve stable trackings in the presence of disturbances or dynamic model inaccuracies.

After putting our work into context (Section 5.1), we formally define the control problem to be

solved (Section 5.2) and recall classical computed-torque control methods (Section 5.3). These

methods are powerful and of widespread use, but they fail perilously near forward singularities.

Therefore, we can only apply them if the trajectory has been actively planned to avoid such

singularities using the method in Section 3.8. The avoidance of forward singularities, however,

may limit the motion capabilities of the robot, so it is natural to pursue alternative controllers

able to cross these critical configurations. We show that this is indeed possible by adapting the

classical LQR controller to deal with robots with closed kinematic chains (Section 5.4). We also

compare the performance of the computed-torque and LQR controllers by means of illustrative

examples (Section 5.5).

5.1 Related Work

As in serial manipulators, stable trajectory trackings in closed-chain robots are typically achieved

using computed-torque methods [17, 77, 110–116]. These employ inverse dynamics and feed-

back linearization to obtain a closed-loop system with easy-to-tune control parameters. Computed-

torque laws are effective because they tend to produce global basins of attraction towards the

desired trajectory. In such laws, however, the inverse dynamic problem must be solved at each it-

eration of the control loop, which is an expensive step that hinders the design of high-frequency

controllers in time-critical tasks. Still, the biggest drawback of computed-torque methods is that

their control law degenerates near forward singularities, because in these configurations the in-

verse dynamics is almost always unsolvable (Section 2.3.3). Possible workarounds are to limit

122 Trajectory Tracking

the robot motion to singularity-free regions of the C-space [77, 110, 111], or to use actuation

redundancy to eliminate all or almost all forward singularities [113–116], but such solutions

restrict the robot motions and complicate the structural design substantially.

It is important to note that singularity-crossing motions can safely be executed if the kino-

dynamic constraints of the robot are respected [74, 75, 117, 118]. Recent work on this regard

uses multi-control architectures [119, 120], which in the proximity of a singularity switch from

a computed-torque law to a controller based on virtual constraints. However, the switching from

one controller to the other depends on a heuristic parameter that needs to be tuned experimen-

tally, which is time-consuming and may be harmful to the robot. Alternatively, the controller we

introduce in Section 5.4 does not present such limitations. As we shall see, the classical theory of

linear quadratic regulators [66] can be extended to cope with closed kinematic chains, providing

a single-structure controller that is easy to tune, and does not resort to feedback linearization.

Since such a controller does not employ inverse dynamics, it can be used to stabilize a trajectory

even across forward singularities. The control laws that result are also cheap to evaluate and

produce optimal actions that minimize trajectory errors and control efforts.

Our work is inspired on recent developments in humanoid control [87, 121], but our ar-

guments and context of application are different. Notice that in humanoid robots all joints

are actuated, so forward singularities are rarely an issue in them. Instead, these singularities

arise naturally in closed-chain robots, so they must be analyzed and carefully considered in the

control problem.

5.2 The Trajectory Control Problem

Let x = x0(t) and u = u0(t) be the state and action trajectories to be followed by the robot,

and assume these trajectories are consistent with Eqs. (2.14). Thus, for any time t, (x,u) =

(x0(t),u0(t)) satisfies
{
F (x) = 0,

ẋ = g(x,u).

(5.1a)

(5.1b)

The trajectory control problem then consists in designing a control law

u = π(x, t)

so that the closed-loop system

ẋ = g(x,π(x, t)) (5.2)

5.3 Computed-torque Control 123

is stable along x0(t). This implies that the integral curves x(t) of Eq. (5.2) must be convergent

to x0(t) for arbitrary initial conditions in a neighborhood of x0(t).

Note that while x0(t) and u0(t) could be defined in many ways, in this thesis we generate

them using the methods in Chapters 3 and 4, so we will often refer to them as the planned state

and action trajectories.

5.3 Computed-torque Control

An extended approach in robotics is to solve the previous problem by means of computed-torque

control methods. We first explain these methods for the case of open-chain robots (Section 5.3.1)

and then we adapt them to robots with closed kinematic chains (Section 5.3.2). In the latter

case we will see that the resulting laws are problematic near forward singularities.

5.3.1 The Feedback Law in Open-chain Robots

Consider an open-chain robot whose coordinates q are all independent and actuated, so nu = nq.

The dynamics of this system is described by an equation of the form

M(q) q̈ + τCT(q, q̇) = u, (5.3)

whereM(q) is a positive-definite mass matrix, τCT(q, q̇) includes all Coriolis, gravity, and friction

terms, and u ∈ R
nu is the control input. To convert the system into a linear one, we can use the

feedback law

u =M(q) u′ + τCT(q, q̇), (5.4)

where u′ is a new control variable. Certainly, by substituting Eq. (5.4) into Eq. (5.3), we get

M(q) u′ =M(q) q̈,

and since M(q) is full rank we have

u′ = q̈, (5.5)

which shows that the system is now equivalent to a double integrator. We then can apply linear

control techniques to stabilize this system along a desired trajectory q0(t). A common approach

is to use a proportional-derivative (PD) feedback law for u′, i.e.,

u′ = q̈0(t)−Kv (q̇ − q̇0(t))
︸ ︷︷ ︸

ė(t)

−Kp (q − q0(t))
︸ ︷︷ ︸

e(t)

, (5.6)

124 Trajectory Tracking

where Kv and Kp are positive-definite gain matrices and e(t) is the configuration error. By

substituting Eq. (5.6) into Eq. (5.5), we obtain the linear differential equation

ë(t) +Kv ė(t) +Kp e(t) = 0,

for which it can be shown that

lim
t→∞

e(t) = 0

if Kv ≻ 0 and Kp ≻ 0, irrespective of the initial condition e(0) [24]. By substituting Eq. (5.6)

into Eq. (5.4) we obtain the usual computed-torque control law:

π(x, t) =M(q) (q̈0(t)−Kvė(t)−Kpe(t))
︸ ︷︷ ︸

u′

+τCT(q, q̇).

A strong point of this law is it ensures global stability, so the robot will be able to converge to

q0(t) independently of its initial state.

5.3.2 The Feedback Law in Closed-chain Robots

The previous method requires several modifications to be applicable to closed kinematic chains.

Recall that the dynamics of a closed-chain robot evolves according

M(q) q̈ + τCT(q, q̇) +Φq(q)
⊤λ = Qu u, (5.7)

which now includes the constraint force Φq(q)
⊤λ and the termQu u, whereQu ∈ R

nq×nu is the

matrix we defined in Section 2.2. Also recall that the q coordinates are not independent now.

However, since C is a smooth manifold, the implicit function theorem guarantees that, around

any point qc ∈ C traversed by q0(t), there exists a regular parametrization

q =m(θ), (5.8)

where θ is a vector of dC independent coordinates. In particular, the first and second time

derivatives of Eq. (5.8) will be of the form

q̇ =Λθ̇,

q̈ =Λθ̈ + Λ̇θ̇, (5.9)

where Λ = ∂m
∂θ

(q) is an nq × dC full-rank matrix whose columns provide a basis of Tqc
C, and

Λ̇ = dΛ
dt (q, q̇), (see Section 5.3.3 for details on how Λ and Λ̇ can be computed).

5.3 Computed-torque Control 125

Now, since the columns of Λ are vectors of Tqc
C, the multiplication of Eq. (5.7) by Λ

⊤ must

make Λ
⊤
Φ
⊤
q λ vanish as we saw in Section 2.3.3. After such a multiplication we thus obtain

Λ
⊤M q̈ +Λ

⊤ τCT = Λ
⊤Qu u, (5.10)

where we omitted the matrix dependencies on q and q̇ for simplicity. By substituting Eq. (5.9)

into Eq. (5.10) we obtain

Λ
⊤MΛ

︸ ︷︷ ︸

M̄

θ̈ +Λ
⊤MΛ̇ θ̇ +Λ

⊤ τCT
︸ ︷︷ ︸

τ̄CT

= Λ
⊤Qu

︸ ︷︷ ︸

N

u,

which can be compactly written as

M̄ u′ + τ̄CT =N u, (5.11)

where M̄ ∈ dC × dC , τ̄CT ∈ R
dC , and N ∈ R

dC×nu . At this point it is easy to feedback linearize

the system in Eq. (5.11) by using the control law

u =N+
(
M̄ u′ + τ̄CT

)
, (5.12)

where N+ is the nu × dC right pseudoinverse of N . Recall that N+ = N⊤(NN⊤)−1 and

NN+ = I, but N+ is undefined when N is not full row rank, which occurs at forward singu-

larities (Section 2.2.3). By substituting Eq. (5.12) into Eq. (5.11) we then obtain

M̄ θ̈ + τ̄CT =NN
+
(
M̄ u′ + τ̄CT

)
,

which simplifies into

M̄ θ̈ = M̄ u′. (5.13)

Now, since Λ is full rank, M̄ = Λ
⊤MΛ must be full rank too, so Eq. (5.13) implies that

θ̈ = u′. (5.14)

Then, similarly to what was done in Section 5.3.1, we can globally stabilize the system in

Eq. (5.14) by using

u′ = θ̈0(t)−Kv

(

θ̇ − θ̇0(t)
)

︸ ︷︷ ︸

ė(t)

−Kp

(

θ − θ0(t)
)

︸ ︷︷ ︸

e(t)

, (5.15)

where Kv and Kp are positive-definite gain matrices of size dC × dC .

126 Trajectory Tracking

By replacing u′ in Eq. (5.12) by its value in Eq. (5.15), we finally obtain the desired computed-

torque control law for closed-chain robotic systems:

u =N+

(

M̄
(

θ̈0(t)−Kv

(
θ̇ − θ̇0(t)

)
−Kp

(
θ − θ0(t)

))

︸ ︷︷ ︸

u′

+τ̄CT

)

. (5.16)

Note that we can also write this law in the following form

u =N+
(

M̄ θ̈0(t) + τ̄CT

)

︸ ︷︷ ︸

u0(t)

−N+M̄
(

Kv

(
θ̇ − θ̇0(t)

)
+Kp

(
θ − θ0(t)

))

︸ ︷︷ ︸

ucorr(t)

,

where u0(t) is the nominal action needed to produce the desired trajectory q0(t), and ucorr(t) is

the corrective action used to compensate deviations from q0(t) and q̇0(t).

5.3.3 Computing Λ and Λ̇

The control law in Eq. (5.16) requires choosing a set of dC independent coordinates θ to locally

parameterize q along the trajectory q0(t), and then compute Λ and Λ̇. While θ could be defined

using tangent space coordinates, we here follow the common approach of coordinate partition-

ing [17]. To this end, note that at each point q of the trajectory q0(t) we can choose a subset of

independent and dependent coordinates from q ∈ R
nq , qi ∈ R

dC and qd ∈ R
nq−dC respectively,

such that

q =
[

Qi Qd

]
[

qi

qd

]

,

where
[

Qi Qd

]

is a permutation matrix. Under such a choice, we have θ = qi therefore. Then,

the velocity constraint in Eq. (2.2) can be written as

Φqi
q̇i +Φqd

q̇d = 0. (5.17)

We can now express q̇d in terms of q̇i as

q̇d = −Φ−1
qd

Φqi
q̇i, (5.18)

so

q̇ =
[

Qi Qd

]
[

q̇i

q̇d

]

=
[

Qi Qd

]
[

IdC

−Φ−1
qd

Φqi

]

︸ ︷︷ ︸

Λ

q̇i. (5.19)

5.3 Computed-torque Control 127

From Eq. (5.19), we directly see that

Λ = Qi −QdΦ
−1
qd

Φqi
. (5.20)

On the other hand, if we differentiate Eq. (5.17), we obtain

Φqi
q̈i + Φ̇qi

q̇i +Φqd
q̈d + Φ̇qd

q̇d = 0,

from where we see that

q̈d = −Φ−1
qd

(

Φ̇qd
q̇d + Φ̇qi

q̇i +Φqi
q̈i

)

,

which, if we use Eq. (5.18), can be written as

q̈d = −Φ−1
qd

(

−Φ̇qd
Φ

−1
qd

Φqi
+ Φ̇qi

)

q̇i −
(

Φ
−1
qd

Φqi

)

q̈i,

This equation allows us to express q̈ in terms of q̈d and q̇d as follows

q̈ =
[

Qi Qd

]
[

q̈i

q̈d

]

=
[

Qi Qd

]




0

−Φ−1
qd

(

−Φ̇qd
Φ

−1
qd

Φqi
+ Φ̇qi

)





︸ ︷︷ ︸

Λ̇

q̇i+

[

Qi Qd

]
[

IdC

−Φ−1
qd

Φqi

]

︸ ︷︷ ︸

Λ

q̈i,

from where we finally note that

Λ̇ = −QdΦ
−1
qd

(

Φ̇qi
− Φ̇qd

Φ
−1
qd

Φqi

)

. (5.21)

Therefore, Eqs. (5.20) and (5.21) provide the desired expressions for Λ and Λ̇.

5.3.4 Degeneracy of the Feedback Law Near Singularities

In the previous section we showed how to compute Λ and Λ̇, which are necessary to obtain

the feedback law in Eq. (5.16). However, by simple inspection of Eqs. (5.20) and (5.21), one

can see that these matrices are not well-defined when Φqd
is rank deficient. Despite so, the

fact that Φq is always full rank guarantees that at every time instant we can choose a different

partition into qd and qi coordinates that does not result in a singular Φqd
matrix. While this

128 Trajectory Tracking

approach seems to solve the degeneracy of the feedback law in Eq. (5.16), note that this law still

requires computing the pseudoinverse ofN , which is undefined at forward singularities because

rank (N) < dC in them (Section 2.2.3). Therefore, regardless of the qi coordinates chosen to

compute Λ and Λ̇, the computed-torque control law in Eq. (5.16) will inevitably fail at forward

singularities. We next develop an alternative to the controllers in Section 5.3 that addresses the

trajectory control problem while being robust to forward singularities.

5.4 Linear Quadratic Regulators

Consider a trajectory controller that minimizes the additive cost function

J =

∫ tf

0

(

x̄(t)⊤Q x̄(t) + ū(t)⊤R ū(t)
)

dt, (5.22)

where x̄ = x − x0(t), ū = u − u0(t), Q is a positive semi-definite matrix penalizing deviations

from the planned trajectory x0(t), andR is a positive-definite matrix penalizing deviations from

the planned actions u0(t). Unfortunately, for general nonlinear systems ẋ = g(x,u), there is no

known expression for such a controller. However, for linear time-varying systems with the form

˙̄x = A(t)x̄+B(t)ū, (5.23)

where the x coordinates are independent, the controller is given by the linear quadratic regula-

tor (LQR) [66]. The result is the optimal controller

ū = π(x, t) = −K(t) x̄, (5.24)

or, equivalently,

u = u0(t)−K(t) (x− x0(t)),

where K(t) = R−1B⊤S(t), and S(t) is the solution to the differential Riccati equation

−Ṡ = SA(t) +A(t)⊤S − SB(t)R−1B(t)⊤S +Q. (5.25)

Note that S(t) can be obtained by integrating Eq. (5.25) backwards in time using the terminal

condition S(tf) = Q [66].

5.4 Linear Quadratic Regulators 129

Despite being restricted to the linear case, the previous controller is powerful, as one can

apply it to the time-varying linearization of ẋ = g(x,u) along
(
x0(t), u0(t)

)
, which takes the

form of Eq. (5.23). Such an approach has provided effective tracking controllers for nonlinear

systems with independent x coordinates [66], but note it cannot directly be applied to closed-

chain robots because in them x is subject to Eq. (5.1a). In fact, if in such robots we obtain

Eq. (5.23) by a direct linearization of Eq. (5.1b) along
(
x0(t), u0(t)

)
, we will find them to be

not controllable in the usual sense, as this linearization ignores Eq. (5.1a) [87]. One might

argue that the differential equations could always be expressed in terms of independent task-

or joint-space coordinates to apply the law in Eq. (5.24), but then we would be faced with the

singularities introduced by such coordinates as explained in Section 5.3.4. While similar, the

route we next take is not affected by such singularities, as we use tangent-space coordinates

that are always well-defined around any x ∈ X . We first explain our approach for the case

in which x0(t) is an equilibrium point, and then provide the controller for a general trajectory

x0(t).

5.4.1 Stabilization at an Equilibrium Point

Suppose x0(t) = x0 ∀t, where x0 is an equilibrium point of ẋ = g(x,u) for u = u0, i.e.,

g(x0,u0) = 0. To stabilize the robot at x0, we first rewrite ẋ = g(x,u) using the independent y

coordinates of Tx0X , and then apply the controller in Eq. (5.24) using such coordinates.

Recall that the map y = ϕ(x) that provides the y coordinates of Tx0X is given by

y = U⊤ (x− x0)
︸ ︷︷ ︸

x̄

, (5.26)

where U is an nx×dX matrix whose columns provide an orthonormal basis of Tx0X . Also recall

that the inverse map x = ψ(y) is given by the solution of

{
F (x) = 0,

U⊤(x− x0)
︸ ︷︷ ︸

x̄

− y = 0.

As in earlier chapters, to obtain ẋ = g(x,u) in y coordinates we take the time derivative of

Eq. (5.26),

ẏ = U⊤ẋ,

and apply the substitutions ẋ = g(x,u) and x = ψ(y) to get

ẏ = U⊤ g(ψ(y),u),

130 Trajectory Tracking

(a) (b)

X

Tx
0
XTx

0
X (y space)(y space)

00

x0 x0

Figure 5.1: Stabilization at an equilibrium point x0 for u = u0. (a) The vector field ẋ = g(x,u)
around x0 is mapped into a vector field ẏ = g̃(y,u) around the origin y = 0 of Tx0X . This
vector field is action varying in fact, but we draw it for u = u0. (b) Using LQR techniques, we
can design a feedback law to stabilize the system in y coordinates at y = 0. This law makes the
integral curves of the closed-loop system locally convergent to y = 0, so the original system will
converge to x = x0.

which we compactly write as

ẏ = g̃(y,u). (5.28)

Note now that, since x0 gets mapped into y = 0 by Eq. (5.26), our goal has turned into

stabilizing the system in Eq. (5.28) at the origin y = 0 of R
dX (Fig. 5.1). Since we wish

asymptotic convergence to y = 0, we are in the context of infinite-horizon optimal control, so

we set tf to infinity in Eq. (5.22). Moreover, by using the fact that y = U⊤ x̄, Eq. (5.22) can be

written in terms of the y coordinates as follows

J =

∫ ∞

0

(

y⊤Q̃ y + ū⊤R ū
)

dt, (5.29)

where Q̃ = U⊤QU .

5.4 Linear Quadratic Regulators 131

To obtain an LQR controller, we linearize Eq. (5.28) around y = 0 and u = u0. The lin-

earized system has a form similar to the one we derived in Section 3.5.2 for the LQR steering

method, but now the Taylor expansion of Eq. (5.28) is

ẏ ≈ g̃(0,u0) +
∂g̃

∂y

∣
∣
∣
∣
y=0
u=u0

︸ ︷︷ ︸

A

(y − 0) +
∂g̃

∂u

∣
∣
∣
∣
y=0
u=u0

︸ ︷︷ ︸

B

(u− u0)
︸ ︷︷ ︸

ū

,

where g̃(0,u0) = 0 because y = 0 is an equilibrium point for u = u0. In y coordinates, thus,

the linearized system takes the form

ẏ = Ay +Bū. (5.30)

As in Section 3.5.2, the A and B matrices can be computed as

A = U⊤ ∂g

∂x
U ,

B = U⊤ ∂g

∂u
,

the only difference being that ∂g
∂x and ∂g

∂u must now be evaluated at x0 and u0.

From the results presented in Section 5.4, the optimal control that minimizes the cost in

Eq. (5.29) for the system in Eq. (5.30) is given by

u = u0 −K y,

which, using Eq. (5.26), can be written in terms of the x variables as

u = u0 −KU⊤ (x− x0).

Since we are solving an infinite-horizon control problem, the solution of Eq. (5.25) boils down

to solving for S the algebraic Riccati equation [66]

0 = SA+A⊤S − SBR−1B⊤S + Q̃,

which can be done using generalized eigenvalue methods [122].

132 Trajectory Tracking

(a) (b)

Tx0(t1)X
Tx0(t1)X

Tx0(t2)X Tx0(t2)X

Tx0(t3)X
Tx0(t3)X

x
0(t

1)
x0(t1)

x
0(t

2) x
0(t

2)

x
0(t

3)

x
0(t

3)

X
X

t t

x0(t) x0(t)

Figure 5.2: Stabilization of a given trajectory x0(t). (a) Without a feedback law, the vector field
ẏ = g̃(y,u, t) may be divergent from y = 0 at each time t ∈ [0, tf] for u = u0(t). Thus, the
slightest perturbation may move the robot away from x0(t). (b) Our control problem boils down
to designing a feedback law u = π(y, t) such that the integral curves of the closed loop system
ẏ = g̃(y,π(y, t), t) are all convergent to the desired trajectory.

5.4.2 Trajectory Stabilization

Now consider the general case of stabilizing an arbitrary trajectory x0(t),u0(t). The problem

is similar to the one in the earlier section, but now x0 and u0 are time-varying, so the tangent

space basis U and the mappings ϕ and ψ will also be time-varying. In what follows, thus, we

will write U(t), ϕ(x, t), and ψ(y, t) respectively. In particular, the map y = ϕ(x, t) will be given

by

y = U(t)⊤ (x− x0(t)), (5.32)

so its time derivative will now be

ẏ = U̇(t)⊤
(
x− x0(t)

)
+U(t)⊤

(
ẋ− ẋ0(t)

)
. (5.33)

5.4 Linear Quadratic Regulators 133

By applying the usual substitutions we get

ẏ = U̇(t)⊤
(
ψ(y, t)− x0(t)

)
+ U(t)⊤

(
g(ψ(y, t),u)− g(x0(t),u0(t))

)
,

so the system in y coordinates takes the form

ẏ = g̃(y,u, t). (5.34)

Note that, since Eq. (5.32) maps x = x0(t) to y = 0 for all t, our control problem boils down to

stabilizing the system in Eq. (5.34) at y = 0 for t ∈ [0, tf] (Fig. 5.2). Note also that, since tf is

fixed now (it is the total trajectory time) we have to design a finite-horizon LQR controller. In y

coordinates, the trajectory cost in Eq. (5.22) will be

J =

∫ tf

0

(

y(t)⊤Q̃(t) y(t) + ū(t)⊤R ū(t)
)

dt, (5.35)

where Q̃(t) = U(t)⊤QU(t), and the linearization of Eq. (5.33) about
(
x0(t),u0(t)

)
will result

in

ẏ ≈ A(t) y +B(t) ū, (5.36)

where

A(t) =
∂g̃

∂y
= U̇(t)⊤ U(t) +U(t)⊤

∂g

∂x
U(t),

B(t) =
∂g̃

∂u
= U(t)⊤

∂g

∂u
.

(5.37a)

From the results in Section 5.4, the optimal control that minimizes the cost in Eq. (5.35) for

the system in Eq. (5.36) is then given by

ū(t) = −K(t) y,

or, equivalently,

u(t) = u0(t)−K(t) y,

which in terms of the x variables results in the control law

u = u0(t)−K(t) U(t)⊤
(
x− x0(t)

)
.

134 Trajectory Tracking

A final point must be noted regarding the computation of U(t) and U̇(t) needed to obtain

A(t) in Eq. (5.37a). Recall from Section 4.6.3 that the tangent space basis U(t) could be com-

puted from a QR decomposition of Fx(t). However, this approach does not guarantee that U(t)

is differentiable, which is needed to obtain U̇(t) using, for instance, automatic differentiation.

Thus, similarly to Section 4.6.3, we use the Gram-Schmidt orthonormalization to compute a

differentiable basis U(t). To this end, we first compute U(0) from a QR decomposition of the

Jacobian Fx(0) at time 0. Second, if we consider two consecutive time instants tk−1 and tk,

we obtain U(tk) by applying the Gram-Schmidt orthonormalization to U(tk−1) with respect to

Fx(tk), as explained in Section 4.5.2. Since two consecutive states x(tk−1) and x(tk) are always

close to each other, this process is well-defined and yields continuous smooth values for U(t).

The time derivative of these values can thus be computed using finite differences in the end.

5.4.3 Integral Action

In principle, the LQR controllers presented in Sections 5.4.1 and 5.4.2 would be sufficient to

stabilize an equilibrium point or a trajectory, but this is only true if the model in Eq. (5.1b) is

accurate. In practice, there will be uncertainties in the system parameters that will result in

steady-state errors. To eliminate these errors, an integral action can be incorporated as follows

to the LQR formulation. We first define the extended state ye = (y,yi), where

yi =

∫ tf

0
C (x− x0(t))

︸ ︷︷ ︸

x̄0(t)

dt (5.38)

and C is an dC × nx matrix selecting the dC desired components of the error signal x̄(t). Then,

we note that Eq. (5.38) can be written in first-order form as

ẏi = C (x− x0(t)) = C (ψ(y, t)− x0(t)) ,

which can be linearized at y = 0 to obtain

ẏi ≈ C
∂ψ(y, t)

∂y
y, (5.39)

where, as explained in Section 3.5.2,

∂ψ(y, t)

∂y
= U(t).

5.5 Examples 135

Third, we can combine Eqs. (5.36) and (5.39) to write the extended linearized system

ẏe =

[

A(t) 0

C U(t) 0

]

︸ ︷︷ ︸

Ae(t)

[

y

yi

]

︸ ︷︷ ︸
ye

+

[

B(t)

0

]

︸ ︷︷ ︸

Be(t)

ū, (5.40)

where Ae and Be are referred to as the extended linearized matrices. Finally, we find the

optimal control policy that minimizes the following extended cost for the system in Eq. (5.40)

Je =

∫ tf

0

(

y(t)⊤Q̃(t) y(t) + yi(t)
⊤Q̃i yi(t) + ū(t)

⊤R ū(t)
)

dt, (5.41)

where Q̃i is a positive-definite matrix penalizing deviations from the integral state yi. From the

results in Section 5.4, such a policy is given by

ū = −
[

K(t) Ki(t)
]

︸ ︷︷ ︸

Ke(t)

[

y

yi

]

︸ ︷︷ ︸
ye

,

or equivalently by

u = u0(t)−K(t) y −Ki(t) yi,

which in terms of the x variables results in the control law

u = u0(t)−K(t) U(t)⊤
(
x− x0(t)

)
−Ki(t) yi.

5.5 Examples

We next illustrate the behavior of the computed-torque and LQR controllers on stabilizing an

equilibrium point and a trajectory in the five-bars robot of Fig. 3.19. In the former controller, we

have chosen the motor angles q1 and q5 for the θ coordinates in Eq. (5.8). For both controllers,

we show the effect of forward singularities, model errors, and disturbances.

136 Trajectory Tracking

CT with actuated joint control LQR without integral action LQR with integral action

Reference state

Wrong
final state

Final state has
small error

Final state is
the reference state

Singularity locus

Figure 5.3: Stabilization of an equilibrium point with the computed-torque and LQR controllers.
In all cases the robot must reach the reference state shown in white, while counteracting model
errors (the gray load of the end-effector is not accounted for in the model) and force distur-
bances applied along the black arrow. The computed-torque controller fails not only at a for-
ward singularity, but close to it too. As a result, the full reference state cannot be recovered as
the feedback law is only able to control the actuated-joint coordinates. The LQR controller with-
out integral action is robust to forward singularities, but still presents steady-state errors due to
model errors. Finally, the LQR controller with integral action stabilizes the system precisely as
it is robust to forward singularities, disturbances and model uncertainties. An animation of the
simulated motions can be seen in youtu.be/-zVl6B5mg-g.

5.5.1 Stabilization of an Equilibrium Point

In this task, the controller has to keep a load of 0.5 [Kg] at an upright position while compen-

sating gravity (Fig. 5.3). The reference state (depicted in white) is an unstable equilibrium

point near the forward singularity locus (depicted in red). During the simulation, we apply a

disturbance force of 7 [N] to the end-effector every 3 seconds and maintain it during 1 second

(black arrow). Moreover, we simulate the effect of model errors by disregarding the load of the

end-effector in the controller model.

The end state of the stabilization task is depicted in black in Fig. 5.3. Due to model errors, the

closeness to forward singularities, and the disturbances, the computed-torque controller (Fig.

5.3, left) fails to control the reference state. In fact, since we only control an independent set of

coordinates (the actuated joints angles in this case), the system converges to a final state with

the same actuated coordinates but different values for the remaining coordinates. In contrast,

https://youtu.be/-zVl6B5mg-g

5.5 Examples 137

0 5 10

-2

-1

0

1

0 5 10

-2

-1

0

1

0 5 10

-2

-1

0

1

0 5 10

-5

0

5

0 5 10

-5

0

5

0 5 10

-5

0

5

q
(t
)

[r
ad

]
u
(t
)

[N
m

]

t [s]t [s]t [s]

u0u0u0

q0q0q0

CT with actuated joint control LQR without integral action LQR with integral action

DisturbanceDisturbance
Disturbance

DisturbanceDisturbance
Disturbance

Singularity

Singularity

Figure 5.4: Stabilization of an equilibrium point. The plots correspond to the task in Fig. 5.3
subject to disturbances applied during the grey time windows indicated. The CT controller
yields very large control actions even near a forward singularity (red dashed line) and fails to
stabilize the reference state (dotted line). Instead, it stabilizes a different state, as it is only able
to control the actuated joint coordinates. The LQR controller takes into account the full robot
state but presents steady state errors due to model uncertainties. Finally, the integral action in
the LQR controller removes these steady state errors.

the LQR controller (Fig. 5.3, middle) is robust to forward singularities and, as it controls the full

state through the y coordinates, it can keep the robot near the reference state. Note however

that with this controller we can still see steady-state errors due to model errors, as the reference

and final states are slightly different. To circumvent this issue, we add an integral action to the

LQR controller (Fig. 5.3, right), which allows us to finally converge to the reference state.

Fig. 5.4 shows the joint positions q(t) and actions u(t) corresponding to the stabilization

task in Fig. 5.3. The reference signals q0(t) and u0(t) are the dotted lines, while q(t) and u(t)

are the colored lines. Disturbances are applied during the gray time windows indicated. Due to

the closeness to the forward singularity locus, the computed-torque controller (Fig. 5.4, left) is

not able to compensate the first disturbance and produces an unbounded action when there is

a singularity crossing at 1 seconds (red vertical line). As a result, the controller is only able to

stabilize the actuated coordinates (yellow and light blue lines) near their reference value, while

138 Trajectory Tracking

0 0.5 1 1.5 2

-2

0

2

4

0 0.5 1 1.5 2

-2

0

2

4

0 0.5 1 1.5 2

-2

0

2

0 0.5 1 1.5 2

-2

0

2

q0(t)q0(t)

u0(t)u0(t)
DisturbanceDisturbance

DisturbanceDisturbance

t [s]t [s]

q
(t
)

[r
ad

]
u
(t
)

[N
m

]

CT with actuated joint control LQR with integral action

Figure 5.5: Stabilization of a singularity-free trajectory. The robot is subject to disturbances
applied at the end-effector during the gray time span, and model errors (due to the load be-
ing neglected). Both the computed-torque and LQR controller with integral action are able
to stabilize a singularity-avoidance trajectory. An animation of the motion can be seen in
youtu.be/cmqpQOc9lMg.

the remaining coordinates never converge to their reference value. In contrast, both variants

of the LQR controller stabilize the full robot state (Fig. 5.4 middle and right). Note that the

integral action (Fig. 5.4, right) also eliminates the steady-state error.

The convergence rate of the CT controller can be adjusted by changing Kp and Kv, while

the convergence rate of the LQR controllers can be tuned by changing the Q, Q̃i and R in

Eqs. (5.22) and (5.41). The plot of Fig. 5.4 was obtained with

Kp = 500I2, Kv = 50I2

and

Q =

[

250I5 0

0 50I5

]

, Q̃i = 200I2, R = I2.

https://youtu.be/cmqpQOc9lMg

5.5 Examples 139

0 0.5 1 1.5 2 2.5

-15

-10

-5

0

5

10

0 0.5 1 1.5 2 2.5

-15

-10

-5

0

5

10

0 0.5 1 1.5 2 2.5

-5

0

5

0 0.5 1 1.5 2 2.5

-5

0

5

q0(t)q0(t)

u0(t)u0(t)
singularitysingularity

singularitysingularity

disturbancedisturbance

disturbancedisturbance

t [s]t [s]

q
(t
)

[r
ad

]
u
(t
)

[N
m

]

CT with actuated joint control LQR with integral action

Figure 5.6: Stabilization of a singularity-crossing trajectory. In both cases the robot is subject to
disturbances applied at the end-effector during the gray time spans, and to model errors due to
neglecting the end-effector load. The computed-torque controller fails when crossing forward
singularities (red dashed vertical lines) and generates unbounded actions that can be dangerous
for the mechanism structure (left bottom plot). Instead, the LQR controller with integral action
is robust to forward singularities while using moderate actions. An animation of the motion can
be seen in youtu.be/ZUb0rhmmFgY.

5.5.2 Trajectory Tracking

We next compare the performance of the computed-torque controller with the LQR controller

with integral action on tracking trajectories avoiding and crossing forward singularities (Fig. 5.5

and 5.6, respectively). We use both the planner and the optimizer in Chapters 3 and 4 to obtain

the reference trajectories x0(t) and u0(t) that minimize
∫ tf
0 u0(t)

⊤u0(t)dt. The trajectories

correspond to the weight-throwing task presented in Section 3.9.2.

In both simulations we include force disturbances, which are applied to the end-effector

and take place during the gray time windows indicated, and model errors, which are caused by

neglecting the weight of the load in the robot model. The time instants in which the singularities

are crossed are indicated with a red dashed vertical line. The reference trajectories for all

angles qi are drawn with dotted lines. In the singularity-free trajectory of Fig. 5.5, both the

computed-torque and LQR controllers are able to track the trajectory. Note that u(t) is not the

same as u0(t) due to the model errors. Instead, in the singularity-crossing trajectory of Fig. 5.6

https://youtu.be/ZUb0rhmmFgY

140 Trajectory Tracking

the computed-torque controller fails as soon as it is perturbed close to a singularity, at t = 0.7

seconds. At this configuration, the inverse dynamic problem produces unbounded torques, so

the control of the robot is lost, and the rest of the trajectory cannot be tracked anymore. The

computed-torque controller has been implemented in the actuated joint space, and thus q1(t)

and q5(t) can reliably be tracked, but note that the remaining angles evolve differently because

of their bifurcations at forward singularities. On the contrary, the LQR controller with integral

action is, as we see, quite robust to disturbances, model uncertainties, and singularity crossings.

Even if a disturbance is applied when the system is close to a singularity, the LQR controller is

able to converge to the desired trajectory x0(t).

6
Conclusions

This work has addressed the motion planning and control problems for robotic systems with

loop-closure constraints. Such constraints appear frequently in the challenging scenarios where

robots are due to operate nowadays, and significantly complicate the planning and execution of

motions. Most of the existing motion planning and control algorithms are explicitly designed for

systems whose configuration coordinates are independent. Thus, they are not directly applicable

to systems with loop-closure constraints. In this thesis, this issue has been overcome by resorting

to coordinates that locally parameterize the state space manifold of such systems. By construct-

ing such coordinates around selected states, we have been able to provide 1) a sampling-based

planner that uses an efficient steering method based on linear quadratic regulators, 2) trajectory

optimization techniques that keep the trajectory on the manifold, and 3) an approach to control

the robot motions along the planned trajectories, while being robust to perturbations or model

inaccuracies. Thus, this thesis provides a principled and comprehensive toolbox for the planning

and control of robot motions under loop-closure constraints.

To develop a sampling-based planner for closed-chain robots we had to address three major

hurdles: the generation of random samples on the state-space manifold; the accurate simula-

tion of robot trajectories within such manifold; and the steering of the system towards random

states. The three issues have been tackled by constructing an atlas of the manifold in parallel to

an RRT. The result is a planner that can explore the state space manifold in an effective manner,

while also respecting the dynamic constraints imposed by the equations of motion and the force

bounds of the robot. In its fully randomized version (i.e., using randomized steering), the plan-

ner is probabilistically complete. We also conjecture it to be probabilistically complete if LQR

steering is used, but proving this point has remained elusive so far. The examples included in

this work show that the planner can solve significantly complex problems that require the com-

putation of swinging motions between start and goal states, under limited motor torques. The

planner can also be used in systems where limits on the constraint forces have to be fulfilled, like

142 Conclusions

in cable-suspended parallel robots. In these robots we have seen that the use of dynamic motions

enlarges their workspace substantially, allowing them to reach points that could not be attained

otherwise. Moreover, since the proposed planner relies on the simulation of robot actions, it can

traverse forward singularities without any trouble. However, these special configurations may

be problematic if the planned motions are to be stabilized with traditional computed-torque con-

trollers. Such controllers are powerful because they define global basins of attraction towards

the desired trajectories and, when using them, it suffices to sense the positions and velocities

of the actuators in order to keep track of the full robot state. However, such controllers gener-

ate unbounded torques near forward singularities, and so cannot be used to track trajectories

across such configurations. To take advantage of the benefits of these controllers while avoiding

their drawbacks, we have proposed an extension of the planner that computes dynamic trajec-

tories avoiding forward singularities. To achieve so, the planner explores the extended state

space of singularity-free states that satisfy the loop-closure constraints. The joint consideration

of obstacle- and singularity-avoidance, and force and joint limit constraints makes our planner

applicable to challenging scenarios.

The trajectories obtained with the planner are both kinematically and dynamically feasible,

but not optimal in any particular sense. For this reason, we have developed trajectory optimiza-

tion methods that improve the planner trajectories according to a Lagrangian cost function. In

particular, we have shown that existing trajectory optimization methods may generate trajecto-

ries that significantly drift away from the state space manifold. Such a drift typically translates

into difficulties when trying to control the trajectory on a real robot, eventually invalidating the

designed trajectories. To address this issue, we introduced two optimization methods that do

not incur in drift along the obtained trajectories. The first method is simpler, but it only cancels

the drift at the discretization points of the trajectory. In contrast, the second method is more

costly, but it obtains a drift-free, continuous-time trajectory.

Finally, to robustly execute the obtained trajectories, we have extended the LQR controller

to deal with closed-kinematic chains. To achieve so we have used the tangent space parame-

terization, which allows formulating the LQR controller in independent coordinates. With this

technique, we are able to control the system across forward singularities, whereas, as men-

tioned, existing computed-torque controllers cannot. Specifically, we are able to traverse such

singularities under significant disturbances at the end-effector. In contrast, computed-torque

controllers easily deviate from the desired trajectory at such critical configurations.

Several points should be considered in further extensions of the work we present. In the plan-

ning process, the metric employed to measure the distance between two states certainly deserves

consideration. This is a general concern in any motion planner, but it is more difficult to address

in our context as the metric should consider the vector flows defined by the equations of motion,

143

but also the curvature of the state space manifold defined by the loop-closure constraints. Using

a metric derived from geometric insights provided by such constraints might result in substan-

tial performance improvements. The optimized trajectory, in turn, is only locally-optimal in the

set of trajectories homotopic to the initial guess, i.e., the one obtained with the planner. To

obtain a globally-optimal trajectory one should resort to asymptotically-optimal planners like

those in [60, 61]. In this context, the optimization methods introduced in this thesis could be

used as a steering method for the planner, so the local connections could comply with the kine-

matic and dynamic constraints of the problem, while also being optimal under the considered

cost function. Such locally-optimal connections would give rise to globally-optimal trajectories

when used in the context of asymptotically-optimal planners. Finally, an effort should be made

to validate the proposed motion generation pipeline on real robots.

From a wider perspective, the work presented in this thesis could be continued in different

directions. For instance, one might consider situations in which the loop-closure constraints

vary over time. This happens in walking robots or in robotic hands that perform fine object

manipulations. Since our methods assume such constraints to be permanent, they should be

extended with procedures to determine the constraint sequences that are necessary to fulfill a

given task [123]. Two additional problems have to be dealt with in this case: eventual impacts

that may appear when establishing a new contact and non-holonomic constraints needed to

model rolling contacts. While the former may involve substantial research, the latter should

easily fit in our algorithms. Non-holonomic constraints are formalized as an additional set of

velocity constraints that can be directly considered in the proposed optimization methods. In

the fully randomized version of the planner, moreover, such constraints just limit the kind of

trajectories that can be simulated from a given state. The consideration of such constraints in the

LQR steering method, however, would require a more detailed analysis. We also could extend

our methods by considering the possibility of planning in environments with moving obstacles.

If the dynamics of the obstacles is known, the extension is relatively straightforward. Otherwise,

the dynamics must be learned during planning, and the problem is much challenging. Learning

can also play a relevant role if the kinematic and dynamic models are not known beforehand,

but must be estimated on-line. We certainly think that all these points deserve further attention.

A
List of Publications

The following is a list of publications resulting from the research reported in this thesis:

Accepted journal papers

[J1] R. Bordalba, L. Ros, and J.M. Porta. “A randomized kinodynamic planner for closed-chain
robotic systems,” IEEE Transactions on Robotics, Vol. 37, No. 1, pp. 99-115, 2021.

Submitted journal papers

[J2] R. Bordalba, T. Schoels, L. Ros, J. M. Porta, and M. Diehl. “Direct Collocation Methods for
Trajectory Optimization in Constrained Robotic Systems”, IEEE Transactions on Robotics,
Submitted, 2020.

Journal papers in preparation

[J3] R. Bordalba, J. M. Porta, and L. Ros. “A single-structure controller for singularity-crossing
trajectories in closed-chain robots”.

[J4] R. Bordalba, J. M. Porta, and L. Ros. “Planning and control of singularity-avoiding motions
in closed-chain robots”.

Accepted conference papers

[C1] R. Bordalba, L. Ros, and J. M. Porta. “Randomized planning of dynamic motions avoiding
forward singularities,” International Symposium on Advances in Robot Kinematics, Bologna,
Italy, pp. 170-178, 2019.

[C2] R. Bordalba, J. M. Porta, and L. Ros. “A singularity-robust LQR controller for paral-
lel robots,” IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid,
Spain, pp. 270-276, 2018.

[C3] R. Bordalba, L. Ros, and J. M. Porta. “Randomized kinodynamic planning for constrained
systems,” IEEE International Conference on Robotics and Automation, Brisbane, Australia,
pp. 7079-7086, 2018.

[C4] R. Bordalba, L. Ros, and J. M. Porta. “Randomized kinodynamic planning for cable-
suspended parallel robots,” International Conference on Cable-Driven Parallel Robots, Que-
bec, Canada, pp. 195-206, 2017.

References

[1] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,” Journal of the

ACM, vol. 40, no. 5, pp. 1048—-1066, 1993.

[2] S.-H. Lee, J. Kim, F. C. Park, M. Kim, and J. E. Bobrow, “Newton-type algorithms for
dynamics-based robot movement optimization,” IEEE Transactions on Robotics, vol. 21,
no. 4, pp. 657–667, 2005.

[3] I. Bonev, “Delta parallel robot - the story of success,” Newsletter, available at

http://www.parallemic.org, 2001.

[4] S. Feng, E. Whitman, X. Xinjilefu, and C. G. Atkeson, “Optimization based full body
control for the atlas robot,” in IEEE-RAS International Conference on Humanoid Robots,
pp. 120–127, 2014.

[5] M. A. Diftler, J. S. Mehling, M. E. Abdallah, N. A. Radford, L. B. Bridgwater, A. M. Sanders,
R. S. Askew, D. M. Linn, J. D. Yamokoski, F. A. Permenter, B. K. Hargrave, R. Platt, R. T.
Savely, and R. O. Ambrose, “Robonaut 2 - The first humanoid robot in space,” in IEEE

International Conference on Robotics and Automation, pp. 2178–2183, 2011.

[6] R. P. Hoyt, “SpiderFab: An architecture for self-fabricating space systems,” in AIAA Space

2013 Conference and Exposition, p. 5509, 2013.

[7] J. M. Porta, L. Jaillet, and O. Bohigas, “Randomized path planning on manifolds based on
higher-dimensional continuation,” The International Journal of Robotics Research, vol. 31,
no. 2, pp. 201–215, 2012.

[8] L. Jaillet and J. M. Porta, “Path planning with loop closure constraints using an atlas-
based RRT,” International Symposium on Robotics Research, 2011.

[9] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by rapidly exploring
manifolds,” IEEE Transactions on Robotics, vol. 29, no. 1, pp. 105–117, 2013.

[10] K. Hauser, “Fast interpolation and time-optimization with contact,” The International

Journal of Robotics Research, vol. 33, no. 9, pp. 1231–1250, 2014.

[11] Q.-C. Pham and O. Stasse, “Time-optimal path parameterization for redundantly actuated
robots: A numerical integration approach,” IEEE/ASME Transactions on Mechatronics,
vol. 20, no. 6, pp. 3257–3263, 2015.

[12] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for motion planning
with constraints,” Annual Review of Control, Robotics, and Autonomous Systems, vol. 1,
pp. 159–185, 2018.

[13] S. M. LaValle, Planning Algorithms. New York: Cambridge University Press, 2006.

[14] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “STOMP: Stochastic
trajectory optimization for motion planning,” in IEEE International Conference on Robotics

and Automation, pp. 4569–4574, 2011.

148 REFERENCES

[15] N. Ratliff, M. Zucker, J. A. Bagnell, S. S. Srinivasa, N. Ratliff, A. D. Dragan, M. Pivtoraiko,
M. Klingensmith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Gradient
optimization techniques for efficient motion planning,” in IEEE International Conference

on Robotics and Automation, no. 9-10, pp. 489–494, 2013.

[16] J. Schulman, D. Y, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and
P. Abbeel, “Motion planning with sequential convex optimization and convex collision
checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270,
2014.

[17] F. Aghili, “A unified approach for inverse and direct dynamics of constrained multibody
systems based on linear projection operator: applications to control and simulation,” IEEE

Transactions on Robotics, vol. 21, no. 5, pp. 834–849, 2005.

[18] J. G. de Jalón and E. Bayo, Kinematic and dynamic simulation of multibody systems.
Springer Verlag, 1993.

[19] O. Bohigas, M. Manubens, and L. Ros, Singularities of robot mechanisms: Numerical

computation and avoidance path planning, vol. 41 of Mechanisms and Machine Science.
Springer, 2017.

[20] F. C. Park and J. W. Kim, “Singularity Analysis of Closed Kinematic Chains,” ASME Journal

of Mechanical Design, vol. 121, no. 1, pp. 32–38, 1999.

[21] D. Zlatanov, Generalized Singularity Analysis of Mechanisms. PhD thesis, University of
Toronto, 1998.

[22] O. Bohigas, M. Manubens, and L. Ros, “Singularities of Non-redundant Manipulators: A
Short Account and a Method for their Computation in the Planar Case,” Mechanism and

Machine Theory, vol. 68, pp. 1–17, 2013.

[23] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning, and Control. Cambridge
University Press, 2017.

[24] R. M. Murray, Z. Li, H. Kong, and S. S. Sastry, A Mathematical Introduction to Robotic

Manipulation. CRC Press, 1994.

[25] E. Hairer, “Geometric integration of ordinary differential equations on manifolds,” BIT

Numerical Mathematics, vol. 41, no. 5, pp. 996–1007, 2001.

[26] E. Hairer, C. Lubich, and G. Wanner, “Geometric numerical integration: structure-
preserving algorithms for ordinary differential equations,” 2006.

[27] F. A. Potra and W. C. Rheinboldt, “On the Numerical Solution of Euler-Lagrange
Equations∗,” Mechanics of Structures and Machines, vol. 19, no. 1, pp. 1–18, 1991.

[28] E. J. Haug, “An Ordinary Differential Equation Formulation for Multibody Dynamics:
Nonholonomic Constraints,” Journal of Computing and Information Science in Engineering,
vol. 17, no. 1, 2016.

REFERENCES 149

[29] E. J. Haug, “Multibody Dynamics on Differentiable Manifolds,” Journal of Computational

and Nonlinear Dynamics, vol. 16, no. 4, 2021.

[30] F. A. Potra and J. Yen, “Implicit numerical integration for Euler-Lagrange equations via
tangent space parametrization,” Journal of Structural Mechanics, vol. 19, no. 1, pp. 77–
98, 1991.

[31] L. N. Trefethen and D. Bau, Numerical Linear Algebra. SIAM, 1997.

[32] G. H. Golub and C. F. V. Loan, Matrix Computations. John Hopkins University Press, 2013.

[33] R. Featherstone, Rigid body dynamics algorithms. Springer, 2014.

[34] R. Featherstone, Robot dynamics algorithms. Kluwer, Norwell, MA, 1987.

[35] R. Featherstone and D. E. Orin, “Dynamics,” in Springer Handbook of Robotics, pp. 37–66,
Springer, 2016.

[36] F. C. Park, B. Kim, C. Jang, and J. Hong, “Geometric algorithms for robot dynamics: A
tutorial review,” Applied Mechanics Reviews, vol. 70, no. 1, 2018.

[37] J. Duffy, Statics and kinematics with applications to robotics. Cambridge University Press,
1996.

[38] J. K. Davidson and K. H. Hunt, Robots and Screw Theory: Applications of Kinematics and

Statics to Robotics. Oxford University Press, 2004.

[39] R. Featherstone, “The acceleration vector of a rigid body,” The International Journal of

Robotics Research, vol. 20, pp. 841–846, nov 2001.

[40] J.-P. Samin and P. Fisette, Symbolic modeling of multibody systems. Springer, 2003.

[41] S. M. Lavalle and J. J. Kuffner, “Randomized kinodynamic planning,” International Jour-

nal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[42] B. Kim, T. T. Um, C. Suh, and F. C. Park, “Tangent bundle RRT: A randomized algorithm
for constrained motion planning,” Robotica, vol. 34, no. 1, pp. 202–225, 2016.

[43] Z. Kingston, M. Moll, and L. E. Kavraki, “Decoupling constraints from sampling-based
planners,” in International Symposium of Robotics Research, 2017.

[44] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control of robotic manipula-
tors along specified paths,” The International Journal of Robotics Research, vol. 4, no. 3,
pp. 3–17, 1985.

[45] K. Shin and N. McKay, “Minimum-time control of robotic manipulators with geometric
path constraints,” IEEE Transactions on Automatic Control, vol. 30, no. 6, pp. 531–541,
1985.

[46] F. Pfeiffer and R. Johanni, “A concept for manipulator trajectory planning,” IEEE Journal

on Robotics and Automation, vol. 3, no. 2, pp. 115–123, 1987.

150 REFERENCES

[47] J. J. E. Slotine and H. S. Yang, “Improving the efficiency of time-optimal path-following
algorithms,” IEEE Transactions on Robotics and Automation, vol. 5, no. 1, pp. 118–124,
1989.

[48] Z. Shiller and H.-H. Lu, “Computation of path constrained time optimal motions with
dynamic singularities,” Journal of Dynamic Systems, Measurement, and Control, vol. 114,
no. 1, pp. 34–40, 1992.

[49] Q.-C. Pham, “A general, fast, and robust implementation of the time-optimal path pa-
rameterization algorithm,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1533–1540,
2014.

[50] Q.-C. Pham, S. Caron, P. Lertkultanon, and Y. Nakamura, “Admissible velocity propaga-
tion: Beyond quasi-static path planning for high-dimensional robots,” The International

Journal of Robotics Research, vol. 36, no. 1, pp. 44–67, 2017.

[51] Q.-C. Pham, S. Caron, and Y. Nakamura, “Kinodynamic planning in the configuration
space via admissible velocity propagation,” in Proceedings of Robotics: Science and Sys-

tems, 2013.

[52] T. Kunz and M. Stilman, “Probabilistically complete kinodynamic planning for robot ma-
nipulators with acceleration limits,” in IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 3713–3719, 2014.

[53] A. Perez, R. Platt, G. Konidaris, L. Kaelbling, and T. Lozano-Perez, “LQR-RRT*: Opti-
mal sampling-based motion planning with automatically derived extension heuristics,” in
IEEE International Conference on Robotics and Automation, pp. 2537–2542, 2012.

[54] R. Tedrake, “LQR-Trees: Feedback motion planning on sparse randomized trees,” in
Robotics: Science and Systems, 2009.

[55] G. Goretkin, A. Perez, R. Platt, and G. Konidaris, “Optimal sampling-based planning for
linear-quadratic kinodynamic systems,” in IEEE International Conference on Robotics and

Automation, pp. 2429–2436, 2013.

[56] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically optimal motion
planning for robots with linear dynamics,” in IEEE International Conference on Robotics

and Automation, pp. 5054–5061, 2013.

[57] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path planning for linkages with
closed kinematic chains,” IEEE Transactions on Robotics and Automation, vol. 17, no. 6,
pp. 951–959, 2001.

[58] M. Stilman, “Task constrained motion planning in robot joint space,” in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pp. 3074–3081, 2007.

[59] D. Berenson, S. Srinivasa, and J. J. Kuffner, “Task space regions: A framework for
pose-constrained manipulation planning,” The International Journal of Robotics Research,
vol. 30, no. 12, pp. 1435–1460, 2011.

REFERENCES 151

[60] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-based kinodynamic
planning,” The International Journal of Robotics Research, vol. 35, no. 5, pp. 528–564,
2016.

[61] K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible kinodynamic plan-
ning in a state-cost space,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1431–1443,
2016.

[62] L. R. Petzold, “Numerical solution of differential-algebraic equations in mechanical sys-
tems simulation,” Physica D: Nonlinear Phenomena, vol. 60, no. 1–4, pp. 269–279, 1992.

[63] W. Blajer, “Methods for constraint violation suppression in the numerical simulation of
constrained multibody systems – A comparative study,” Computer Methods in Applied

Mechanics and Engineering, vol. 200, no. 13-16, pp. 1568–1576, 2011.

[64] J. M. Lee, Introduction to Smooth Manifolds. Springer, 2001.

[65] M. E. Henderson, “Multiple parameter continuation: computing implicitly defined k-
manifolds,” International Journal of Bifurcation and Chaos, vol. 12, no. 3, pp. 451–476,
2002.

[66] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley & Sons, 2012.

[67] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi – A software
framework for nonlinear optimization and optimal control,” Mathematical Programming

Computation, vol. 11, no. 1, pp. 1–36, 2019.

[68] D. P. Bertsekas, Dynamic programming and optimal control. Athena Scientific, 2005.

[69] J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to single-query path
planning,” in IEEE Int. Conf. on Robotics and Automation, vol. 2, pp. 995–1001, 2000.

[70] J. M. Porta and L. Jaillet, “Sampling Strategies for Path Planning under Kinematic Con-
straints,” CoRR, vol. abs/1407.2, 2014.

[71] A. E. Bryson and Y.-C. Ho, Applied Optimal Control: Optimization, Estimation and Control.
Taylor Francis, 1975.

[72] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin, “Probabilistic com-
pleteness of RRT for geometric and kinodynamic planning with forward propagation,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 277–283, 2019.

[73] L. Jaillet and J. M. Porta, “Efficient Asymptotically-optimal Path Planning on Manifolds,”
Robotics and Autonomous Systems, vol. 61, no. 8, pp. 797–807, 2013.

[74] S. Briot and V. Arakelian, “Optimal force generation in parallel manipulators for passing
through the singular positions,” The International Journal of Robotics Research, vol. 27,
no. 8, pp. 967–983, 2008.

[75] M. Özdemir, “Removal of singularities in the inverse dynamics of parallel robots,” Mech-

anism and Machine Theory, vol. 107, pp. 71–86, 2017.

152 REFERENCES

[76] J. M. Porta, L. Ros, O. Bohigas, M. Manubens, C. Rosales, and L. Jaillet, “The Cuik Suite:
Analyzing the motion of closed-chain multibody systems,” IEEE Robotics and Automation

Magazine, vol. 21, no. 3, pp. 105–114, 2014.

[77] F. Bourbonnais, P. Bigras, and I. A. Bonev, “Minimum-time trajectory planning and control
of a pick-and-place five-bar parallel robot,” IEEE/ASME Transactions on Mechatronics,
vol. 20, no. 2, pp. 740–749, 2015.

[78] J. Albus, R. V. Bostelman, and N. Dagalakis, “The NIST Robocrane,” Journal of Robotic

Systems, vol. 10, no. 5, pp. 709–724, 1993.

[79] O. Bohigas, M. Manubens, and L. Ros, “Planning wrench-feasible motions for cable-driven
hexapods,” IEEE Transactions on Robotics, vol. 32, no. 2, pp. 442–451, 2016.

[80] C. Gosselin, P. Ren, and S. Foucault, “Dynamic trajectory planning of a two-DOF cable-
suspended parallel robot,” in IEEE International Conference on Robotics and Automation,
pp. 1476–1481, 2012.

[81] G. Barrette and C. Gosselin, “Determination of the dynamic workspace of cable-driven
planar parallel mechanisms,” Transactions of the ASME-R-Journal of Mechanical Design,
vol. 127, no. 2, pp. 242–248, 2005.

[82] C. Gosselin and S. Foucault, “Dynamic point-to-point trajectory planning of a two-DOF
cable-suspended parallel robot,” IEEE Transactions on Robotics, vol. 30, no. 3, pp. 728–
736, 2014.

[83] X. Jiang and C. Gosselin, “Dynamic point-to-point trajectory planning of a three-DOF
cable-suspended parallel robot,” IEEE Transactions on Robotics, vol. 32, no. 6, pp. 1550–
1557, 2016.

[84] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen, and A. V. Rao, “Direct trajectory
optimization and costate estimation via an orthogonal collocation method,” Journal of

Guidance, Control, and Dynamics, vol. 29, no. 6, pp. 1435–1440, 2006.

[85] J. T. Betts, “Survey of numerical methods for trajectory optimization,” Journal of Guid-

ance, Control, and Dynamics, vol. 21, no. 2, pp. 193–207, 1998.

[86] M. Kelly, “An introduction to trajectory optimization: How to do your own direct colloca-
tion,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

[87] M. Posa, S. Kuindersma, and R. Tedrake, “Optimization and stabilization of trajectories
for constrained dynamical systems,” IEEE International Conference on Robotics and Au-

tomation, pp. 1366–1373, 2016.

[88] D. Pardo, M. Neunert, A. Winkler, R. Grandia, and J. Buchli, “Hybrid direct collocation
and control in the constraint-consistent subspace for dynamic legged robot locomotion,”
in Robotics: Science and Systems, 2017.

REFERENCES 153

[89] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid
bodies through contact,” The International Journal of Robotics Research, vol. 33, no. 1,
pp. 69–81, 2014.

[90] A. Patel, S. L. Shield, S. Kazi, A. M. Johnson, and L. T. Biegler, “Contact-implicit trajectory
optimization using orthogonal collocation,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 2242–2249, 2019.

[91] M. L. Felis, K. Mombaur, and A. Berthoz, “An optimal control approach to reconstruct
human gait dynamics from kinematic data,” in IEEE-RAS International Conference on Hu-

manoid Robots, pp. 1044–1051, 2015.

[92] W. Xi, Y. Yesilevskiy, and C. D. Remy, “Selecting gaits for economical locomotion of legged
robots,” The International Journal of Robotics Research, vol. 35, no. 9, pp. 1140–1154,
2016.

[93] W. Xi and C. D. Remy, “Optimal gaits and motions for legged robots,” in IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems, pp. 3259–3265, 2014.

[94] R. Bonalli, A. Bylard, A. Cauligi, T. Lew, and M. Pavone, “Trajectory optimization on man-
ifolds: A theoretically-guaranteed embedded sequential convex programming approach,”
in Robotics: Science and Systems, 2019.

[95] S. Gros, M. Zanon, and M. Diehl, “Baumgarte stabilisation over the SO(3) rotation group
for control,” in 2015 54th IEEE Conference on Decision and Control (CDC), pp. 620–625,
IEEE, 2015.

[96] S. Gros, M. Zanon, M. Vukov, and M. Diehl, “Nonlinear MPC and MHE for mechanical
multi-body systems with application to fast tethered airplanes,” IFAC Proceedings Volumes,
vol. 45, no. 17, pp. 86–93, 2012.

[97] M. Erhard, G. Horn, and M. Diehl, “A quaternion-based model for optimal control of an
airborne wind energy system,” ZAMM - Journal of Applied Mathematics and Mechanics /

Zeitschrift für Angewandte Mathematik und Mechanik, vol. 97, no. 1, pp. 7–24, 2016.

[98] J. De Schutter, R. Leuthold, and M. Diehl, “Optimal control of a rigid-wing rotary kite
system for airborne wind energy,” in 2018 European Control Conference (ECC), pp. 1734–
1739, IEEE, 2018.

[99] J. De Schutter, R. Leuthold, T. Bronnenmeyer, R. Paelinck, and M. Diehl, “Optimal control
of stacked multi-kite systems for utility-scale airborne wind energy,” in 2019 IEEE 58th

Conference on Decision and Control (CDC), pp. 4865–4870, IEEE, 2019.

[100] J. Baumgarte, “Stabilization of constraints and integrals of motion in dynamical systems,”
Computer Methods in Applied Mechanics and Engineering, vol. 1, no. 1, pp. 1–16, 1972.

[101] D. Liberzon, Calculus of variations and optimal control theory: a concise introduction.
Princeton university press, 2011.

154 REFERENCES

[102] J. T. Betts, “Practical Methods for Optimal Control and Estimation Using Nonlinear Pro-
gramming,” SIAM Review, 2010.

[103] J.-P. Berrut and L. N. Trefethen, “Barycentric lagrange interpolation,” SIAM review,
vol. 46, no. 3, pp. 501–517, 2004.

[104] B. Jones, Orbit Propagation Using Gauss-Legendre Collocation, pp. AIAA–2012–4967–1–
16. 2012.

[105] J. Nocedal and S. J. Wright, Numerical optimization. Springer Series in Operations Re-
search and Financial Engineering, Science & Business Media, 2006.

[106] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming,” Mathematical programming, vol. 106,
no. 1, pp. 25–57, 2006.

[107] HSL, “A collection of Fortran codes for large-scale scientific computation,” http://www.

hsl. rl. ac. uk.

[108] R. Geraerts and M. H. Overmars, “Creating High-quality Paths for Motion Planning,” The

International Journal of Robotics Research, vol. 26, no. 8, pp. 845–863, 2007.

[109] T. Schoels, L. Palmieri, K. O. Arras, and M. Diehl, “An NMPC approach using convex inner
approximations for online motion planning with guaranteed collision avoidance,” in IEEE

International Conference on Robotics and Automation, pp. 3574–3580, 2020.

[110] Z. Wang and F. H. Ghorbel, “Control of closed kinematic chains using a singularly per-
turbed dynamics model,” Journal of Dynamic Systems, Measurement and Control, Trans-

actions of the ASME, vol. 128, no. 1, pp. 142–151, 2006.

[111] F. H. Ghorbel, O. Chételat, R. Gunawardana, and R. Longchamp, “Modeling and set point
control of closed-chain mechanisms: Theory and experiment,” IEEE Transactions on Con-

trol Systems Technology, vol. 8, no. 5, pp. 801–815, 2000.

[112] A. Codourey, “Dynamic Modeling of Parallel Robots for Computed-Torque Control Im-
plementation,” The International Journal of Robotics Research, vol. 17, no. 12, pp. 1325–
1336, 1998.

[113] W. W. Shang, S. Cong, and Y. Ge, “Adaptive computed torque control for a parallel ma-
nipulator with redundant actuation,” Robotica, vol. 30, no. 3, pp. 457–466, 2012.

[114] S. S. Parsa, R. Boudreau, and J. A. Carretero, “Reconfigurable mass parameters to cross
direct kinematic singularities in parallel manipulators,” Mechanism and Machine Theory,
vol. 85, pp. 53–63, 2015.

[115] H. Cheng, Y. K. Yiu, and Z. Li, “Dynamics and Control of Redundantly Actuated Paral-
lel Manipulators,” IEEE/ASME Transactions on Mechatronics, vol. 8, no. 4, pp. 483–491,
2003.

REFERENCES 155

[116] J. H. Lee, B. J. Yi, S. R. Oh, and I. H. Suh, “Optimal design of a five-bar finger with redun-
dant actuation,” in IEEE International Conference on Robotics and Automation, pp. 2068–
2074, 1998.

[117] C. K. Kevin Jui and Q. Sun, “Path tracking of parallel manipulators in the presence of
force singularity,” Journal of dynamic systems, measurement, and control, vol. 127, no. 4,
pp. 550–563, 2005.

[118] S. K. Ider, “Inverse dynamics of parallel manipulators in the presence of drive singulari-
ties,” Mechanism and Machine Theory, vol. 40, no. 1, pp. 33–44, 2005.

[119] R. B. Hill, D. Six, A. Chriette, S. Briot, and P. Martinet, “Crossing type 2 singularities of
parallel robots without pre-planned trajectory with a virtual-constraint-based controller,”
in IEEE International Conference on Robotics and Automation, pp. 6080–6085, 2017.

[120] G. Pagis, N. Bouton, S. Briot, and P. Martinet, “Enlarging parallel robot workspace
through Type-2 singularity crossing,” Control Engineering Practice, vol. 39, pp. 1–11,
2015.

[121] S. Mason, N. Rotella, S. Schaal, and L. Righetti, “Balancing and walking using full dy-
namics LQR control with contact constraints,” in IEEE-RAS International Conference on

Humanoid Robots, pp. 63–68, 2016.

[122] W. F. Arnold and A. J. Laub, “Generalized eigenproblem algorithms and software for
algebraic Riccati equations,” Proceedings of the IEEE, vol. 72, no. 12, pp. 1746–1754,
1984.

[123] J. Xiao and X. Ji, “Automatic generation of high-level contact state space,” The Interna-

tional Journal of Robotics Research, vol. 20, no. 7, pp. 584–606, 2001.

Notation

Scalars, Vectors, and Matrices

x A scalar variable, typically a coordinate.

t The time parameter.

x A vector.

x⊤ The transpose of vector x.

x(t) A time-dependent vector function

ẋ(t) The time derivative of x(t). Sometimes the dependency on t is omitted.

X A matrix.

X⊤ The transpose of matrix X.

X−1 The inverse of matrix X.

X+ The the Moore-Penrose pseudoinverse of matrix X.

X(t) A time-dependent matrix function

Ẋ(t) The time derivative of X(t). Sometimes the dependency on t is omitted.

0 A vector or matrix of zeros, understood by context.

I The identity matrix.

In The n× n identity matrix.

Kinematic Spaces

q Generalized coordinates.

nq Number of generalized coordinates.

Φ(q) Loop-closure constraint.

ne Number of loop-closure constraints.

Φq Jacobian ∂Φ/∂q of the loop-closure constraint.

C Configuration space, or C-space for short.

dC Dimension of the C-space given by dC = nq − ne.

q̇ Generalized velocity. Time derivative of q.

TqC Tangent space of C at q.

NqC Normal space to C at q.

x Robot state composed by q and q̇.

nx Number of states.

F (x) System of equations defining the state space.

F x Jacobian ∂F /∂x.

Φ̇q Time derivative of the Jacobian ∂Φ/∂q.

158 Notation

X State space.

dX Dimension of the state space given by dX = nx − 2ne.

TxX Tangent space of X at x.

q̈ Generalized acceleration. Time derivative of q̇.

ξ Kinematic term −Φ̇q q̇ in the acceleration constraint.

Ax The acceleration space.

q̈⊥ Component decomposing the acceleration q̈ lying in NqC.
q̈‖ Component decomposing the acceleration q̈ lying in TqC.
Φ

+
q Moore-Penrose pseudoinverse of Φq.

Λ An nq × dC matrix that has, by columns, a basis of TqC.
qu Actuated coordinates of q.

nu Number of actuated coordinates.

Qu Matrix selecting the actuated coordinates.

qr Remaining (non-actuated) coordinates of q.

nr Number nq − nu of remaining coordinates.

Qr Matrix selecting the remaining coordinates.

Φqu
Jacobian ∂Φ/∂qu of the loop-closure constraint Φ.

Φqr
Jacobian ∂Φ/∂qr of the loop-closure constraint Φ.

q̇u Velocity of actuated coordinates.

q̇r Velocity of remaining coordinates.

Dynamics

K Kinetic energy of the robot.

U Potential energy of the robot.

λ Vector of Lagrange multipliers.

τ fric Generalized force of friction.

u Action vector.

M Mass matrix.

G Generalized gravity vector. It is the only vector denoted in capital letter

for consistency with the literature.

C Coriolis matrix.

τFD Generalized vector including forward dynamics terms.

g(x,u) First order forward dynamics in x coordinates.

τID Generalized vector including inverse dynamics terms.

N Matrix defined as Λ⊤Qu in the inverse dynamics.

159

Recursive Dynamic Algorithms

w Angular velocity of the body about point O.

vO Linear velocity of the body-fixed point that coincide with point O at

the current instant.

τO Pure couple about point O.

f Force acting through point O.
Av̂ Spatial velocity expressed in the A coordinate system.
AXB Spatial motion transform from coordinate B to A.
ARB Orthogonal rotation matrix from B to A coordinates.
A~pB Translation locating the origin of B relative to A.

S(~p) Skew-symmetric matrix.
Af̂ Spatial force expressed in the A coordinate system.
AX∗

B Spatial force transform from B to A coordinates.

ICM Tensor of inertia about the body’s center of mass.
OÎ Spatial inertia about O.

Li Link i.

Ji Joint i.

Xz(qi) Joint transform about Zi (Table 2.2).

XLi
Spatial transformation locating the (i− 1)′ coordinate relative to

the (i− 1) one.

Li Distance between two revolute joints of link Li.

v̂n Spatial velocity of the tip link expressed in 0 coordinates.
0Ŝi Unit twist of link Li as observed from link Li−1 expressed in 0 coordinates.
iŜi Unit twist of link Li as observed from link Li−1 expressed in link Li

coordinates (Table 2.2).

Jn Screw Jacobian of the kinematic loop.

J̇n Time derivative of the screw Jacobian of the kinematic loop.

ân Spatial acceleration of the tip link expressed in 0 coordinates.

f̂ c Spatial constraint force closing the kinematic loop.

τ c Generalized constraint force.
iv̂i Spatial velocity of Li expressed in i coordinates.
iâi Spatial acceleration of Li expressed in i coordinates.
if̂ i,net Spatial net force acting on Li expressed in i coordinates.
if̂ i Spatial force transmitted across joint Ji expressed in i coordinates.
if̂ i,ext Spatial external force acting on Li expressed in i coordinates.

160 Notation

Atlas

Vc Open set in X .

Pc Open set in R
dX .

ϕc Chart from an open set Vc ∈ X to an open set Pc ∈ R
dX , such that y = ϕc(x).

y Local coordinates, or parameters, of x in a given chart.

ψc Inverse map of ϕc providing a local parametrization of Vc ⊂ X , such that x = ψc(y).

xc Chart center.

U c An nx × dX matrix whose columns provide an orthonormal basis of TxcX .

g̃(y,u) First order forward dynamics expressed in y coordinates.

Sampling-based Planner

U Action space.

ui,max Maximum action in the i-th actuator.

Xfeas Feasible state space X .

xs Start state.

xg Goal state.

tg Trajectory goal time.

xrand Guiding random state in the RRT algorithm.

xnear The RRT state closest to random state xrand.

ǫ RRT parameter to limit the maximal distance between TxcX and the manifold X .

α RRT parameter to ensure bounded curvature in the part of X covered by a chart.

ρ RRT parameter to guarantee the generation of new charts as the RRT grows.

Us Discrete set to approximate the action space U .

∆t Time increment.

σ RRT parameter determining the sampling radius in local coordinates.

A Atlas.

Ts Tree rooted at xs.

Tg Tree rooted at xg.

δ RRT parameter to measure closeness between states.

β RRT parameter to measure closeness between trees.

b Auxiliar variable used to plan in the singularity-free state space.

d(q) Determinant of the matrix that must remain full rank in the singularity-free state space.

Xsfree Singularity-free state space.

Ns Number of samples generated during the RRT algorithm.

Nc Number of charts generated during the RRT algorithm.

161

Trajectory Optimization

h(x,u) Differentiable function defining inequality constraints.

L(x(t),u(t)) Running cost function.

tf Trajecotry time.

tk Time instant or knot point k.

∆t Time increment.

xk State at the k-th knot point.

uk Action at the k-th knot point.

N Number of collocation intervals.

pk(t) Lagrange interpolation polynomial at the k-th collocation interval.

lj(t) Basis of Lagrange interpolation polynomial.

d Degree of the interpolation polynomial pk(t).

tk,i Collocation time (or point) i at the k-th collocation interval.

xk,i State at the i-th collocation time and k-th collocation interval.

xk,i Action at the i-th collocation time and k-th collocation interval.

ṗk(t) Time derivative of the Lagrange interpolation polynomial pk(t).

D Constant differentiation matrix of the Lagrange interpolation polynomial.

w Optimization variables of the NLP.

C(w) Discrete version of the optimization cost.

U g An nx × dX matrix whose columns provide an orthonormal basis of TxgX .

β′ Baumgarte stabilizing gain of the position constraint.

α′ Baumgarte stabilizing gain of the velocity constraint.

gstab Baumgarte stabilized first order forward dynamics.

x′
k State drifted from X at the end of the k-th polynomial in the projection

method.

µk Auxiliary projection vector to eliminate the drift from X at the end of

the k-th polynomial.

yk,i Local coordinates at the i-th collocation time and k-th collocation interval.

Hk(x,y) Implicit function defining the inverse map x = ψk(y).

D(x, ẋ,u,λ) Implicit form of the forward dynamics.

Dstab(x, ẋ,u,λ) Implicit form of the stabilized forward dynamics.

dk Projection distance at the k-th collocation interval.

Qk An nx × nx orthonormal matrix from the QR decomposition of F x(xk).

Rk An nx × ne upper triangular matrix from the QR decomposition of F x(xk).

V k The frist ne columns of Qk.

Uk The last dX columns of Qk defining an orthonormal basis of Txk
X .

162 Notation

eK Kinematic error of the trajectory.

eD Dynamic error of the trajectory.

EK Average of the kinematic error of the trajectory.

ED Average of the dynamic error of the trajectory.

LQR

A State matrix of the linearized system.

B Action matrix of the linearized system.

c Affine term of the linearized system.

J LQR cost function to minimize.

u∗ LQR optimal control function.

t∗f Optimal final time from the LQR steering.

R Symmetric positive-definite penalizing high control actions.

H Hamiltonian function from the Pontryiagin’s minimum principle in the LQR steering.

r Evolution of the linear system when no control is applied in the LQR steering.

Gr Weighted continuous reachability Gramian in the LQR steering.

tmax Expected maximum optimal time t∗f in the LQR steering.

x0(t) Reference state trajectory.

u0(t) Reference action trajectory.

x̄ State error given by x− x0.

ū Action error given by u− u0.

Q Positive semi-definite matrix penalizing deviations from the reference trajectory.

K LQR optimal control gain.

S Solution of the differential Riccati equation in the LQR.

Q̃ Positive semi-definite matrix penalizing deviations from the reference trajectory in

local coordinates.

C An dC × nx output matrix selecting dC components of the error signal x̄.

yi Integral state in the LQR controller.

ye Extended state including the integral state.

Ae Extended A matrix of the linearized system including the integral state.

Be Extended B matrix of the linearized system including the integral state.

Q̃i Positive semi-definite matrix penalizing deviations from the integral state yi.

Ki LQR optimal control gain for the integral state.

163

Computed-torque Controller

π(x, t) Control law.

τCT Generalized force including Coriolis, gravity, and friction terms for computed-torque

control.

u′ Auxuliary control variable from the computed-torque control.

Kp Positive-definite position gain matrix from the computed-torque control.

Kv Positive-definite velocity gain matrix from the computed-torque control.

q0(t) Reference configuration trajectory.

q̇0(t) Reference velocity trajectory.

e(t) Configuration error.

θ Vector of dC independent coordinates of q.

m Regular parametrization of q, such that q =m(θ).

qi Subset of independent coordinates from q.

qd Subset of dependent coordinates from q.

Qi Matrix selecting the independent coordinates qi.

Qd Matrix selecting the dependent coordinates qd.

	Abstract
	Resum
	Acknowledgements
	Contents
	Introduction
	Motivation
	Objectives
	Assumptions and Scope
	Outlook at the Dissertation
	Approach
	Organization

	Closed-chain Systems
	Kinematic Spaces
	The Configuration Space
	The State Space
	The Acceleration Space

	Singularities
	C-space Singularities
	Forward Singularities
	A Geometric Interpretation of Forward Singularities

	Dynamic Model
	Lagrange's Equation with Multipliers
	Forward Dynamics
	Inverse Dynamics

	Recursive Dynamic Algorithms
	Spatial Quantities and Notation
	Modeling Closed-Chain Systems
	Computing the Kinematic, Gravity and Coriolis Terms
	Computing the Mass Matrix
	Computing Constraint Forces

	Trajectory Planning
	Related work
	The Trajectory Planning Problem
	Limitations of Prior RRT Methods
	Mapping and Exploring the State Space
	Atlas Construction
	Incremental Atlas and RRT Expansion
	Chart Coordination

	Steering Methods
	A Randomized Steering Method
	An LQR Steering Method

	Planner Implementation
	Sampling
	Tree Extension
	Setting the Planner Parameters

	Probabilistic Completeness
	Dealing with Forward Singularities
	Planning in the Singularity-free State Space
	Smoothness of Xsfree

	Planning Examples
	Weight Lifting with a Four-bar Robot
	Weight Throwing with a Five-bar Robot
	Pick-and-place Operations with a Cable-driven Robot
	Conveyor Switching with a Delta robot
	Truck Loading with Cooperative Arms

	Trajectory Optimization
	Related Work
	The Trajectory Optimization Problem
	Transcription Techniques
	Problem Discretization
	Transcription of Differential Constraints

	Conventional Collocation Schemes
	Basic Collocation
	Collocation with Baumgarte Stabilization

	New Collocation Schemes
	The Projection Method
	The Local Coordinates Method

	Implementation Details
	Explicit versus Implicit Dynamics
	Ensuring Proper Projections
	Computing a Basis of the Tangent Space
	Accuracy Metrics
	Including Obstacles

	Performance Tests

	Trajectory Tracking
	Related Work
	The Trajectory Control Problem
	Computed-torque Control
	The Feedback Law in Open-chain Robots
	The Feedback Law in Closed-chain Robots
	Computing and
	Degeneracy of the Feedback Law Near Singularities

	Linear Quadratic Regulators
	Stabilization at an Equilibrium Point
	Trajectory Stabilization
	Integral Action

	Examples
	Stabilization of an Equilibrium Point
	Trajectory Tracking

	Conclusions
	List of Publications
	References
	Notation

