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” ..el científico busca lo común en lo diverso, separa lo
esencial de lo superfluo; y es lo que continuamente hace
Sancho Panza, que busca respuestas sensatas a los
disparates de Don Quijote..

(entonces..la persona de ciencia, que formula disparatadas
preguntas que luego responde, es a la vez Sancho, y también
Quijote)

— Jorge Wagensberg Lubinski
(reflexión personal)





Abstract
A critical challenge in the design of robots that operate while interacting with humans is to

ensure mutual understanding, which contributes to build reliable human-robot interactions. It
is an arduous task since interactive scenarios are often uncertain, exposing robots to exogenous
situations that affect their ongoing activities. In those cases, robots shall perceive and
recognize unexpected changes in the environment, represent and reason about them, and
decide how to adapt to them. This will certainly modify robots’ internal knowledge, and it is
fair to assume that part of the new robot beliefs might be hidden from other agents such as
humans. Hence, robots shall also be capable of communicating or explaining the relevant
knowledge about those beliefs updates. In this context, this thesis investigates the use of
ontologies as an integrative framework for the construction of robot explanations, particularly
within interactive settings involving humans. To this end, the thesis starts formulating the
scope of the relevant domain knowledge to conceptualize, and it continues proposing novel
ontological models and methods for ontology-based robot explanation generation. The first
part of the thesis discusses two main contributions: a systematic review and classification of
the state-of-the-art that narrows down the target set of reality phenomena to be
conceptualized, and the investigation and development of novel robot perception methods to
extract from realistic robot experiences the common patterns of the target conceptualization.
The second part discusses the two remaining contributions: ontological analysis and modeling
of the target domain knowledge, and the design and development of algorithms to construct
ontology-based robot explanations. Note that the different ontological models and algorithms
were mainly validated in collaborative and adaptive robotic scenarios. However, they were
conceived from a foundational perspective, and we think that their scientific value extrapolates
to other application domains (e.g. assistive robotics or non-robotic agents). Overall, the
scientific contributions of this thesis set a solid foundational basis for the ontology-based
explainable robots domain, boosting the design of trustworthy interactive robots.

Keywords: Applied ontology, Collaborative and Adaptive Robots, Explainable Agency,
Ontology-based Explainable Robots.
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Resumen
Un desafío crítico en el diseño de robots que interactúan con humanos es garantizar el

entendimiento mutuo, lo que contribuye a construir interacciones fiables entre humanos y
robots. Es una tarea ardua ya que los escenarios interactivos suelen presentar incertidumbre, lo
que expone a los robots a situaciones exógenas que afectan sus actividades en curso. En esos
casos, los robots deben percibir y reconocer cambios inesperados en el entorno, representarlos,
razonar sobre ellos y decidir cómo adaptarse a ellos. Sin duda, esto modificará el conocimiento
interno de los robots, y es justo suponer que parte de las nuevas creencias de los robots podrían
estar ocultas a otros agentes como los humanos. Por tanto, los robots también deben ser
capaces de comunicar o explicar el conocimiento relevante sobre las actualizaciones de esas
creencias. En este contexto, esta tesis investiga el uso de ontologías como un marco integrador
para la construcción de explicaciones de robots, particularmente dentro de entornos
interactivos que involucran a humanos. Con este fin, la tesis comienza formulando el alcance
del conocimiento del dominio relevante a conceptualizar y continúa proponiendo nuevos
modelos y métodos ontológicos para la generación de explicaciones robóticas basadas en
ontologías. La primera parte de la tesis analiza dos contribuciones principales: una revisión y
clasificación sistemática del estado del arte que reduce el posible conjunto de fenómenos de la
realidad a conceptualizar, y la investigación y el desarrollo de nuevos métodos de percepción
de robots para extraer, a partir de experiencias realistas de un robot, los patrones comunes de
la conceptualización objetivo. La segunda parte analiza las dos contribuciones restantes: el
análisis ontológico y el modelado del conocimiento del dominio objetivo, y el diseño y
desarrollo de algoritmos para construir explicaciones de robots basadas en ontologías. Cabe
señalar que los diferentes modelos y algoritmos ontológicos se validaron principalmente en
escenarios robóticos colaborativos y adaptativos. Sin embargo, fueron concebidos desde una
perspectiva general y creemos que su valor científico se extrapola a otros dominios de
aplicación (por ejemplo, la robótica asistencial o agentes no robóticos). En general, las
contribuciones científicas de esta tesis establecen una base sólida para el dominio de los robots
explicables basados en ontologías, impulsando el diseño de robots interactivos confiables.
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Resum
Un desafiament crític en el disseny de robots que interactuen amb humans és garantir

l’entesa mutu, fet que contribueix a construir interaccions fiables entre humans i robots. És una
tasca àrdua ja que els escenaris interactius solen ser incerts, cosa que exposa els robots a
situacions exògenes que afecten les seves activitats en curs. En aquests casos, els robots han de
percebre i reconèixer canvis inesperats a l’entorn, representar-los, raonar sobre ells i decidir
com adaptar-s’hi. Sens dubte això modificarà el coneixement intern dels robots, i és just
suposar que part de les noves creences dels robots podrien estar ocultes a altres agents com els
humans. Per tant, els robots també han de ser capaços de comunicar o d’explicar el
coneixement rellevant sobre les actualitzacions d’aquestes creences. En aquest context, aquesta
tesi investiga l’ús d’ontologies com un marc integrador per a la construcció d’explicacions de
robots, particularment dins d’entorns interactius que involucren a humans. A aquest efecte, la
tesi comença formulant l’abast del coneixement del domini rellevant a conceptualitzar i
continua proposant nous models i mètodes ontològics per a la generació d’explicacions
robòtiques basades en ontologies. La primera part de la tesi analitza dues contribucions
principals: una revisió i una classificació sistemàtica de l’estat de l’art que redueix el possible
conjunt de fenòmens de la realitat a conceptualitzar, i la investigació i el desenvolupament de
nous mètodes de percepció de robots per extreure’n, a partir dexperiències realistes dun robot,
els patrons comuns de la conceptualització objectiu. La segona part analitza les dues
contribucions restants: l’anàlisi ontològica i el modelatge del coneixement del domini objectiu,
i el disseny i el desenvolupament d’algorismes per construir explicacions de robots basades en
ontologies. Cal assenyalar que els diferents models i algorismes ontològics es van validar
principalment en escenaris robòtics col·laboratius i adaptatius. Tot i això, van ser concebuts des
d’una perspectiva general i creiem que el seu valor científic s’extrapola a altres dominis
d’aplicació (per exemple, la robòtica assistencial o agents no robòtics). En general, les
contribucions científiques daquesta tesi estableixen una base sòlida per al domini dels robots
explicables basats en ontologies, impulsant el disseny de robots interactius fiables.
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chapterone
Introduction

” ..for it is owing to their wonder that people both now begin
and at first began to philosophize..

— Aristotle

(Metaphysics)

The integration of robotics into our daily lives is becoming increasingly apparent. It seems
that this trend will continue to extend throughout our society, reaching a stage where robots
engage with various entities during routine activities, such as collaborating with or aiding
humans. Those interactive robots are expected to operate autonomously, which will surely
require adapting the execution of their tasks, given the inherent high degree of uncertainty of
interactive scenarios. Considering that robots will adapt to exogenous changes in their activity
environment, it is fair to assume that they will update their knowledge so that part of it might
be hidden from other agents such as humans. In order to ensure a reliable and proper
interaction between the agents, mutual understanding is an essential prerequisite [Yuan et al.,
2022]. This implies that robots shall understand the situations in which they are and also
communicate and share such understanding with humans when needed. Hence, robots shall
perceive and recognize unexpected situations in the environment, reason about how they affect
their ongoing activity or task, and make reasonable decisions accordingly. Note that in those
cases, the internal beliefs of robots will obviously evolve through perception and inference.
Therefore, robots shall also be able to communicate or explain the details of those beliefs
updates.



2 Introduction

1.1 The role of applied ontology in human-robot shared

understanding

Applied ontology builds on philosophy, cognitive science, linguistics and logic with the purpose
of understanding, clarifying, making explicit and communicating people’s assumptions about
the nature and structure of the world [Oltramari, 2019]. A first definition of ontology was
given by Gruber in [Gruber, 1993] stating: an ontology is an explicit specification of a
conceptualization. Gruber’s definition was informal and several authors tried to refine it. For
instance, the notion of conceptualization was defined (mathematically speaking) as an
intentional relational structure, i.e., a domain of discourse (a set of entities), a set of possible
worlds (possible layouts of the entities), and a set of relations (stating which properties entities
have in each possible world) [Guarino and Giaretta, 1995]. Others discussed further
requirements for the definition like being formal and shared [Borst et al., 1997, Studer et al.,
1998]. Finally, Guarino et al. [Guarino et al., 2009] settled the issue by proposing a formal
definition which is today recognized in the community of applied ontology. An ontology is
defined to be a logical theory consisting of a set of formulas whose models approximate as well
as possible the intended models, i.e., those models that satisfy the conceptualization and the
ontological commitments (the ontological principles one commits to).

Since an ontology is a logical theory, it can be used to represent knowledge and automate
(deductive) reasoning for artificial agents and robots to infer conclusions from their current
knowledge, for instance. However, ontological modeling is not just thought of as a tool for
artificial agents such as robots, it would actually be useful for harmonizing people’s
assumptions about a target domain of discourse. Hence, when interactive agents agree on
using the concepts defined in an ontology, they are in a position to share a mutual
understanding of their experiences. In this thesis, logical formal languages are used to
formalize the proposed models, which ensures a reliable use of the represented knowledge for
sound robot reasoning. However, the use of a logic-based formalism might hinder the human
comprehension of the robot’s knowledge, thus, to ensure mutual understanding, the formalized
knowledge is worked into explanations with a more natural format (e.g. textual natural
language).

The process of conceptual ontological modeling (see Fig. 1.1) starts by focusing on a set of
occurring reality phenomena to be conceptualized (e.g. the reflection of sky and mountains in
lakes). Then, being exposed to those phenomena over time, it would be possible to extract
patterns through perception. From the identified patterns, relevant ‘invariants’ of reality
(things cognitively relevant for people) are isolated, comprising the elements or entities of the
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Figure 1.1: Ontological modeling process: from a target set of reality phenomena (left) to the
ontology that models its conceptualization (right).

domain and the properties relating them. The set of those elements and properties is indeed
the conceptualization, which is here understood as a language-independent abstraction and
cannot be fully captured by any informal or formal language (e.g., natural, logical,
etc.) [Oltramari, 2019]. Hence, the possible interpretations of the obtained conceptualization
are constrained by the ontological commitments and using a specific language, obtaining the
formulas that approximate as well as possible the intended models. Note that while ontologies
are approximations of the conceptualizations they model, when carefully formalized, they are
useful to harmonize agents’ assumptions about a target domain of discourse. Indeed, this is not
just a limitation of ontological models, humans can genuinely grasp a conceptualization that
captures reality better than they can model and express it. In summary, ‘all models are wrong,
but some are useful’ (aphorism attributed to George E. P. Box).

Within the context of this thesis, the ontological modeling process starts by selecting a set
of reality phenomena of interest from human-robot interaction scenarios. In order to make an
informed selection, it may be useful to conduct a comprehensive study of the current
state-of-the-art in the intersection of ontologies and robotics. Next, it is relevant to investigate
robotic perception tasks in human-robot interactive experiences in order to identify patterns
from the robots’ perspective. Then, the sought conceptualization, a set of domain entities and
properties relating them, may be obtained. Finally, by making some ontological commitments
and selecting a language, the ontology can be formalized. Given the ontological model of the
conceptualization, the data acquired through robot perception can be used to ground the
obtained concepts, which is often known as the symbol grounding problem [Harnad, 1990].
Observe that symbols are only useful for a robot if they are grounded. A symbol such as human
collaborator can only be utilized by a robot if there is a link between the symbol and the actual
human in the real world. Using grounded knowledge, robots may understand the environment
in which they are and make inferences and decisions, which will result in updating their
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beliefs. Note that the process in which the perception data is abstracted may add some
complexity to the robotic system, presenting some scalability issues. Indeed, abstracting all the
data the robot is exposed to would certainly result in codifying huge volumes of seemingly
irrelevant knowledge. This thesis aims to mitigate this by defining and grounding the
ontological knowledge from actual robotic scenarios, while carefully selecting which
knowledge is modeled. This way, the benefits of using an ontology outweigh those potential
drawbacks. Furthermore, the ontological models are developed from a foundational viewpoint
where the characterization of the core concepts is more important than the coverage of the
application domain. Hence, the obtained models are small, general and still useful for realistic
robotic applications, since they are properly scoped to a specific domain and carefully defined.

Note that human knowledge is often expressed symbolically, thus symbolic or logic-based
representation and reasoning seem to make sense for human-robot shared understanding.
However, there are well-known challenges and limitations inherent in the type of reasoning
enabled by ontologies, and it is sensible to acknowledge them even though there is little or
nothing one can do to solve them. For instance, ontology-based reasoning is precise because it
provides us with certainty, but the real world is often full of uncertainties and ontologies
cannot model what might be true. Hence, it is recommended to understand that ontologies are
mostly useful to derive certain conclusions from a set of true statements, or even to identify
incorrect conclusions or inconsistencies from false statements. However, ontology-based
reasoning will never find general hypothesis or create new axioms based on experiential
observations (i.e., inductive reasoning), nor will it help with seeking the most reasonable
explanation to a specific event (i.e., abductive reasoning).

1.2 The role of applied ontology in explainable agency

In 2018, the European General Data Protection Regulation (GDPR) law [Carey, 2018]
considered the right to explanations. Furthermore, the current success of ‘black-box’ machine
learning models is increasingly making more evident the need for artificial intelligence systems
to be explainable. Indeed, the European Union lawmakers reached a political agreement on the
draft artificial intelligence (AI) act in December 2023. Proposed by the European Commission
in April 2021, the draft AI act, the first binding worldwide horizontal regulation on AI, sets a
common framework for the use and supply of AI systems in the EU [2021/0106(COD), 2024].
It offers a classification for AI systems with different requirements and obligations tailored on a
‘risk-based approach’. In this context, research on eXplainable Artificial Intelligence
(XAI) [Gunning and Aha, 2019] has recently drawn much attention, and the literature has
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been populated with many works on easing the interpretation of artificial intelligent systems’
decisions [Zhang and Zhu, 2018, Burkart and Huber, 2021]. In robotics, where robots not only
make decisions but also act and produce changes in their environment, the need for
explanations is even more justified. Indeed, the notion of explainable agency (i.e., explaining
the reasoning of goal-driven agents and robots) has also gained significant
momentum [Anjomshoae et al., 2019, Chakraborti et al., 2020].

There are three main elements of explainable agency: a representation of the content that
supports explanations, an episodic memory to store agents experiences, and the ability to access
the memory and retrieve and employ the stored content to construct explanations [Langley et al.,
2017] (see Fig. 1.2). First, the representation shall include domain concepts and relations to
describe the relevant knowledge generated during agents’ experiences: the states perceived
by agents (e.g. unexpected situations), the made decisions (e.g. adaptations), the criteria to
make those decisions, etc. For this, both symbolic structures and numeric annotations will be
required. Second, the episodic memory shall allow to record the states and relevant knowledge
encountered during the experiences of agents. Episodic memory is the collection of past personal
experiences that occurred at particular times and places [Tulving, 1972, Tulving, 2002]. In
machine learning and other fields of artificial intelligence, there is no need for an episodic
memory, because single post-hoc explanations of made decisions are often sufficient. However,
in agency and robotics in particular, it is essential to connect the explanations to their specific
context (e.g., place and time) within complete agents’ experiences. Otherwise, the content
of those explanations might not be properly understood. Third, explainable agents shall be
able to construct explanations retrospectively, acquiring the content of their explanations from
the episodic memory, and working it into a format that humans would find comprehensible.
Furthermore, it shall be possible to select which and how much content is retrieved for the
explanation generation, and the process may be interactive.

Readers might have already anticipated a plausible connection between these three elements
and ontologies. Explainable agents shall be able to represent knowledge and data about their
experiences, and an ontology is in essence a model of the knowledge of a domain of discourse
(e.g. agents’ experiences). Furthermore, since ontologies are usually defined using a formal
logic language, it is possible to use the same language not only to store knowledge but also
to retrieve it, which is related to the third element of explainable agency. Reflecting on these
initial observations, one might wonder whether applied ontology might become the unifying
component of the three elements of explainable agents. In this regard, some authors have
recently investigated the strong relation between semantics, ontology and explanation especially
under particular interpretations [Guizzardi and Guarino, 2023]. There are also some attempts to
formalize the notion of explanation ontologically [Tiddi et al., 2015], which can be used to help
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Figure 1.2: Elements of explainable agents: a representation of the domain knowledge and data,
an episodic memory to store experiential knowledge, and the ability to select knowledge from
the memory and to construct the explanation.

system designers to make decisions about the explanations to include in their systems [Chari
et al., 2020]. Furthermore, other knowledge-based representations (e.g. non-monotonic logic)
have been lately used to support explainable agency [Sridharan, 2023]. However, to the best
of our knowledge, the literature does not contain works that deeply investigate the role of
ontologies in the three elements of explainable agency as a whole. Indeed, as it is discussed
in Chapter 2, ontologies have neither been used for explainable robotics. For this reason, the
research presented in this thesis focuses on the union of applied ontologies and explainable
robotics, aiming to foster a shared understanding in human-robot interactive experiences.

1.3 The role of explainable agency in framing the scope

of the ontological model

Explainable agents require a representation and an episodic storage of knowledge about their
experiences, which will be later queried to construct explanations. Hence, if one wants to use
ontologies to represent such knowledge, the ontologies’ scope will certainly be conditioned to
capture the desired explanation content. Apart from the three main elements of explainable
agency, Langley [Langley et al., 2017] also defended the idea that explainable agency requires
four distinct functional abilities. Based on that work, explainable agents shall: report the
actions they executed, explain how actual events diverged from what was planned and how
they adapted to it, explain decisions made during plan generation (comparing alternatives),
and communicate all of this in a way that is close to human concepts.
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In order to exhibit those functional abilities, ontology-based explainable agents shall count
on an ontological model that can support them. Hence, the ontology should capture concepts
and relationships modeling the main knowledge around their executed actions, the notions
regarding unexpected situations and the undertaken adaptations, and how different alternative
plans compare. Furthermore, explainable agents should be able to work such ontological
knowledge into a format that ensures human understanding of the agents’ beliefs. These ideas
were considered when deciding the scope of the ontological models proposed in this thesis.
Indeed, the thesis includes works that address the four functional abilities of explainable
agents.

1.4 Contributions

This work examines the use of ontologies as an integrative framework for the construction of
robot explanations, particularly within interactive settings involving humans. In the following,
a summary of the contributions of this work is provided.

1.4.1 Main scientific contributions

C1 Systematic review and classification of the state-of-the-art works that use ontologies in
robotics to support robot autonomy [Olivares-Alarcos et al., 2019a]. This contribution
helped narrow down the target set of reality phenomena to be conceptualized, focusing
primarily on those encountered within collaborative robotic scenarios.

C2 Investigation and development of novel robot perception methods for recognition and
decision-making tasks in collaborative robotics scenarios, specially in cases where humans
and robots closely interact. The approaches focus on human intention and risk of collision
recognition, extracting the common patterns of those robotic experiences that will be later
conceptualized [Olivares-Alarcos et al., 2019c, Olivares-Alarcos et al., 2023b].

C3 Ontological analysis and conceptual modeling of the inherent knowledge found during
the execution of collaborative and adaptive robot experiences [Olivares-Alarcos et al.,
2022], and the relevant knowledge related to robot selection from alternative
plans [Olivares-Alarcos et al., 2024]. These models harmonize the terminology and
provide robots with knowledge representation and reasoning tools in their respective
domains. Hence, robots may now reason about whether some events are or not
collaborations, which events are adaptations, or how different plans compare to each
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other (e.g. one is better than the others). Note that this knowledge will indeed be useful
to support all the functional abilities of explainable agents proposed in the literature.

C4 Design and development of ontology-based algorithms for the construction of robot
explanations of collaborative and adaptive experiences [Olivares-Alarcos et al., 2023a],
and contrastive explanations of competing robot plans [Olivares-Alarcos et al., 2024].
Both algorithms are general enough to work with any of the ontological models proposed
in the thesis, and even other models as long as they are formalized in the same
ontological language. The algorithms leverage the structure of ontological knowledge to
build different types of explanations for different purposes: plain narratives and
contrastive explanations.

1.4.2 Main technical contributions

Together with some of the main scientific contributions, this thesis also produced a set of open
access technical contributions.

- Knowledge-based framework for collaborative robotics and adaptation (know-cra).1

- Knowledge-based framework for the generation and comparison of robot plans (know-
plan).2

- Ontology-based explainable robots framework for collaborative and adaptive experiences
(XONCRA).3

1.4.3 Collaborative scientific contributions

The investigation conducted during this thesis has also influenced and contributed to some
works that were done in collaboration with other researchers.

- Investigation and development of alternative robot perception methods to the ones
presented in the main contributions [Maceira et al., 2020, Gassó Loncan Vallecillo et al.,
2020].

- Development of the IEEE 1872.2-2021 Standard for Autonomous Robotics (AuR)
Ontology [IEEE-SA, 2021, Gonçalves et al., 2021a]. The standard specified ontological
concepts for AuR influenced by the findings of the review presented in the main
contributions [Olivares-Alarcos et al., 2019a].

1https://github.com/albertoOA/know_cra
2https://github.com/albertoOA/know_plan
3https://github.com/albertoOA/explanatory_narratives_cra

https://github.com/albertoOA/know_cra
https://github.com/albertoOA/know_plan
https://github.com/albertoOA/explanatory_narratives_cra
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Figure 1.3: Ontology-based explainable robots: from a selected set of reality phenomena to
their corresponding explanation, through the ontology that models their conceptualization and
supports the explanation’s construction.

1.5 Outline

The remainder of this thesis is organized in two parts each consisting of different chapters that
all contribute to the overall goal of investigating and establishing the foundations of
ontology-based explainable robots. In the following, a short abstract will be provided for each
of the remaining chapters that contribute to this field. Fig. 1.3 combines the content depicted
in Figs. 1.1 (ontological modeling process) and 1.2 (explainable agency elements), providing a
visual overview of the elements of ontology-based explainable robots and how they relate to
the structure of this thesis.

Part I explores and fixes the overall scope of the target robotic phenomena and ontological
domain to conceptualize. First, through a comprehensive review of the state-of-the-art, and then
with the investigation of robot perception methods for a reliable recognition and categorization
of interactive experiences with humans.

- Chapter 2 explores the literature on ontology-based approaches to robot autonomy,
comprehensively reviewing a set of existing frameworks. This allows to make an
informed decision to constrain the scope of the intended ontological conceptualization,
focusing on industrial collaborative robotics phenomena.

- Chapter 3 investigates robot perception approaches to recognize and classify human
intentions in a collaborative scenario. It introduces a novel dataset of interactive
force-based information for human-robot collaboration, and evaluates two different
force-based human intention recognition methods. Finally, the approach’s ability to
generalize to different users is studied (N=15). The chapter finishes with a short
discussion on important insights into common patterns to be conceptualized, which were
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extracted from the perceived phenomenon.

- Chapter 4 focuses on robot recognition and classification of different levels of
human-robot collision risk. It reveals how to extend a two-dimensional formulation to
compute time-to-contact (TTC) in a three-dimensional space, and how to stop the robot’s
motion based on the computed TTC. The proposal is evaluated both in simulation and on
a physical robot. The chapter ends by briefly arguing on significant intuitions about
patterns to be conceptualized, which emerged from the hands-on experience. Indeed, the
robotic task introduced in this chapter is later used during the conceptual modeling and
ontology-based explanation generation discussed in Chapters 5 and 6 respectively.

Part II is devoted to the ontological conceptual modeling, and the investigation of the use of
the obtained models for explainable agency in robotics.

- Chapter 5 conceptualizes and formalizes an ontological model for collaborative robotics
and adaptation, OCRA, the very first ontology for reasoning about both human-robot
collaboration and robot plan adaptation. The chapter shows how OCRA can be used to
recognize and categorize collaborative and adaptive events, being able to answer a set of
competency questions. For this, it is used the prototypical collaborative task from
Chapter 4, thus the proposed symbolic model is directly grounded in the task’s data.
Finally, the ontology robustness is evaluated in some limit cases of the formalization.

- Chapter 6 addresses the construction of robot explanatory narratives of collaborative and
adaptive experiences within the same scenario used in Chapters 4 and 5. Hence, the
explanations are built with both abstract knowledge and data from a realistic collaborative
task. The chapter explains the integration of the OCRA ontology in an episodic memory
framework, and proposes a novel algorithm (AXON) for the narrative generation. The
perceived narratives’ usefulness is assessed through a pilot study with users (N=30). This
work represents the first attempt to propose a framework for ontology-based explainable
robots.

- Chapter 7 extends the work presented in Chapters 5 and 6 from collaborative and adaptive
experiences to cases in which robots compare and explain the differences of competing
plans. It introduces a new ontology to model the properties of plans and to reason about
how different plans relate to each other, and a novel algorithm for contrastive ontology-
based explanations (ACXON). The chapter tackles the functional abilities and explanation
features that were missing in the previous works of the thesis. Hence, culminating the
main objective of the thesis: setting the foundational basis of ontology-based explainable
robots.
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- Chapter 8 concludes the thesis, discussing the most important findings of this research,
and identifying open challenges, providing directions for future work.
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chaptertwo
Reviewing ontological models for autonomous
robots

” ..creative thinking enters far more into problem formulation
that it does into problem solving, problem formulation is
often by far the trickier part..

— Murray Gell-Mann
(Peace Summit 2009 - Educating the Heart and Mind)

This thesis aims to investigate and establish the foundations of ontology-based explainable
robots. The introduction discussed in Chapter 1 suggests starting from an ontological modeling
process, specifically, by focusing on a set of occurring reality phenomena to be conceptualized.
In the thesis context, it would make sense to choose such reality phenomena from human-robot
interactive scenarios, where explanations would enhance the interaction. In order to make an
informed selection, it may be beneficial to conduct a comprehensive study of the current
state-of-the-art in the intersection of ontologies and robotics. This would be useful for
identifying how ontologies are employed in the domain and pinpointing sub-domains that
might be worth investigating in detail. Hence, this chapter reviews the literature concerning
the development and use of ontologies for robotic applications. Particularly, it introduces a
classification of ontology-based approaches to robot autonomy, and discusses and compares
those approaches. Note that the focus is on frameworks that employ ontologies to support
robot autonomy rather than on particular ontologies that are designed for robots. At the end of
the chapter, the findings of this research are comprehensively analyzed and discussed, paying
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special attention to how they relate to the main topics addressed during this thesis. For
instance, the review revealed the lack of works conducting research on ontologies for
collaborative and industrial robotics, which was considered when selecting the target reality
phenomena to be conceptualized. Furthermore, no works were found that investigate the role
of ontologies in enabling robots to construct explanations, highlighting the necessity of
establishing the foundational aspects of ontology-based explainable robots.

2.1 Motive

Before investigating the role of ontologies in building explainable robots, it is vital to acquire a
thorough understanding of how ontologies have been used in the robotics literature,
identifying good practices and things to improve or to be done. The literature already contains
some efforts to survey the current research on the union of ontologies and robotics, which may
provide part of the desired understanding. Some of those surveys focused on particular robotic
tasks, and compared different knowledge-based approaches with respect to their suitability for
the investigated task. For example, Thosar et al. [Thosar et al., 2018] investigated the
suitability of nine robot knowledge bases in a household scenario, and for the task of replacing
missing objects that play a role in a task (e.g. a tool) with similar ones. They analyzed the
amount of knowledge represented in each of the frameworks and their research impact
through their number of citations. Each knowledge base was further studied with respect to the
following criteria: knowledge acquisition, representation formalism, symbol grounding,
modeling of uncertainty, and the inference mechanism. Another interesting study [Paulius and
Sun, 2019] provided an analysis of different knowledge representation aspects related to
service robotics. The authors first gave an overview of knowledge representations, with special
focus on cloud-based knowledge representations and cognitive architectures. Then, they
examined several knowledge-based models and their role in activity understanding and task
execution. Finally, it was argued that machine learning methods can complement knowledge
representation approaches, and they presented a set of key components for effective knowledge
representation for robots.

The two surveys provided a good amount of information about ontologies for robotics, but
focusing on narrow scopes: for specific tasks (e.g., object substitution or activity understanding),
and particular application domains (e.g. household or service robots). Indeed, none of them
tackled aspects that are relevant to this work such as: how ontologies can be used, for instance,
to create robots’ memories, or to generate explanations. Those and other questions are still
open, thus, this chapter conducts a review from a more general viewpoint, drawing a landscape
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of how ontologies are used to support robot autonomy.

2.2 Basics of ontology and autonomous robotics

In this section, we first introduce ontology as a knowledge artifact, and list some ontology
classifications that are relevant for later discussion. Then, we review the terminology used
in autonomous robotics, and some of the (computational) problems and capabilities that are
considered essential for agents’ autonomy.

2.2.1 Ontologies

Recall that an ontology is defined to be a logical theory consisting of a set of formulas whose
models approximate as well as possible the intended models, i.e., those models that satisfy
the conceptualization and the ontological commitments (the ontological principles one commits
to) [Guarino et al., 2009]. Being a logical theory, it consists of individuals, classes, functions,
relations and axioms. The exact list changes depending on the specific logic language one
adopts. Usually, an ontology is given in First-Order Logic (FOL), or in Web Ontology Language
(OWL). Individuals are the objects in the ontology, the things the ontology is about. Classes are
properties and are used to identify the individuals that satisfy that property. Functions are formed
from certain relations and can be used in place of an individual. Relations are connections across
individuals. Axioms are expressions in the language that use the previous elements to state what
is true in the ontology.

In domain studies, the term ontology is used to refer to a variety of things. For instance, for
Chandrasekaran et al. [Chandrasekaran et al., 1999] an ontology is a representation vocabulary
specialized to some domain and constrained by a conceptualization. It is also understood as a
domain theory about objects, properties and relationships among those objects that are possible
within a specified domain of knowledge. The purpose of an ontology in this sense is to provide
the knowledge structure for a particular domain, therefore, it focuses only on the viewpoint
taken within the domain, and it includes the relevant concepts for working in such domain. In
the literature, this latter use of the term is known as domain ontology while the characterization
introduced by Guarino and colleagues [Guarino et al., 2009] is general encompassing domain
as well as foundational ontologies that contain very general terms applicable across all domains.

Developing a domain ontology, one provides the description of a particular domain without
challenging the ontological perspective. The purpose is to make the domain knowledge explicit
and formal, i.e., to fix in a formal language the vocabulary and what the experts consider its
correct interpretation including the valid assertions in the domain. A domain ontology can help
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Figure 2.1: Different classifications of ontologies explained in this work. They are based on: the
language used to write the ontology, and the hierarchical level of the ontology.

to achieve data and model interchangeability within and across communities.
It is worth noting that there is no unique conceptualization of a domain. Having suitable

domain ontologies helps to clarify the differences as well as to compare the conceptualizations.

Types of ontologies

Ontologies can be classified along many dimensions, in this thesis we will consider the ones
depicted in Figure 2.1.

A classification based on the characteristics of the language used for the ontology is presented
by Uschold and Gruninger [Uschold and Gruninger, 1996]. It shows that the term ‘ontology’ is
sometimes used vaguely. That classification divides ontologies into four classes: highly informal,
semi-informal, semi-formal, and rigorously formal. However, following our previous discussion
of what is an ontology, we observe that the first class is not talking about ontologies: it refers to
linguistic resources or to knowledge repositories in an early phase of ontology construction.

Since the language of the ontology constrains how the ontology can be used in an
information system, this kind of classification is of primary relevance in the context of this
chapter. The first distinction we introduce is between informal and formal languages. By
informal we mean a language that does not have an associated formal semantics, like Resource
Description Framework (RDF), (part of) Unified Modeling Language (UML). They are mostly
dedicated to representation tasks and syntactic manipulation. Automatic reasoning in these
languages is not reliable because there is no systematic way to constrain their interpretation.
By formal we mean a language endowed with formal (e.g., Tarskian) semantics, that is,
languages whose interpretation is formally established. These languages, among which we find
FOL and OWL, are suitable for knowledge representation and reasoning since they are based
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on clear and exhaustive syntactic and semantic rules. They are among the most reliable
languages we have available in knowledge modeling. Among the formal languages, a further
distinction is of interest to us: decidable vs undecidable languages. Here decidable means that,
given a logical theory expressed in that language, there exists a method for determining
whether an arbitrary formula is derivable or not in the theory. Since ontologies are special
logical theories, an ontology written in a decidable language is decidable. A language is called
undecidable if it is not decidable. An ontology that uses a decidable language is also called
computational since it can be used at run-time for information extraction and verification, e.g.,
OWL DL. A formal ontology, which is not computational, like FOL, is not appropriate for such a
role since, when queried, it might not return an answer. Since for application purposes, the
answer to a query might need to be available very quickly, decidability is enriched with
computational complexity considerations [Papadimitriou, 2003].

Based on hierarchy, ontology classifications usually divide ontological systems into
upper-level, reference, domain and application. An upper-level ontology is an ontology that
focuses on widely applicable concepts like object, event, state, quality, and high-level relations
like part-hood, constitution, participation, and dependence. Examples are SUMO (Suggested
Upper Merged Ontology) [Niles and Pease, 2001], Cyc ontology [Elkan and Greiner, 1993],
BFO (Basic Formal Ontology) [Arp et al., 2015] and DOLCE (Descriptive Ontology for
Linguistic and Cognitive Engineering) [Borgo et al., 2021]. A reference ontology is an ontology
that focuses on a discipline with the goal of fixing the general terms in it. It is highly reusable
within the discipline, e.g., medical, engineering, enterprise, etc. [Guarino, 1998]. When the
ontology focuses on a more limited area, e.g. manufacturing or robotics, we call it a domain
ontology. This kind of ontology provides vocabulary about concepts within a domain and their
relationships, about the activities taking place in that domain, and about the theories and
elementary principles governing that domain. The concepts in domain ontologies are mostly
specializations of concepts already defined in upper-level and reference ontologies, and the
same might occur with the relations [Gómez-Pérez et al., 2004]. An application ontology
contains all the definitions needed to model the knowledge required for a particular
application, e.g., a polishing or kitting robotic system. In this regard, this thesis contributes to
novel domain and application ontologies.

2.2.2 Autonomous robotics

Autonomy is a desirable quality for robotic agents in many application domains, especially
when the robot needs to act in real-world environments together with other agents, and when
the environment changes in unforeseeable ways. Robot autonomy is further critical when
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employed under certain legal and ethical constraints (e.g., a robot assistant at the hospital, or
an industrial collaborative robot cooperating with humans). Apart from the dictionary and
subjective definitions, there exist several attempts to define the term. For instance, the ISO
8373:2021 [ISO 8373:2021, 2021], which defined robotics vocabulary, included a definition of
autonomy. However, no broad consensus on this matter has been reached so far. Indeed, Beer
et al. [Beer et al., 2014] presented a comprehensive analysis of existing definitions in several
domains including robotics, and proposed their own definition of autonomy:

The extent to which a robot can sense its environment, plan based on that environment, and act
upon that environment with the intent of reaching some task-specific goal (either given to or

created by the robot) without external control

Computational problems and capabilities

Autonomous systems can be based on different architectures with different levels of complexity
ranging from simple reactive architectures to deliberative architectures or cognitive
architectures. Reactive systems are based on simple sense-act loops, while deliberative systems
employ more sophisticated sense-decide-act loops to endow the system with reasoning and
decision-making capabilities. However, it is still an open question what the computational
capabilities are that enable human-level cognition, and how these are structured in a cognitive
architecture. Vernon et al. provided a thorough discussion about this topic [Vernon et al.,
2007]. The authors presented a broad survey of the various paradigms of cognition, addressing
cognitivist approaches (physical symbol systems), emergent, connectionist, dynamical, and
enactive systems, and also efforts to combine the different approaches in hybrid systems. Then,
a review of several cognitive architectures drawn from these paradigms was surveyed. An
extension of that survey was provided by Vernon [Vernon, 2014]. In that last work, Vernon
referred to the key architectural features that systems capable of autonomous development of
mental capabilities should exhibit [Langley et al., 2009].

In this work, we follow Langley’s thoughts, precisely concerning about what are the
functional capabilities an autonomous robot should demonstrate, more than how those
functional modules should interconnect [Langley et al., 2009]. Therefore, instead of proposing
a novel cognitive architecture, which is out of the scope of this chapter, we only make sure to
address all terms related to those functional capabilities provided in Langleys’s work, which are
explained in the Section 2.3.2 and listed below:

1. Recognition and categorization;

2. Decision making and choice;
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3. Perception and situation assessment;

4. Prediction and monitoring;

5. Problem solving and planning;

6. Reasoning and belief maintenance;

7. Execution and action;

8. Interaction and communication; and

9. Remembering, reflection, and learning.

2.3 A classification of ontologies for autonomous robots

In this section, we present the classification that will be utilized to structure and perform the
review of the selected works in Section 2.4. The classification is split into three dimensions: (a)
ontology scope, (b) reasoning scope and (c) application domain scope.

2.3.1 Ontology scope

Ontologies can be organized as networks of modules, which can themselves be ontologies, each
focusing on a specific topic. The scope of a module is given by the range of categories that it
covers. In this section, we propose a list of categories particularly relevant in autonomous
robotics such as Sensor, Capability, and Action. Our aim is to find how these categories
have been used in the literature and to provide an initial discussion about their actual meaning.
References to more detailed discussions in the literature are also provided. The Oxford
dictionary [OED, 2024] is used to provide informal definitions, to discuss how the terms are
understood in common and conventional ontologies, and to highlight the different usage in the
robotics field. In Section 2.4.1, we analyze whether or not each of the surveyed projects defines
these categories and how.

Note that many concepts relevant to autonomous robotics lack a universally agreed meaning.
Moreover, terms commonly used in the robotics field are also often part of everybody’s everyday
speech. Hence, everybody has some intuitive definition of these terms that is often heavily
influenced by personal experience, and thus it may be substantially different from that of other
people. Appendix B.1.1 introduces the complete list of considered categories with their most
widely agreed meanings, and provides a brief comparison between the different viewpoints.
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2.3.2 Reasoning scope

This scope of reasoning is our second classification criterion for the comparison between
ontology-based approaches in autonomous robotics. It is considered a categorization of
ontology-based reasoning tasks that are in particular relevant for autonomous robotics, which
have been considered in previous works. Indeed, this categorization is based on the nine
functional capabilities presented in Section 2.2.2 which every autonomous robot should
exhibit [Langley et al., 2009]. In Section 2.4.2, we discuss how the surveyed projects use
ontologies to support each of these nine capabilities.

One of the keys to the success of knowledge-based approaches in autonomous robotics, is
the use of ontologies as enabler to help the robot to understand and reason about its
environment when executing tasks. For instance, implementing robotic applications that would
not be possible without the use of KR techniques, and which substantially enhance the state of
the art in autonomous robotics. The main research question is how the different software
components of integrated robot control and perception systems could be enhanced through the
use of ontologies and automated reasoning. In Appendix B.1.2, readers can find a definition of
the nine capabilities and an intuition of how ontologies can support them.

2.3.3 Application domain scope

The last classification criterion for the comparison between ontology-based approaches in
autonomous robotics is regarding to the application domain. In this section, we comment some
of the different application domains of robotics and the two principal domains we consider. In
Section 2.4.3, we discuss for which of the two domains each of the reviewed projects has been
designed and used.

Robotics is a multidisciplinary and versatile discipline whose application is present in wide
range of domains: Medicine, Industry, Assistance, Entertainment, Space, Military. Therefore, it
exists such a broad spectrum of application domains for robotics, that it is not possible to go
through all of them without excessively extending this chapter. In accordance with this thought
and following the classification of robotics devices published in the ISO 8373:2021 [ISO
8373:2021, 2021], we focus on two domains: Industrial and Service robotics. They both
include, if not all at least many, of the application sub-domains of interest for robotics (e.g.
medicine, military, collaboration, assistance, rescue, social, etc.). The ISO 8337:2021 specifies
a vocabulary used in relation with robots and robotic devices operating in both industrial and
non-industrial environments (service). It also provides definitions and explanations of the most
commonly used terms. In Section B.1.3 readers can find the definitions for Industrial and
Service robot, which were partially extracted from the ISO.
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2.4 Ontologies to support robot autonomy: literature

frameworks comparison

In this section, we provide a discussion and comparison of frameworks that use ontologies to
support robot autonomy. We perform a literature search restricted to a set of criteria such as
ontology scope, curation, or accessibility, see Appendix B.2.1 for the complete description. For
each framework that fulfills these criteria, it is provided a brief discussion in Appendix B.2.2. It
is also provided a short justification of why some relevant projects that do not fulfill all criteria
were not included (see Appendix B.2.3).

For the purpose of comparing the frameworks and projects described in Appendix B.2.2,
in this section we explore how each of the projects addresses the different aspects included
in the classification of ontologies proposed along the Section 2.3. Specifically, the ontological,
reasoning and application domain scopes of each of the selected works are thoroughly examined
and contrasted.

2.4.1 Comparing the frameworks based on their ontology scope

In this section, it is explored which of the terms discussed in the Section 2.3.1 are defined in
each of the selected frameworks/projects. Note that we only consider that a term is defined
when the natural language definition and/or the formalization are compliant with our domain.
Indeed, if the exact term is not defined but the desired notion is captured by a similar term, for
us, the concept is defined. Table 2.1 provides an overview of the concepts defined in each of the
works.

Object Most of the compared frameworks, define Object from an endurant perspective. In
both, KnowRob 1.0 and ORO, the exact term is not defined but it is used (from Cyc ontology)
the notion of Spatial Thing: The collection of all things that have a spatial extent or location
relative to some other Spatial Thing or in some embedding space. OROSU uses SUMO’s definition:
Corresponds roughly to the class of ordinary objects. Examples include normal physical objects,
geographical regions, and locations of Processes, the complement of Objects in the Physical class.
ROSETTA does not concern about spatial regions and only focuses on Physical Objects:
Every automated work cell consists of physical objects. Some objects, devices, are active and have
skills, while other, such as work pieces, are passive and are manipulated by the devices. PMK
proposes the use of WSObjectClass, which is split into: Artifact, Artifact Components

and Collections. For example, a cup (artifact) is an object that has body and handle (artifact
components) and could be served with saucer (collection). On the other hand, KnowRob 2.0,
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Term KnowRob 1/2 ROSETTA ORO CARESSES OROSU PMK

Objects Yes/Yes Yes Yes No Yes Yes
Environment map Yes/Yes No No No Yes Yes
Affordance No/Yes No Yes No Yes No
Action Yes/Yes No Yes Yes Yes Yes
Task No/Yes Yes Yes No No Yes
Activity No/No No No Yes No No
Behavior No/No No No No No No
Function No/No No No No No Yes
Plan No/Yes No Yes No No No
Method No/Yes No No No No No
Capability Yes/Yes Yes No No No Yes
Skill No/No Yes No No No No
Hardware Yes/Yes Yes Yes No Yes Yes
Software Yes/Yes Yes No No Yes Yes
Interaction No/No No No No No No
Communication Yes/No No No No No No

Table 2.1: List of relevant terms for the autonomous robotics domain, and their coverage in the
different chosen works. Yes and No state for when the term is or not covered by the ontology
of the specific framework. Note that in the cases when the term is needed and taken from the
upper ontology used within the framework, and/or when the knowledge is captured using a
similar term, it is considered that the term is covered. If the upper ontology contains the term
but it is not used, we consider that the term is not included.

based on the DUL Ontology, considers not only physical entities: Any physical, social, or mental
object, or a substance. Objects are always participating in some event (at least their own life), and
are spatially located. In CARESSES, we cannot find any definition in natural language but object
is defined as a subclass of the entity Topic, which is any theme a robot can talk about. We
understand that this last definition is not aligned to what is needed in our domain. Hence, we
claim that CARESSES does not define Object.

Environment map In both versions of KnowRob, it is possible to find the concept of
SemanticEnvironmentMap as a sub-class of Map. However, there is not any natural
language definition and it is not aligned to DUL (current upper ontology) yet. OROSU defines
places and environments where the robot works (e.g. CTRoom, EngineeringRoom,
OperatingRoom, which are sub-classes of Room and are connected to actions which are
expected to take place in there. PMK formalizes the notion of Workspace which has three
gradual sub-classes, Region (i.e., free and occupied regions), Physical Environment

(topology of the environment entities), and Semantic Environment (semantic information
of the workspace).
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Affordance The concept of Affordance is not exactly defined in any of the works which
are object of study, still, it is possible to find some definitions that partially capture the same
knowledge. ORO defines the property canBeManipulated which indicates if an object can
be manipulated and that the agent knows a grasping point for the object. Thus, if the object can
be manipulated, it is movable as well. OROSU also describes a property, in this case CanGrab,
which indicates that a device can grab an object. Even though in the latter it is not mentioned
the existence of any grasping point, it is implicit that if a robot can grasp an object it also knows
where to do it from. KnowRob 2.0 has recently also introduced a notion of affordance that
can be found in published ontologies, and also in a scientific publication that discusses this
concept [Beßler et al., 2020a]. In KnowRob 2.0, affordances are defined as the description of a
property of an object that can enable an agent to perform a certain task.

Action KnowRob 1.0 uses the definition provided by the Cyc ontology in which Action is
defined as an Event. ORO, while also using the formalization from Cyc, provides a more
concrete natural language definition of the term: The collection of Events that are carried out by
some "doer". Instances of Action include any event in which one or more agents effect some changes
in the (tangible or intangible) state of the world, typically by an expenditure of effort or energy.
Note that it is not required that any tangible object is moved, changed, produced, or destroyed for
an action to occur; the effects of an action might be intangible. In this definition emerges the
relevance of the agent or the entity which actually performs the action. KnowRob 2.0 takes
the term from the DUL ontology: An event with at least one agent that is a participant in it,
and that executes a task that typically is defined in a plan, workflow, project, etc. Again, the
figure of an agent taking part in the execution of the action is noted. PMK defines the notion
of ActionClass with three specifications: Task, Sub-task and AtomicFunction. Hence,
picking would be an action class whose task can be reachability-test, and it can have a sub-task
that provides a list of potential grasping poses. Similarly, in OROSU the notion of sub-task has
also been included to form complex actions. CARESSES and OROSU do not provide any natural
language definition for Action, even though they include the term in their ontology.

Task Most of the studied ontologies agree on the fact that there exists a relationship between
Task and Action. However, as stated in Section 2.3.1, there is not a common agreement on
the exact relationship, and each framework/project employs a distinct formalization. In the
ROSETTA ontology, Task is formalized as a disjoint with: Operation, Skill, Physical
object, and Property, but no further information is provided. Another example of
formalization is found in PMK, where Task is a sub-class of Action. ORO views it as an action
considered in the specific context of robotics. KnowRob 2.0 uses DUL’s definition: an event type
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that classifies an action to be executed.

Activity Only CARESSES covers the term of Activity, which is formalized as a sub-class of
Entity and has some sub-classes: Cooking, Reading, Sleeping, etc. Natural language
definitions are not provided.

Behavior None of the frameworks defines Behavior.

Function Just PMK includes a term related to Function, specifically, the notion of
AtomicFunction, a sub-class of Action. It refers to Function from a computational point
of view (e.g. Algorithm). In the other frameworks, it is used the concept of Algorithm to
define computational tools (OROSU) or provide some relations to express the intended (or
primary) function of objects (KnowRob 1.0). We consider that in these two last cases, it is not
possible to state that the term is covered by the ontologies.

Plan KnowRob 2.0 takes DUL’s definition of Plan: a description having an explicit goal, to be
achieved by executing the plan. Each plan defines a task that can be executed by following the
plan, however, there may be different plans defining the same task. The execution of a plan is
a situation that satisfies the plan, and that defines what particular objects will take what roles
when the plan is executed. ORO does not provide a definition in natural language, but from the
formalization, Plan is equivalent to a thing with a temporal extent, which is either a Situation
or a Time Interval. The ORO definition seems to be a bit inconsistent since, surely, a time
interval is not a plan in the common sense.

Method The only framework that captures the notion of Method is KnowRob 2.0, where the
definition provided by DUL is adopted: A method is a description that defines or uses concepts
in order to guide carrying out actions aimed at a solution with respect to a problem. This notion
is similar to the notion of Plan, but more general in that variations when following the same
method could satisfy different plans.

Capability The ROSETTA ontology defines Capability as a property of a skill while in PMK
the property has capability is defined as a property of a robot. In KnowRob 1.0, as part
of the module SRDL1, capabilities are considered to exist when the robot has a component which
enable them. In KnowRob 2.0, Capability is formalized as sub-class of Quality meaning that

1The Semantic Robot Description Language (SRDL) extends KnowRob with representations for robot hardware,
robot software and robot capabilities.
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agents have individual qualities that may change over time, i.e., due to attrition, new software
components being available, etc.

Skill The term of Skill is the core of the ROSETTA ontology where a skill represents an action,
that might be performed (by a device) in the context of a production process. Similarly to the task-
action dichotomy, skills are used to classify particular actions that occurred. However, it also
implies that the robot or device has the capability to manifest the skill.

Hardware component The specific term of Hardware component is not tackled in any of
the studied works. However, most of them address one or more concepts related to its notion.
The first version of KnowRob included the Semantic Robot Description Language (SRDL), which
considers representations for robot hardware, among others, however, KnowRob 2.0 no longer
supports it. OROSU, from SUMO ontology, makes use of the term Device which is an artifact
whose purpose is to serve as an instrument in a specific subclass of a process, where Artifact

refers to any object that is the product of a making. A similar definition is found in ORO, where
an Artifact is a specialization of inanimate object, and each instance of artifact is an at least
partially tangible thing that was intentionally created by an agent partially tangible (or a group of
them working together) to serve some purpose or perform some function. ROSETTA also includes
the term of Device: an active physical object which has some skills. These notions are used to
define Sensors. In PMK it is possible to find the terms Actor Class (e.g. robot components),
Sensor Class (e.g. device components), and also the term Artifact, but none of those
terms is defined using natural language. As we can see, definitions of hardware components are
closely related to the processes and events in which they play a role.

Software component KnowRob includes the Semantic Robot Description Language (SRDL),
which extends KnowRob with representations for robot software, among others. Terms related
to the notion of Computer-based Algorithm can be found in both OROSU and PMK.
ROSETTA ontology defines Software as an abstract which has some skills.

Interaction The term of Interaction is not defined in any of the frameworks we have
surveyed. Nevertheless, in PMK it is possible to find the notion of Interaction Parameter,
which is defined as a data property. Note that this does not mean that the notion of
Interaction is captured.

Communication In the ROSETTA ontology, Communication Property stands for the
description of the communication parameters. ROSETTA actually includes the term of
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Communication, but as a subclass of Device, which hinders the understanding of it.
Therefore, we cannot say that ROSETTA defines the notion of Communication which is
needed for our domain. Apart from that, the only complete and coherent definition related to
Communication is found in KnowRob 1.0, where the term of Communicating is taken from
the Cyc ontology. It is a specialization of purposeful action and characterized by one or more
information transfer events. Each instance of Communicating is an event in which the
transfer of information between agents is a focal action; communicating is the main purpose
and/or goal of the event.

2.4.2 Comparing the frameworks based on their reasoning scope

In this section, we analyze whether or not the different frameworks are used to support robots to
perform the cognitive capabilities presented in Section 2.3.2. Table 2.2 summarizes the results
of the analysis, showing the capabilities covered by each of the projects.

Recognition and categorization Ros et al. present a use-case where ORO is used to support
object detection by disambiguating incomplete information extracted from human-robot
interaction [Ros et al., 2010]. Specifically, the work proposes a scenario in which a human
provides vague instructions such as: look at that object, where the object can correspond to
several entities in the environment. The ontology is used to represent facts about the user’s
visual spectrum, and the description of objects so that the system is able to infer/recognize
which is the most likely object.

Within the framework of CARESSES, Menicatti et al. [Menicatti et al., 2017], introduce an
approach for human activity recognition where cultural information (represented using
ontologies) drives the learning improving the performance of the classification/categorization.
Three human activities are considered: lying on the floor, sleeping on a futon and sleeping on a
bed. Specially, lying on the floor and sleeping on a futon are extremely similar classes, thus,
cultural knowledge (e.g. user is from Japan), is shown to improve the performance of the
recognition algorithm.

KnowRob 2.0 is concerned with acquiring experiential knowledge from observations. One
of the considered modalities is the virtual reality where force interactions can be monitored
trivially. However, the intention and the task that the human executes might be unknown.
KnowRob uses ontologies to represent tasks as patterns of force interactions, and state changes
to be able to recognize high-level activities given force event and state observations [Beßler
et al., 2023].
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Cognitive Capability KnowRob ROSETTA ORO CARESSES OROSU PMK

Recognition and cate-
gorization

[Beßler
et al., 2023]

- [Ros et al.,
2010]

[Menicatti
et al., 2017]

- -

Decision making and
choice

- - - [Bruno et al.,
2019b]

- [Diab et al.,
2018], [Diab
et al., 2019]

Perception and situa-
tion assessment

[Beetz et al.,
2015b]

- [Ros et al.,
2010],
[Sisbot
et al., 2011]

- - [Diab et al.,
2019]

Prediction and moni-
toring

[Tenorth and
Beetz, 2012]

- - - - -

Problem solving and
planning

[Beßler
et al., 2018],
[Tenorth and
Beetz, 2012]

- - - - -

Reasoning and belief
maintenance

[Beßler
et al., 2018],
[Tenorth
et al.,
2010a]

- [Warnier
et al., 2012]

[Bruno et al.,
2019b]

- [Diab et al.,
2019]

Execution and action [Beetz et al.,
2010],
[Tenorth
et al., 2014],
[Tenorth
et al.,
2010b]

[Stenmark
et al., 2015]

- [Sgorbissa
et al., 2018]

[Gonçalves
and Torres,
2015]

-

Interaction and com-
munication

[Yazdani
et al., 2018]

- [Ros et al.,
2010],
[Lemaignan
et al., 2011]

[Bruno
et al.,
2018, Bruno
et al.,
2019b]

- -

Remembering, reflec-
tion and learning

[Beetz et al.,
2018],
[Beetz et al.,
2015c]

[Stenmark
et al., 2017],
[Topp et al.,
2018]

- - - -

Table 2.2: List of cognitive capabilities for the autonomous robotics domain and their coverage
in the different chosen frameworks/ontologies. It is possible to find the reference to the articles
in which the different reasoning capabilities are addressed using the ontologies.

Decision making and choice In the context of CARESSES, the robot builds a model of a
person, which is represented using the ontology. The robot adapts its behavior to the facts of the
knowledge base, however, the adaptation to the user is really slow using the ontology. Therefore,
it is also used a Bayesian Network for speeding up the adaptation to the person by propagating
the effects of acquiring one specific information onto interconnected concepts [Bruno et al.,
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2019b].

Diab et al. describe a robot system which adapts the execution of plans with the support of
the PMK ontology [Diab et al., 2018, Diab et al., 2019]. Based on the beliefs about the workspace
(reachability of objects, feasible actions to execute, etc.), the system makes decisions about the
distribution of actions among different robotic arms, and also about action’s parameters, slightly
modifying the original plan.

Perception and situation assessment A situation assessment reasoner, which generates
relations between objects in the environment and agents’ capabilities, is presented in the
context of ORO [Sisbot et al., 2011]. Being fully integrated into a complete architecture, this
reasoner sends the generated symbolic knowledge to a fact base which is built on the basis of
an ontology and which is accessible to the entire system. The authors discussed how, based on
spatial reasoning and perspective taking, the robot is able to reason from the human’s
perspective, reaching a better understanding of the human-robot interaction.

Ros et al. present a use-case where ORO is used to disambiguate incomplete information
extracted from human-robot interaction [Ros et al., 2010]. Specifically, the work proposes a
scenario in which a human provides vague instructions such as: ‘look at that object’, where the
object can correspond to several entities in the working environment. Therefore, the robot is
able to assess which is the situation of the environment using the ontology.

One example of a knowledge-based perception system is RoboSherlock [Beetz et al., 2015b].
It uses IBM’s UIMA architecture to implement an assembly of perception experts. The problem
is that there is no single pipeline that can handle all the different perception tasks, e.g. the
pipeline for detecting transparent or shiny objects would be different from the one to detect
"regular" objects. RoboSherlock uses KnowRob to define what the different perception experts
are, what input they expect, what output they generate, etc. This information, together with
background knowledge KnowRob provides, is used for the dynamic composition of perception
pipelines.

Finally, in the PMK framework, a tagged-based vision module is proposed [Diab et al.,
2019]. In this module, the tags are used to detect the poses and IDs of world entities and assert
them to the PMK to build the domain knowledge. Then, a reasoning mechanism is used to
provide the reasoning predicates related to perception, object features, geometric reasoning,
and situation assessment. Particularly, for situation assessment, an evaluation-based analysis is
proposed which generates relations between the agent and the objects in the environment
based on the perception outcomes, being these relations used later to facilitate the planning
process.
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Prediction and monitoring One important aspect for robots that do manipulation tasks is
to predict the effects of actions. KnowRob 1.0 introduced the notion of pre- and post-actors
of actions [Tenorth and Beetz, 2012]. Pre-actors are the entities that must be known before
the robot may execute the action, and post-actors describe what is expected when the action
is successfully executed. For example, the task of cracking an egg would have a pre-actor of
type egg that takes the role of being the destroyed entity in the action, while the yolk and
the shell would be considered as created entities. Hence, the robot can predict what action it
needs to execute in order to obtain some egg yolk, e.g. in case egg yolk is required in a recipe
that the robot tries to cook. In KnowRob 2.0, the pre- and post-actor relations are replaced
by corresponding role concepts describing roles that need to be taken by some entity when an
action is performed.

Problem solving and planning KnowRob 2.0 uses ontologies for dynamic plan generation.
This has been elaborated with respect to assembly tasks [Beßler et al., 2018]. The rationale is
that the goal state, a fully assembled product, is described in an ontology, and that the robot
compares its belief state with the goal state in order to infer what steps are required, and what
objects are missing to build the product from parts that are available. KnowRob 1.0, on the other
hand, used action definitions axiomatized by roles that are separated into input and output of
the action, and, in addition, defined a partial ordering on steps of a task [Tenorth and Beetz,
2012]. This information was used to generate possible sequences of steps that would execute a
task such as making pancakes.

There are some works in which the knowledge used to generate a plan is represented using
an ontology. However, unlike the other works presented above, the ontology is not directly used
to generate the plan, it only complements the planning. Therefore, we exclude those works
from Table 2.2, but it is worth mentioning them. For instance, KnowRob 1.0 has been used to
represent motion constraints that were used by a constraint-based motion planner to generate
appropriate motions for the task ahead, and the objects involved [Tenorth et al., 2014]. Another
example is PMK [Diab et al., 2019], which can serve as a tool for any planner to reason about
task and motion planning inference requirements, such as robot capabilities, action constraints,
action feasibility, and manipulation behaviors.

Reasoning and belief maintenance As we are only considering frameworks that use
ontologies, one can also expect that some form of reasoning is supported. Be it via a standard
reasoner, or by some custom rules that can infer new facts from given ones. For example, PMK
and KnowRob both use predicate logic rules to work with knowledge encoded in ontologies.
However, belief maintenance is not covered by all considered systems.
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Regarding ORO, Warnier et al. propose a novel algorithm for belief maintenance, which
relies on the use of the ontology to represent the environment’s facts [Warnier et al., 2012]. The
robot builds an individual symbolic belief state for each agent participating in the task.

Within the CARESSES project, Bruno et al. [Bruno et al., 2019b], present an algorithm for
belief maintenance of person-specific knowledge, using cultural knowledge to drive the search.

Diab et al. [Diab et al., 2019], propose to use the PMK ontology to generate semantic maps of
the robot’s workspace enhancing its belief maintenance. By means of computer vision methods,
the robot detects objects and their properties (e.g. poses) and, using the ontology, it stores
a symbolic representation of the workspace. A reasoning process over those symbolic beliefs
allows to make assumptions about abstract spatial relations (e.g. cup on the table).

KnowRob 2.0 also maintains a belief state [Beßler et al., 2018], however, there is no detailed
documentation about how the belief state is maintained, and how the system would cope with
contradictory information. However, a notion of SemanticMap exists in the KnowRob ontology,
and it has been used in KnowRob 1.0 to build environment representations that include spatial
information and encyclopedic information about objects in the map [Tenorth et al., 2010a].

Execution and action In order to enhance robot autonomy when executing actions,
ROSETTA proposes a system that translates high-level task-oriented language (ontology-based)
into either the robot’s native code, or calls at the level of a common API like, e.g., ROS, or both.
This system is capable of handling complex, sensor-based actions, likewise the usual movement
primitives [Stenmark et al., 2015].

Related to CARESSES, Sgorbissa et al. discuss how guidelines describing culturally
competent assistive behaviors can be encoded in a robot to effectively tune its actions, gestures
and words [Sgorbissa et al., 2018]. In the same context, an online constraint-based Planner is
used together with the cultural knowledge base to adapt the execution of the robot’s
actions [Khaliq et al., 2018]. When launched, the planner requests operators and actions from
the Cultural Knowledge Base. During execution it listens for new goals, updates on the
execution status of actions, and messages about the state of the environment and people in the
environment.

Gonçalves et al. discussed how the use of the OROSU ontology is beneficial to track the
execution of actions of robotics systems in medical (surgical) scenarios [Gonçalves and Torres,
2015]. In this work, the main purpose is to adapt the robot pose to possible unexpected motions
while performing drilling tasks during surgery. The robot pose adaptation is performed following
the approach presented in [Torres et al., 2015]. The overall process is modeled with the OROSU
ontology, which controls the robot’s actions and sub-actions and allows the user to follow the
sequence of those actions.
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The Cognitive Robot Abstract Machine (CRAM) is a plan executive that is grounding abstract
plan descriptions such that they become executable by robots [Beetz et al., 2010]. To find
suitable task instantiations, CRAM uses KnowRob to, e.g. query for objects in the belief state,
where they are located, how they can be operated, etc. The queries to the knowledge base are
explicit steps in the plan instantiation procedure of CRAM. Nowadays, CRAM has switched to the
second generation of KnowRob. KnowRob 1.0 has further been used to ontologically describe
motion constraints that are used by a constrained-based motion controller to generate motions
that execute a specific task [Tenorth et al., 2014]. KnowRob 1.0 has also been used to transform
vague task descriptions in natural language from the Internet to an ontological representation
using WordNet to disambiguate word senses [Tenorth et al., 2010b]. Finally, the ontological
representation is mapped into the robot’s plan language such that the robot can execute the
task.

Interaction and communication Lemaignan et al. present a simple natural language
processor which employs ORO to allow robots to dialog with humans [Lemaignan et al., 2011].
The robot parses English sentences and, by means of the knowledge base, infers the sense of
the sentences and answers the human (both in English and with RDF statements). Again using
the ORO ontology, in a scenario where a robot disambiguates the information provided by the
user [Ros et al., 2010], the ontology triggers the robot-human interaction (e.g. asking the user
for further information).

In the scope of CARESSES, Bruno et al. describe two scenarios where human-robot speech-
based interaction is adaptable by means of cultural knowledge-based assumptions [Bruno et al.,
2018, Bruno et al., 2019b]. The system stores knowledge about the cultural information of the
users, which is used by the robot’s finite state machine to control the interaction.

KnowRob 2.0 was used and extended in a research project that was concerned with mixed
human-robot rescue tasks [Yazdani et al., 2018]. The scenario is that a team of different robots
has to locate an avalanche victim in hilly terrain where, first, a flying robot scans the area, and
then, after the victim is found, the robot communicates the particular location, and an image
captured by its camera to the human operator, and to the other robots. KnowRob’s ontology is
used to represent the communication acts. However, the communication was not natural but
was using a custom protocol.

Remembering, reflection, and learning Different approaches combining ontologies and
robot learning are proposed in the context of ROSETTA. First, ontologies are used to support
kinesthetic teaching so that the learned primitives are semantically represented as
skills [Stenmark et al., 2017]. Second, Topp et al. discuss how the representation of already
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learned robot skills enhances the transfer of knowledge from one robot to others [Topp et al.,
2018].

KnowRob 2.0 introduces the notion of narrative-enabled episodic memories (NEEMs) [Beetz
et al., 2018]. Each time a robot performs a task, a detailed story about the activity is stored.
The story includes a narrative represented in an ontology that describes what events occurred,
when they occurred, and what objects play what roles in the events. The narrative is coupled
with control-level data such that learning mechanisms can correlate parts of the narrative to the
control-level data that was monitored during execution. Earlier, in the context of KnowRob 1.0,
the knowledge web service openEASE was introduced [Beetz et al., 2015c]. openEASE is used
as a central storage for experiential knowledge, and it has been adopted for KnowRob 2.0 as a
storage for NEEMs.

2.4.3 Comparing the frameworks based on their application domain scope

In order to finish the comparison of the different works, in this section, we discuss in which
domain they have been applied. Recall that, following the classification proposed in
Section 2.3.3, two main domains are considered: industrial and service robotics. Along this
section, we will specialize those upper-level domains into the more specific sub-domains where
the frameworks were used.

In principle, it is noticed that most of the frameworks were conceived to be used in service
scenarios. Indeed, the only framework that is intended to be used in industrial scenarios is
ROSETTA, whose case studies solve industrial problems such as: human-friendly robot
programming, safe human-robot interaction, etc. Moving to the frameworks focused on service
robotics, ORO proposes case studies where the robot is meant to perform everyday activities
which usually take place in houses or similar environments such as human activity recognition,
human-robot speech interaction, etc. Closely related to it, we find the case of KnowRob, which
is used in the framework of household scenarios, but also in scenarios where the robot is
expected to perform some professional service tasks (e.g. cooking, in-store logistic processes,
etc.). PMK presents case studies where the main objective is to enhance robot manipulation,
which is a general-purpose robot ability that could potentially be used in a wide range of
scenarios. Nevertheless, PMK has not been used nor thought to be used in industrial scenarios,
thus, we can consider it behind the umbrella of the service robotics domain. CARESSES is
entirely developed for the assistance of elder people by means of autonomous robots with
cultural-related knowledge. Finally, OROSU is mainly applied to the medical domain,
particularly, the surgical robotics sub-domain. In Table 2.3, we provide a summary of the
previous discussion.
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Framework KnowRob ROSETTA ORO CARESSES OROSU PMK

Application Domain Service Industrial Service Service Service Service

Table 2.3: Application domain for each chosen work.

2.5 Discussion

The first classification criteria proposed in our work concerns the ontological scope of the
projects, namely which terms are covered by the projects’ ontologies (see Section 2.3.1).
Looking at Table 2.1, we can see how most of the projects include the terms Action and Task

to capture the notion of robots acting and causing changes in their environment. In the same
table, we observe that Behavior, Function and Method are only rarely covered. This is
rather surprising given the fact that they are extremely related to applications where agents
execute actions. We think that this is the case due to their polysemous nature, therefore, more
work is needed in order to come up with a standard definition for them. Some other terms
such as Plan, Capability, Hardware and Software are defined by at least half of the
surveyed projects, which indicates that they are relevant for the domain but still it is necessary
to continue working on them. We also discovered that the terms Interaction and
Communication are not defined in any of the projects, even though some projects propose
scenarios where robots interact and communicate with other agents (e.g. humans). Hence, no
reasoning is done in this regard, and it would be helpful to continue exploring human-robot
interactive scenarios (e.g. collaborative or assistive) to formalize the domain knowledge.
Surprisingly, some other terms with strong connotations in robotics such as Activity and
Skill are only rarely considered in formal models. In general, we have identified the
existence of inconsistencies and different points of view from one framework to another.
Therefore, we believe that it is necessary to work towards an agreement on the definition of the
relevant terms in our domain.

Regarding the second classification criteria (see Section 2.3.2), it was analyzed which
cognitive capabilities of autonomous robots have already been supported by the ontologies of
each of the projects. Our review has shown that a wide range of cognitive capabilities are
already covered, at least in a prototypical way, by ontology-based approaches (see Table 2.2).
Of the nine cognitive capabilities considered in this work, two are commonly tackled within the
studied frameworks: reasoning and belief maintenance, and execution and action. Reasoning
and belief maintenance are well supported by many ontology formalisms as standard reasoners
exist that can perform these tasks automatically. On the other hand, robots are essentially
developed to automatize the execution of actions; hence, it is understandable to find several



36 Reviewing ontological models for autonomous robots

works tackling this task. Surprisingly, the literature falls short of comprehensively addressing
some important cognitive capabilities. For instance, just a few works discussed the use of
ontologies to support recognition and categorization. We defend that more research should be
done toward this, because the inference power of ontologies would be a great tool to recognize
and categorize different robot’s experiences (e.g. collaborative and adaptive events). There is
also a lack of works discussing the use of ontologies for robotic decision making, problem
solving and planning. Probably, the existence of other widely used formalisms to do planning
(e.g. PDDL) is the principal reason which partially explains this fact. However, we think that
ontologies for robots should have more presence in the decision making and choice literature.
Robot ontology-based decisions would certainly be sound, and ontologies might be a great
abstraction for modeling decisions that are more general than those made in plans.
Furthermore, a formal representation of robots’ decisions would play an important role in
explainable robotics. In this regard, the review also revealed that ontologies have been used for
robot learning tasks and to store robot memories. Those contributions might seed some light
on some of the issues that arose from the current trend of using non-explainable machine
learning approaches. However, there are no specific works that focused on ontology-based
robot’s reflection and explanation generation, thus, further research shall be conducted in this
direction aiming for trustworthy robots. These conclusions influenced our research, thus this
thesis presents contributions regarding ontology-based approaches for: recognition of robot
experiences, robot decision making and explainable robotics.

Lastly, we also studied the application domain of the selected projects. Most of the projects
were conceived with the purpose of being used in service robotics applications. Indeed, just
ROSETTA was specifically designed for industrial robotics applications. It is true that the rest
of the frameworks could be adapted to be useful in industrial settings too. However, we think
that putting the focus on those industrial applications would translate into the formalization
of domain knowledge that is not covered in the literature (e.g. collaborative events, safety
issues, etc.). Hence, this thesis addresses the challenge of modeling the domain knowledge of
collaborative industrial tasks, of course, aiming for conceptualizations that are as general and
reusable as possible.

Considering the work presented in this chapter, it is possible to state that ontologies have
proved to be valuable for the robotics domain in order to support robot autonomy. It is true,
however, that the great effort made by all the frameworks discussed in this chapter should be
continued and extended with new applications. Furthermore, it is still pending to promote
the reuse of existing ontologies, which seeks for homogeneity and interchangeability among
different frameworks. This will only be possible if researchers share and properly document their
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contributions. In this regard, we have summarized the content of our review on a web page2

where users can access the major findings of our work. Our aim is to continuously maintain
and improve this page to provide researchers and ontology users easy access to related work.
Specifically, the page allows to search/select by projects and by each of the three scopes proposed
in our work.

As a final remark, we consider that all the projects analyzed in this chapter provide enough
information to allow to reuse and reproduce their results. However, KnowRob is by far the
framework with the best existing documentation, including: code, ontologies, as well as wiki
pages explaining how to install and to use all its different tools. Hence, we decided to use it as
the general knowledge representation and reasoning framework for the ontology-related works
presented in this thesis. Note that this obviously conditioned some of the decisions made during
the ontological modeling (e.g. selection of an upper-level ontology, used formal language, etc.).

2https://ease-crc.org/ontology-survey-2019

https://ease-crc.org/ontology-survey-2019




chapterthree
Inferring the intentions of humans in
collaborative experiences

” ..ogni forma di vita poggia su movimenti intenzionali aventi
uno scopo non soltanto in se stessi..

— Maria Montessori
(La mente del bambino: Mente assorbente)

The literature review discussed in Chapter 2 suggests analyzing and conceptualizing the
knowledge of interest from human-robot collaborative scenarios. It was also discovered that it
would be especially convenient to explore the use of ontological conceptualizations to support
robots’ cognitive capabilities such as decision making and choice, and recognition and
categorization. We will start by implementing a real human-robot collaboration example to
gain first-hand experience. This will be used to identify reality patterns from the robots’
perspective that need to be conceptualized. In a collaborative context, certainly one of the most
relevant aspects for robots to recognize is the intention of their human collaborators, which can
be used during robots’ decision making. Hence, this chapter investigates the development of a
robotic system to recognize and categorize the intention of humans for later robot adaptation.
The work contributed with a novel dataset of physical human-robot interaction, and two
methods for human intent recognition that were trained and evaluated using the dataset. It
was also evaluated how well the system generalized to new users (N=15), in a scenario
inspired by a realistic industrial application. By the end of the chapter, it is also discussed how
this work helped framing the scope of the conceptualized ontological models presented in this
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thesis. For instance, the research revealed that there might be different types of collaboration,
also that when the intention was not properly recognized, the collaborative event might be
interrupted, because the robot and the human no longer had a shared intention (i.e. plan).
Indeed, when such misalignment occurred, informing users about the robot’s inference was
found to be useful, which is aligned with the idea of maintaining a mutual and shared
understanding and the need for explainable robots.

3.1 Motive

In the last years, the figure of Collaborative Robots or Cobots has emerged [Michalos et al.,
2014, Tsarouchi et al., 2017, Wang et al., 2019]. These robots are specifically designed for direct
interaction with a human within a defined collaborative workspace [Roy and Edan, 2020]. Note
that meaningful human-robot collaboration requires freeing robots from their work cells and
putting them closer to operators, possibly compromising human safety [Michalos et al., 2015,
Villani et al., 2018]. In this regard, collaborative robots have meant great progress towards a
safe coexistence of operators and industrial robots. Nevertheless, scenarios where humans and
robots closely share the space and the execution of a task require the use of robots equipped
with complex cognitive capabilities [Someshwar and Edan, 2017].

This thesis aims to explore the relevant knowledge involved in cognitive robot capabilities
(e.g. recognition or decision making) in collaborative scenarios. Intuitively, one might observe
a relationship between the complexity of those capabilities and how advanced the
collaboration is. Indeed, Bauer et al. [Bauer et al., 2016] proposed a taxonomy of five levels of
cooperation between robots and humans (see Fig. 3.1). The authors stated that most of the
current real applications of industrial robots are based on the cooperation levels coexistence and
synchronized [Someshwar et al., 2012, Someshwar and Kerner, 2013]. It seems reasonable to
think that the most advanced levels will offer a richer exploration to our purposes. Hence,
motivated by the scarcity of applications where more complex levels of cooperation are
addressed, this chapter discusses an approach focused on a scenario corresponding to the fifth
level, collaboration. This hands-on experience serves two purposes: aiding in the framing of the
ontological scope of the models presented in this thesis and advancing the state-of-the-art in
human-robot close collaboration. Fig. 3.2 depicts the proposed setup, where a human and a
robot exchange forces while sharing the execution of a task inspired by a realistic industrial
scenario.
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(a) Cell. (b) Coexistence. (c) Synchronized.

(d) Cooperation. (e) Collaboration.

Figure 3.1: Human-robot cooperation levels in industrial environments. (a) The level cell
involves no collaboration at all, the robot remains held inside a work cell. (b) Coexistence
removes the cell but humans and robots do not share the workspace yet. (c) Synchronized
allows the sharing of the workspace but never at the same time, humans and robots operate
in a synchronized manner. (d) In the level cooperation the task and the workspace are shared,
but humans and robots do not physically interact. (e) The level collaboration considers full
collaboration where operators and robots exchange forces.

3.2 Related work

The literature contains multiple data sets for human-robot interaction, although most of them
focused on social robotics scenarios, where the most common mean of interaction is not
physical but verbal. Those data sets usually contain video, speech (audio and transcripts),
robot joint-sate, physiological data (e.g. bio-signals) or subjective data in the form of
questionnaires [Mohammad et al., 2008, Jayagopi et al., 2013, Bastianelli et al.,
2014, Celiktutan et al., 2019, Webb et al., 2023]. There are also some data sets capturing robot
force/torque data, but extracted from scenarios in which robots and humans do not interact.
Yu et al. [Yu et al., 2016], presented a dataset in the context of pushing tasks where a robot
pushes an object along a specific surface. For each combination of an object’s shape and a
surface’s material, the dataset contained forces measured in the pusher and the poses of both
the object and the pusher. Another interesting dataset involving forces was introduced by De
Magistris et al. [Magistris et al., 2018], where authors recorded a force-signal dataset used to
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(a) Robot hardware components. (b) User pose with respect to the robot.

Figure 3.2: Proposed scenario inspired by an industrial collaborative robotic task in which the
robot adapts its state to the human’s intention. (a) The force sensor is used to infer the human’s
intention, the armband is used to inform the user about the robot’s internal state, and the piece
adapter eases the grasping of the object. (b) While the robot holds the object, the human
performs a frontal polishing of it. Three different operator intents are considered: polishing,
moving the robot to another pose, and grabbing the object.

learn peg-in-hole robot tasks. The dataset comprised force-torque and pose information for
multiple variations of convex-shaped pegs. Huang et al. [Huang and Sun, 2018], introduced a
dataset containing force/torque signals and poses of an end effector tool. Data was recorded
from humans performing a set of different motions making use of the same tool that the robot
would use, enabling the transference of knowledge. Those works were great advances toward
the development of statistical algorithms that can effectively generalize and thus perform
robotic tasks without explicit instructions. In this regard, it would be great if collaborative
robots had the ability to generalize to different users and situations when performing tasks that
require exchanging forces with humans, thus, a novel dataset is proposed in this work.

There are several research works discussing applications where humans and robots
physically interact. However, in many of the cases, the force exchange between humans and
robots is ignored or undesired. Cherubini et al. [Cherubini et al., 2016], discussed a
collaborative scenario where a human and a robot shared the task of rzeppa homokinetic joint
insertion. In their proposal, the robot just remained stiff, and the force-based information was
not used in the decision making of the robot (e.g. to adapt its state). Maurtua et al. [Maurtua
et al., 2017], conducted a set of experiments aimed at measuring the trust of workers on
fence-less human-robot industrial collaborative applications. In all their experiments, the force
was undesired, thus the robot stopped when an external force was detected. De Gea Fernández
et al. [de Gea Fernández et al., 2017], described an industrial situation in which two robotic
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arms collaborate with an operator. Both robots avoided any physical interaction with the
human as long as possible, and when a physical interaction occurred, they remained in a
compliant mode, thus the force was ignored. Raiola et al. [Raiola et al., 2018], addressed the
problem of learning virtual guiding fixtures, analogous to the use of a rule when drawing, in
human-robot collaboration. Even though there was physical interaction during the task
execution, the robot did not react to the force while guiding the human. In the work presented
by Munzer et al. [Munzer et al., 2018], a human and a robot performed sub-tasks of a shared
task: wooden box assembling. The robot and the human shared forces and the robot was able
to adapt to the situation, but not using the force, just using vision, or being explicitly asked to
do it by voice commands or instructions using a graphical interface.

Closer to our research, the literature also shows some recent works in which robots adapt
their behavior based on the physical interaction between humans and robots. Losey et
al. [Losey et al., 2018], conducted a comprehensive review of intent detection and other
aspects within the context of shared control for physical human–robot interaction. It is
especially interesting how the paper was structured, talking about three aspects covered in our
work: user intent recognition, shared control between humans and robots, and methods to
inform the human operator about the robot’s state. Peternel et al. [Peternel et al., 2018],
estimated human fatigue to adapt how much a robot was helping in human–robot collaborative
manipulation tasks: sawing and surface polishing. Rozo et al. [Rozo et al., 2016], proposed a
framework for a user to teach a robot collaborative skills from demonstrations. Their approach
combined probabilistic learning, dynamical systems, and stiffness estimation to encode the
robot’s behavior along with the task. Hence, the method allowed a robot to learn not only
trajectory-following skills, but also impedance behaviors. Those two works focused on robot
adaptation at the low-level control, while in our research the focus is on adaptation at the
symbolic level of the task. Mazhar et al. [Mazhar et al., 2018], proposed a scenario where a
human and a robot physically interacted through a handover of an object. Force signals were
used to identify different phases of the sequence of actions. For instance, when a force
threshold was exceeded, the system interpreted that the robotic hand should close to grasp the
object. Zhao et al. [Zhao et al., 2018], presented an operator’s intention recognition approach
inspired by a collaborative sealant task. The intentions, rather similar to ours, are also used to
adapt the state of the robot, just as in our work. However, the interactions they proposed are
simplistic as the classes could be discriminated by using force thresholds. The novel dataset
recorded for our work not only includes simple mechanical movements, but also more natural
human-robot interactions. Finally, Gaz et al. [Gaz et al., 2018], introduced a new robot control
algorithm for a collaborative polishing task, quite similar to the one discussed in this chapter.
However, there are major differences between our works. First, they only considered two
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intentions and thus two robot modes: stiffness (while polishing), and compliance (while
modifying the end effector orientation). Second, they did not propose a learning method to
recognize the human’s intentions, the cases were differentiated because the human applied
force to different parts of the robot.

3.3 Force-based dataset of physical human-robot

interaction

In this section, we provide all the relevant information related to the novel dataset [Olivares-
Alarcos et al., 2019b] that is used along the evaluations presented in this work. The dataset
consists of force/torque signals resulting from the physical human-robot interaction during the
performance of a collaborative task consisting on polishing a piece. The dataset is geared to
teach robots to identify and predict humans’ intentions during the shared task.

3.3.1 The target industrial collaborative robotic scenario

In this work, it is considered a realistic industrial scenario inspired by a manufacturing line of
car emblems. The focus is on one sub-process where the emblems are to be coated, and they
must be totally clean and polished. Nowadays, the plant operator picks, inspects, and polishes
the emblems, to finally place them into another location where they are coated. The objective
is that a robot and the human share the task collaboratively. For this work, that process is
re-designed so the robot is in charge of the picking and placing tasks, while the operator still
inspects and polishes the emblem. Hence, once the robot has posed the piece in front of the
operator, the human can perform different actions over the emblem while the robot should infer
those actions and adapt to them. Note that the principle mean of human-robot interaction is
force-based. The interaction should be natural for the human and the reaction time of the robot
should ensure a fluent and efficient collaboration. Note that it is not within the scope of this
work to tackle how the robot grasps and places the emblems. Instead, we focus on how the
robot, while offering the emblem, can infer the operator’s intent and adapt accordingly.

3.3.2 Human intentions and robot adaptation states

Recall that three different operator intents are considered: (a) polishing, (b) moving the robot
and (c) grabbing the object. Analogously, there are three different states of the robot: (a)
increasing stiffness (named ’hold’, from now on), (b) decreasing stiffness (’move’) and (c)
releasing the object (’open gripper’), respectively. In the first case, the operator should be able
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to do the main objective of the task, polishing the emblem. When applying this sort of force,
the robot should be stiff. Otherwise, the polishing action would not succeed. The second
operator’s intent is regarding ergonomics in industrial scenarios. The operator could get tired
of polishing the pieces at the same pose, or there could be another operator with different
corporal dimensions and/or abilities. Hence, this time, the force should be done to move the
robot to a more comfortable pose. Finally, we also contemplate the case in which the human
wants to grab the object (emblem), pulling it from the robot’s gripper. In this case, the robot
should open the gripper to release the piece.

3.3.3 Specifications of the novel dataset

The dataset was recorded using an ATI Multi-Axis Force/Torque Sensor Mini40 SI-20-1, which
was fastened to the wrist of the robot, the basis of the end effector (see Fig. 3.2a). We used the
default configuration of the sensor, and the measurements were taken at a frequency of 500 Hz.

Every sample contains a single sort of interaction, from the beginning to the end of the
physical contact. Note that gathered data samples were not of the same length, ranging from
half a second to three seconds long. In the dataset, the shorter samples are padded with zero
values at the end of the temporal sequences so that all of them have the same length. The
dataset contains six different files per each of the three classes, which correspond to the six axes
of the force sensor. Each file is named using the force/torque axis and the class label, hence,
users can read the samples included in each file and label them appropriately.

The aim is to infer force-based human intentions from natural and therefore ambiguous
human-robot interactions, but we also evaluated our method with easily distinguishable
mechanical interactions. In the mechanical dataset, each class follows distinct movement
patterns, which produce completely different force signals that are easy to discriminate.
Meanwhile, in the natural dataset, the movement patterns of the classes are much more similar
to each other, which makes the classification more challenging. From alternative machine
learning approaches, one is selected (see Sec. 3.5.4), and its performance is later evaluated
using each of the two datasets in Section 3.5.5. Note that for the evaluation with users, only
the natural data was used for training.

Since it is expected to be easier to classify, the mechanical dataset only contains 600
samples. Recall we have three classes and we have used two users, thus, each user did 100
samples of each class. The physical contact was always done following restricted patterns for
each intention/class. Fig. 3.3 depicts both, the different axes in which the operator is supposed
to apply the force and the corresponding force signals we detect using the sensor. For the
polishing intention, we move periodically only in the axis Y and we push towards the robot,
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(a) Polish

(b) Move

(c) Grab

Figure 3.3: Mechanical dataset. Human movement patterns (left side) and appearance of the
force signals produced by those patterns (right side). Observe how each class (a, b, c) is quite
distinguishable from the rest even after only 0.4 seconds. Making use of this dataset to train
a model would allow predicting fast with enough confidence. Nevertheless, the movement
patterns of the user would be too restricted and the human-robot interaction would not be
natural.

negative Z-axis (Fig. 3.3a). In order to move the robot, we move just in one direction for each
sample and only in the axis Y (Fig. 3.3b). Finally, to grab the object, we pull the robot’s
end-effector towards ourselves, positive Z-axis (Fig. 3.3c).

Unlike with the mechanical dataset, the natural dataset contains more samples, 900. Recall
we have three classes and we have used two users, thus, each user did 150 samples of each
class. In this case, the physical contact for each intention/class can be done following several
natural patterns, which increases the ambiguity between classes. In Fig. 3.4, it is possible to see
the different axes in which the operator is supposed to apply the force and the corresponding
force signals detected with the sensor. For instance, the intention of polishing can now be done
by describing circles and also using the axis X (Fig. 3.4a). The patterns to move the robot now
include any of the directions of the three spatial axes (Fig. 3.4b). Finally, the operator could now
try to grab the object pulling but not only towards the exact direction of the Z-axis (Fig. 3.4c).
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(a) Polish

(b) Move

(c) Grab

Figure 3.4: Natural dataset. Human movement patterns (left side) and appearance of the force
signals produced by those patterns (right side). Observe how each class (a, b, c) is still similar
to the rest even after 0.4 seconds. Due to the richness in movements, a model trained with this
dataset would allow a natural human-robot interaction.

Please, recall that, although for illustrative purposes figures only show the linear forces, our
classification process uses both torque and linear signals. Together with the dataset, we also
provide some Python notebooks which run our proposed approaches using the data [Olivares-
Alarcos et al., 2019b].

3.4 Approaches to force-based operator’s intent

recognition

In order to infer the humans’ intentions, two different approaches were proposed and
implemented. Both were evaluated on the natural dataset, and they were compared to identify
the best option considering the objectives of this work. The selected approach was used during
the validation carried out in Section 3.6, and also to analyze the differences between the
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Figure 3.5: Dynamic Time Warping (DTW) for multi-dimensional time series: dependent (a)
and independent (b) DTW. The former consists in computing the DTW similarity path of both
dimensions (axis) at the same time. The latter is much simpler, normal DTW is computed
separately on each dimension, and their results added posteriorly.

natural and mechanic data sets. These results are part of the experimental findings presented in
this chapter. Recall that this work seeks a natural human-robot interaction, fast reaction of the
robot, and, if possible, an approach that deals with heterogeneous industrial contextual data
and knowledge.

3.4.1 Raw-data-based recognition approach

In this approach, using directly the data obtained from the sensor, the classification is done
through a k-Nearest Neighbors (kNN) classifier with Dynamic Time Warping (DTW) [Berndt
and Clifford, 1994] as metric. Particularly, we have used k = 1. While being a simple method,
1NN+DTW performance seems to be hard to beat by other approaches in time series
classification problems [Bagnall et al., 2017].

Dynamic Time Warping is a time-dependent algorithm used to measure similarity between
two temporal sequences which may vary in speed. For instance, similarities in polishing could
be detected using DTW, even if the operator polishes faster or slower than in other cases. DTW
is a computational intense technique, with quadratic time and memory complexity. However,
there are some ways to accelerate computation, thus in this work, it was used the library Fast
DTW [Salvador and Chan, 2007]. DTW was meant to be utilized for uni-variate time series,
which is not the case in this chapter, since there are six sensor axes. In the literature, exist at least
two obvious approaches to tackle this and generalize DTW for multi-dimensional time series:
dependent and independent DTW (see Fig. 3.5) [Shokoohi-Yekta et al., 2017]. kNN classifier is
taken from scikit learn library1. The implementations of kNN and Fast DTW do not allow to
work with multi-dimensional time series, thus it was necessary to adapt the libraries. Apart
from those modifications, the default values were used.

1https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.
KNeighborsClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
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3.4.2 Feature-based recognition approach

In this section, it is proposed a twofold machine learning approach to infer the human
operator’s intentions. First, the dimensionality of the data is reduced using an unsupervised
method: Gaussian Process Latent Variable Model (GPLVM) [Lawrence, 2003]. Then, a Support
Vector Machine (SVM) classifier is trained using the lower-dimensional representation of the
data. GPLVM is a non-linear dimensionality reduction method that can be considered as a
multiple-output Gaussian process regression model where only the output data are given. The
inputs are unobserved and treated as latent variables, however, instead of integrating out the
latent variables, they are optimized. By doing this, the model gets more tractable, and some
theoretical grounding for the approach is given by the fact that the model can be seen as a
non-linear extension of the linear Probabilistic Principal Component Analysis (PPCA) [Tipping
and Bishop, 1999]. Note that in this case, the temporal sequences are just considered as long
feature vectors so that it is not explicitly considered the temporal relation between subsequent
signal measurements. However, dimensionality reduction has proved to be an effective
technique in time series analysis, in which data is remarkably high dimensional [Su et al.,
2018, Villalobos et al., 2018, Seifert et al., 2018].

The implementation of the proposed method, GPLVM+SVM, relies on two existing libraries:
GPy library2 for the dimensionality reduction and the scikit learn library for the SVM classifier3.
In the case of the latter, the default values were used for all the parameters. However,
concerning GPLVM, it was necessary to set some parameters: kernel, optimizer, and the
maximum number of optimization steps. First, the chosen kernel was a combination of the
Radial Basis Function (RBF) kernel together with a bias kernel. RBF kernel was selected
because it is one of the most well-known kernels for non-linear problems. The bias kernel was
added to enable the kernel function to be computed not only in the origin of coordinates.
Second, for the optimization process, it was used one of the optimizers already implemented in
GPy, limited-memory Broyden–Fletcher–Goldfarb–Shanno [Liu and Nocedal, 1989]. Unlike
others included in the library, it was quite stable concerning the number of optimization steps
needed to converge, which is why it was selected. Finally, the maximum number of
optimization steps was set to 5000, which in most cases was enough for the optimization to
converge.

The implementation of the GPLVM algorithm included two different types of latent variable
inference: with optimization step (GPLVM-op) and without the optimization step (GPLVM). For
this work, the most relevant difference between them was that the inference with optimization
would take more time, but it would lead to more accurate results. Nevertheless, as it is shown

2https://sheffieldml.github.io/GPy/
3https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html

https://sheffieldml.github.io/GPy/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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Figure 3.6: Global GPLVM inference process of the latent variables given a new sample in the
higher dimensional space. First, the most similar training sample to the new sample is found
using Euclidean distance. Second, the value of the latent variables of the most similar training
sample (black dot in the first step) is used to initialized the inferred value (see the white dot in
the second step). Third, the GPLVM is optimised considering the new sample, which results in
a refinement of the inferred latent variables. GPLVM with optimization includes the three steps,
GPLVM without optimization stops after the second.

in Section 3.5.3, the inference with optimization did not always ensure better performance.
Regarding the inference process, given an already optimized GPLVM and a new sample to infer
its latent variables, the inference process is divided into three steps (see Fig. 3.6). The first
step, nearest neighbor search, is focused on finding which of the training samples is the most
similar to the new sample. This is done computing the similarity between the new sample and
all the training samples employing the Euclidean distance. The second step, latent variables
initialization, consists in setting the value of the inferred latent variables to the values of the
latent variables of the nearest neighbour found in the previous step. Finally, during the third
step, latent variables optimization, the value of the initialized latent variables is refined through
optimization.

3.5 Evaluation of the force-based operator’s intent

recognition approaches

3.5.1 Evaluation setup for the proposed approaches

For the validation, it has been applied cross-validation without replacement ten times, the natu-
ral data was randomly split into training (75%) and test (25%). The chosen metric to evaluate
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Figure 3.7: Sampling windows evaluated to find an optimal classification-reaction time ratio.
The windows correspond to: 0.1s (cyan), 0.2s (red), 0.5s (green), 0.7s (purple) and 1s (orange).
Recall that one second is our task limit time for achieving a suitable human-robot interaction.

the performance was the F1-Score, capturing both the precision and the recall of the test.

In order to fulfill the requirement of a useful robot reaction, the prediction time should be
short enough so that the proposed methods apply to our realistic scenario. For that reason, it was
not considered the whole sample’s length but smaller portions (windows), which contained only
the initial information. In total, five different window sizes were evaluated: 0.1, 0.2, 0.5, 0.7
and 1 second (see Fig. 3.7). The intuition is that the larger the sampling window is, the higher
the chances to properly classify the human’s intention will be, but the longer the operator would
need to wait until the robot reacts to the interaction. Therefore, the aim is to find a trade-
off between the prediction time and the classification performance. Our experience says that
1 second is a convenient amount of prediction time for an efficient and feasible human-robot
collaboration. Thus, a longer inference time would be undesirable. Note that the total prediction
time would include both, the sampling window’s size, and the time the approach needs to infer
the label of the sample.

3.5.2 Evaluation of the raw-data-based approach

The proposed method, 1NN+DTW, was evaluated, for each of the window’s sizes previously
defined, concerning the classification performance and the inference time per sample. Recall
that two different implementations of multi-variate DTW were used, dependent and independent,
from now on, DTWd and DTWi, respectively. Due to the lazy learning nature of the kNN classifier,
it was also evaluated how the length of the samples fed to the classifier affected the inference
time. In particular, the measurements of the windows were sub-sampled to smaller portions.
Five different lengths were considered, which are expressed as the percentage of the window’s
length which remains after the sub-sampling: 100% (no sub-sampling), 8%, 6%, 4%, and 2%.
Tables 3.1 and 3.2 show the results of the evaluation.

From Tables 3.1 and 3.2, we draw several conclusions. First, the bigger the window, the
better the performance, see the evolution of F1-Score in Table 3.1. It is also true that the growth
of the window’s size results in an increment of the inference time per sample (see Table 3.2).
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DTW F1-Score for different window’s sizes
method 0.1 s 0.2 s 0.5 s 0.7 s 1 s

DTWd 100 0.889269 0.905781 0.975967 0.979997 0.987533
DTWi 100 0.906666 0.917357 0.978199 0.983574 0.988869
DTWd 8 0.885296 0.896193 0.968881 0.971941 0.991542
DTWi 8 0.901552 0.903042 0.965363 0.976463 0.991532
DTWd 6 0.881585 0.905163 0.9662 0.97196 0.992428
DTWi 6 0.89922 0.912131 0.967561 0.97512 0.991544
DTWd 4 0.870823 0.898531 0.963153 0.976416 0.985741
DTWi 4 0.888409 0.904715 0.964489 0.978246 0.985303
DTWd 2 0.868783 0.894189 0.951568 0.97818 0.985298
DTWi 2 0.8842 0.904574 0.954712 0.979993 0.98574

Table 3.1: F1-Score values for the different types of raw-data-based classification (dependent and
independent DTW), sampling window’s size (0.1, 0.2, 0.5, 0.7, and 1.0 secs.) and percentage of
sub-sampling (where 100 means non-sub-sampling). The longer the sampling window was, the
better the classification performance was. Observe how, for our task, a 0.5 seconds sampling
window already provided a very good F1-Score. In bold, the value for the best possible
combination considering the trade-off between recognition time and performance.

DTW Inference time (s) for different window’s sizes
method 0.1 s 0.2 s 0.5 s 0.7 s 1 s

DTWd 100 1.27896 2.7022 6.5332 9.19757 12.6787
DTWi 100 1.39247 2.92458 7.26754 10.1909 14.111
DTWd 8 0.0433759 0.125803 0.426389 0.604001 0.895554
DTWi 8 0.045948 0.140452 0.469486 0.658161 0.989375
DTWd 6 0.0260689 0.0818415 0.279886 0.444692 0.700091
DTWi 6 0.0264917 0.0852878 0.2938 0.498601 0.735671
DTWd 4 0.0127826 0.043153 0.161143 0.267458 0.436421
DTWi 4 0.0138515 0.0450503 0.176923 0.28999 0.486605
DTWd 2 0.00802248 0.0124193 0.0548359 0.10122 0.169155
DTWi 2 0.0082175 0.0133079 0.0568831 0.108486 0.178205

Table 3.2: Inference time per sample for the different types of raw-data-based classification
(dependent and independent DTW), sampling window’s size (0.1, 0.2, 0.5, 0.7 and 1.0 secs.) and
percentage of sub-sampling (where 100 means non-sub-sampling). The larger the window of
data was, the longer the inference time was. The total time to recognize the operator’s intent is
the addition of the window’s size plus the inference time per sample. In bold, the time for the
best possible combination considering the trade-off between recognition time and performance.

This is reasonable since the kNN algorithm is a lazy learner. Any time a new sample is to be
classified, the similarity between that sample and the rest of the training samples is computed.
Hence, the longer the samples, the more time takes to compute the similarity, prolonging the
whole inference process.
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The aim here is to find the combination of DTW version, sampling window’s size, and sub-
sampling with the best compromise between F1-Score and total recognition time. DTWd with
the window’s size of one second and sub-sampling of 6% got the best F1-Score result (99.24%).
The inference time per sample for this same case was above half a second (0.7 seconds). Hence,
the total operator’s intent inference time would be around 1.7 seconds, which is above the one
second sought in this work, making it an invalid alternative. Indeed, any case which used the
one-second window can be discarded for the same reason. Fortunately, reducing the window’s
size, while helping to reduce the inference time, did not decrease the performance too much.
This was especially true for windows bigger than 0.5 seconds, which ensured values of F1-Score
above 95%. The best F1-Score value for that window was around 97.8%, indeed a fantastic
result. It corresponded to the case of not doing sub-sampling together with DTWi. Nevertheless,
if we used that configuration for the approach, the time needed to infer the operator’s intent
would be above seven seconds, once again undesirable. Indeed, any case in which sub-sampling
is not applied may be discarded since the inference time was always over the maximum desired
time. Hence, the search was restricted to the cases with 0.5 and 0.7 second windows and
sub-sampling, where the differences in F1-Score and time were marginal in most cases. It was
selected a case in which the trade-off between inference time (0.8 seconds) and performance
(97.99%) was rather good. This case corresponded to DTWi, a window of 0.7 seconds and
sub-sampling of the data to the 2% of the window’s size.

3.5.3 Evaluation of the feature-based approach

The proposed method, GPLVM+SVM, was evaluated for all the different already mentioned
window sizes and with respect to both the classification performance and the inference time
per sample. A priori, it was unknown which size of the latent space would produce a good
performance. Therefore, different sizes of latent space were also evaluated: 2, 3, 5, 10, and 20
latent variables. Besides, the two types of GPLVM were evaluated too, optimized (GPLVM-op)
and non-optimized (GPLVM), see Fig. 3.6 for more details. Tables 3.3 and 3.4 respectively
summarize the results of the F1-Score and the inference time with respect to the different
window’s sizes and all the commented variations of GPLVM. Observe that in some cases where
the window’s size was very small (0.1 and 0.2 secs.). The shorter window outperformed by
little the longer one. This behavior is counter-intuitive but possible due to the still negligible
information contained within those small samples and the random selection of the training set.

From the results, it is interesting to note the effect of the optimization during the inference
step in the GPLVM. The inference time per sample was always longer when GPLVM inference
was optimized. Furthermore, that time grew accordingly to the number of latent variables (see
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GPLVM F1-Score for different window’s sizes
method 0.1 s 0.2 s 0.5 s 0.7 s 1 s

GPLVM-op 2 0.759941 0.743376 0.931787 0.953032 0.959269
GPLVM 2 0.761758 0.74465 0.930028 0.951698 0.958399

GPLVM-op 3 0.784054 0.813443 0.943897 0.96377 0.976454
GPLVM 3 0.780917 0.816794 0.942582 0.966424 0.979127

GPLVM-op 5 0.827579 0.84916 0.96592 0.972986 0.976502
GPLVM 5 0.809314 0.845254 0.968096 0.977827 0.984909

GPLVM-op 10 0.876251 0.871952 0.963224 0.975576 0.980847
GPLVM 10 0.838423 0.845608 0.965613 0.982702 0.991111

GPLVM-op 20 0.853017 0.875167 0.968448 0.980449 0.980437
GPLVM 20 0.850769 0.878743 0.968096 0.981384 0.993331

Table 3.3: F1-Score values for the different types of feature-based classification (optimized and
non-optimized GPLVM inference), sampling window’s size (0.1, 0.2, 0.5, 0.7, and 1.0 secs.) and
number of latent variables (2, 3, 5, 10, and 20). Note that the bigger the number of latent
variables was, the better the result was, which also happened with the window’s size. In bold,
the value for the best possible combination considering the trade-off between recognition time
and performance.

GPLVM Inference time (s) for different window’s sizes
method 0.1 s 0.2 s 0.5 s 0.7 s 1 s

GPLVM-op 2 0.644066 0.846901 0.651173 0.725712 0.723963
GPLVM 2 0.0939578 0.112943 0.0975801 0.134856 0.135385

GPLVM-op 3 0.671361 0.647414 0.694552 0.662102 0.833498
GPLVM 3 0.11745 0.0999844 0.110787 0.0909256 0.122548

GPLVM-op 5 0.809567 1.21396 0.945272 1.1361 1.20001
GPLVM 5 0.101104 0.0981438 0.113414 0.130257 0.132759

GPLVM-op 10 2.38703 1.86129 2.15111 2.4688 1.46768
GPLVM 10 0.116964 0.130362 0.115786 0.119832 0.134894

GPLVM-op 20 8.69852 7.2344 6.12122 5.11297 5.24385
GPLVM 20 0.107757 0.114087 0.114022 0.135751 0.138607

Table 3.4: Inference time per sample for the different types of feature-based classification
(optimized and non-optimized GPLVM inference), sampling window’s size (0.1, 0.2, 0.5, 0.7
and 1.0 secs.), and number of latent variables (2, 3, 5, 10 and 20). GPLVM-op led to longer
inference time than GPLVM, which also applied when the number of latent variables grew. In
bold, the time for the best possible combination considering the trade-off between recognition
time and performance.

Table 3.4). Another interesting finding was that the inference time per sample, when there was
no optimization, remained quite short and stable no matter the window’s size nor the number
of latent variables (see Table 3.4). Hence, in terms of inference time, GPLVM without
optimization was preferred. Moreover, the difference in performance score between the
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optimized and not optimized versions is negligible (see Table 3.3). This fact reinforces the
previous finding, allowing us to conclude that the non-optimized version of GPLVM is the most
convenient alternative.

Focusing on Table 3.3, it is observable that a higher number of latent variables produced a
better F1-Score result. Specifically, for the cases of using two and three latent variables
(especially two), the performance was usually much poorer. The best result in terms of
performance, F1-Score of 99.33%, corresponded to the GPLVM version without optimization,
the window of 1 second and 20 latent variables. The inference time per sample was around
0.14 seconds, so the total inference time was 1.14 seconds, slightly superior to the one second
set as desirable. Hence, it seemed reasonable to reduce the window’s size to 0.7 seconds. In
that case, the best alternative was to use 10 latent variables, and again the non-optimized
GPLVM. It would result in losing a bit of quality in the performance, from 99.33% to 98.27%,
but decreasing the time from 1.14 to 0.82 seconds, fulfilling the recognition time requirements.

3.5.4 Comparison of raw-data-based and feature-based approaches

From the best combination of parameters for each of the two proposed methods, we aim to
select one to be used during the qualitative study conducted with users presented in
Section 3.6. The selected combination in the case of 1NN+DTW, ensured an inference time of
0.8 seconds and a performance score of 97.99%. It corresponded to use independent DTW, a
window of 0.7 seconds and sub-sampling of the data to the 2% of the window’s size (see
Sec. 3.5.2 for more detail). When using GPLVM+SVM, the selection was GPLVM without
optimization, a window of 0.7 seconds and 10 latent variables. This approach resulted in a
F1-Score of 98.27% and an inference time of 0.82 seconds (see Sec. 3.5.3 for more detail). The
quantitative differences between the two alternatives are marginal, which hinders the selection
and makes necessary considering qualitative aspects. In robotics, especially in industrial
environments, data is presented in heterogeneous ways: sequential data, digital, etc. In our use
case, some examples may be variables encoding the previously inferred human intention, or
whether the user is inside the workspace or not. Let’s imagine that the previously inferred
human’s intention was grabbing object, using GPLVM+SVM, this could be added to the feature
vector of latent variables and train the SVM classifier with the new extended vector. Therefore,
it could be learned that when the robot does not hold the object, polishing cannot be
performed. 1NN+DTW however, cannot deal with other data apart from sequential, thus it
would be necessary to use a second kNN model with another metric (e.g. Euclidean) and then
apply ensemble learning techniques. Based on this, we consider GPLVM+SVM to be a more
versatile approach, thus it was used for the evaluation with users.
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Used F1-Score for different window’s sizes
dataset 0.1 s 0.2 s 0.5 s 0.7 s 1 s

Natural 0.838423 0.845608 0.965613 0.982702 0.991111
Mechanical 0.914686 0.943609 0.980069 0.987351 0.99131

Table 3.5: Evaluation over the natural and the mechanical data sets of the approach
GPLVM+SVM without optimization and 10 latent variables. Using shorter window sizes (up
to 0.5s), the results in the natural dataset are worse. For larger window sizes the model behaves
similarly for both datasets.

3.5.5 Comparison of natural and mechanical data sets

The performance of the selected method, GPLVM+SVM, is evaluated using each of the data
sets. Recall that the chosen parameters are the non-optimized GPLVM inference with 10 latent
variables. Although the selected sampling window’s size was 0.7, the approach was tested
for the usual five sizes used along the rest of the chapter. As before, cross-validation without
replacement was used ten times, and the data was randomly split into training (75%) and test
(25%).

Table 3.5 depicts the F1-Score values obtained from the evaluation of GPLVM+SVM against
both data sets, demonstrating that the previous assumption was true. In general, using the
mechanical dataset produced better results than utilizing the natural dataset. It is surprising
that when the window’s size was 0.2 seconds, the F1-Score was even close to 95%. However,
for the window chosen for the validation with users, 0.7 seconds, the differences between the
performance using any of the datasets are minimal. Therefore, the proposed approach works
quite well even when the dataset contains more natural samples of physical human-robot
interaction.

3.6 Validation - Recognizing operator’s intent in a

realistic scenario

To validate the selected approach, GPLVM+SVM, it was setup an experiment with several users
individually collaborating with a robotic arm according to the industrial scenario of polishing car
emblems. The validation was conducted using fifteen healthy individuals within the age range of
18 to 35. Users were selected among people who had knowledge about the robotics domain and
had been in contact with robots before. People with reduced mobility or any cognitive disability
which could affect the perception of the robot’s behavior were not included. Each of the users
received an individual explanation, no more than five minutes, about how they were expected to
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(a) Ready. (b) Unconfident. (c) Hold. (d) Move. (e) Open.

Figure 3.8: LED patterns used by the robot to communicate with the user using the robot’s
armband. (a) Green pattern used to indicate when the robot is ready for physical interaction.
(b) Red pattern indicating low classification confidence (<70%). Textual patterns showing the
state of the robot when user intents are identified with high confidence: (c) ‘hold’ (polish intent),
(d) ‘move’ (move intent), (e) ‘open’ (grab intent). The character ‘e’ could not be expressed due
to the four-row armband matrix restriction.

interact with the robot. This included both general information about the system and particular
notions about the expected movements for each of the three classes/intentions. Nevertheless,
users were not allowed to train before the evaluation began, because then, it could be evaluated
if there was an adaptation of the user to how the system inferred the different intentions. Users
were also informed about their rights, possible risks, and they were asked to sign a consent form
specifically designed for this experiment. The experiment protocol was favorably approved by
the Human Subject Research Committee of the Spanish National Research Council (CSIC).

3.6.1 Validation setup

The proposed approach is validated in a setting inspired by a collaborative task in which the
force exchange is not only present but fundamental for the accomplishment of the task. Using
the force-based information, the robot should be able to identify the intent of the operator
(Sec. 3.3.2) and to adapt its state/behavior to it. In order to ensure a mutual understanding
between the human and the robot, the robot was equipped with a force sensor, used to measure
the interaction from the human to the robot, and an armband made of LEDs through which
the robot informed the user of its internal state. The latter displayed different patterns (see
Fig. 3.8). During the validation experiment, the robot behaved according to the finite state
machine captured by Algorithm 1.

Recall that the scenario was inspired by a real industrial case in which an operator is meant to
inspect and polish car emblems. Please, refer to Figure 3.2a to see the different parts of the robot
setup. We can only show the adapter where the emblem was attached to since emblems contain
private commercial brand logos and can not be shown due to confidentiality agreements. During
the experiment, users were in front of the robot so that the physical interaction was comfortable,
and they had a rag used to polish. Figure 3.2b shows an example of the pose of a user while
polishing, and a video of the validation with users is available online4.

4www.iri.upc.edu/groups/perception/SIMBIOTS

www.iri.upc.edu/groups/perception/SIMBIOTS
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Algorithm 1: Finite state machine for the control of the robot during the validation.
Data: Force sensor’s signals
Result: Robot’s state adaptation

1 while true do
2 robot in initial pose;
3 inform operator: the robot is ready for interaction;
4 wait for physical contact;
5 if detected physical contact then
6 prepare sample from raw sensor data;
7 infer operator’s intention;
8 if inference’s confidence � 0.7 then
9 inform operator: next robot’s state;

10 adapt the robot’s state to the inferred intention;
11 else
12 inform operator: the inference’s confidence was low;
13 end
14 else
15 do nothing;
16 end
17 end

Grab Move Polish

Grab 0.6133 0.3800 0.0067
Move 0.1200 0.8667 0.0133
Polish 0.0667 0.1667 0.7667

Table 3.6: Normalized confusion matrix of the performance of the system during the validation
with all users and trials. Most of the samples of the classes ‘grab’ and ‘polish’ that are incorrectly
classified are inferred as instances of ‘move’, indicating the existence of some bias in favor of the
latter class.

3.6.2 Evaluation procedure

Each user (N=15) was asked to perform thirty trials randomly selected from the three
operators’ intent/actions explained in Section 3.3.2. Among the thirty trials, ten were forced to
correspond to each of the three classes/intentions. Note that since trials were randomly
arranged for each person, the possibility of finding bias in the evaluation due to the order of
the trials was diminished. Both, the ground truth and the inferred value were annotated for
each user’s trial. For the evaluation, two different variables were studied: the overall
performance of the system (confusion matrix), and the adaptation of the users throughout the
experimental validation.
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Figure 3.9: Single perspective of the data visualization using the three most significant latent
variables from the original ten. The distribution of the data in this lower space shows that the
samples of the class ’move’ are rather close to the other two classes, which could be the cause of
why the model seems to be a bit biased in favor of this class.

Table 3.6 contains the average confusion matrix for the systems’ performance for all users.
Note that the ‘move’ intent was the easiest to identify. Indeed, there was a large percentage of
false positives for this class, a symptom of a clear bias of the model in its favor. This can be
better understood by looking at the sample distribution in the three-dimensional space defined
by the most significant latent variables among the ten used (see Figure 3.9). It can be observed
how the samples from the ‘move’ class fall in the middle of the other two classes, which explains
why there are many false positives. Indeed, the higher proximity between the ‘move’ and the
‘grab’ classes translates into a lager number of false positives.

It was also studied whether there was an adaptation of the users to the system, which
would be observable in the performance of the system during the validation experiments.
Recall that users only received a short explanation of the three classes and in which axes they
could perform the movements for each action. There was ambiguity among classes and users
had a particular way to move for each action. Hence, during the first trials, the system’s
performance was generally poorer. Here adaptation means that the users understood which
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Figure 3.10: Averaged F1-Score of the system for all the users along with the experiment’s trials.
The positive slope of the trend line for the F1-Score is an indicator of the adaptation of the users
to the system. Please recall that none of the users followed the same sequential trial set since
they were randomly generated.

movements for each class ensured a better performance of the system. Note that this was
possible because users could see the result of the inference. The averaged F1-Score was used to
measure the performance of the system for all the trials and users, and the result showed a
positive slope of the trend line for the F1-Score (Fig. 3.10). We consider that once the trend
line was above 0.8, users would have already adapted. In our case, this corresponded to the
last five trials of the experiment.

3.7 Discussion

In this chapter, we explored how to recognize and classify operators’ intent while they interact
with a robot in the execution of a collaborative task. The chapter presented three major
contributions that are of specific relevance for perception tasks in collaborative robotics
scenarios: a novel force-based dataset of physical human-robot interaction, force-based
operator’s intent inference approaches, and the validation with users of the whole system in a
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scenario inspired by a realistic industrial application. In this work, the physical interaction
between the robot and the human, not only existed but also played a major role since it was
the main source of information for the robot to infer the human’s intent. Were humans and
robots to collaborate in the future, the main interaction would be physical.

Beyond these contributions, the hands-on experience gained from this chapter also inspired
us to frame the scope of the conceptualized ontological models presented in this thesis. First, it
became evident to us that the notion of ‘collaboration’ or ‘collaborative event’ should be
conceptualized and modeled to ensure trustworthy human-robot collaboration. During the
validation with users, it was interesting to see how confused they were when the robot
inappropriately adapted after misclassifying their intention. This made us wonder questions
such as: how a collaboration can be classified, or whether a collaboration can exist when the
involved agents are not on the same page (i.e. they do not share a common intention or plan).
These questions became essential when formalizing collaboration in Chapter 5. Second, this
chapter also confirmed one of our initial intuitions. It would be interesting to explore and
model the concept of ‘adaptation’, especially focusing on those situations in which a robot
decides to adapt when collaborating with a human. Since robots will need to adapt and those
adaptations might lead to human-robot misunderstandings, trustworthy robots should be able
to reason about those adaptations (e.g. the motive to adapt). Chapter 5 introduces the
formalization of this concept after having studied the different aspects of it. Finally, the
validation with users made quite clear the need for explainable robots, and which might be
some of their potential benefits. Using a simple LED armband already helped users to
understand why the robot was not adapting accordingly to the interaction, which ensured
mutual understanding. Of course, many other aspects of collaborative and adaptive
experiences would require more expressive explanation modalities (e.g. text). Hence,
Chapters 6 and 7 explore the use of textual explanations constructed from sound robots’
ontological knowledge.





chapterfour
Perceiving the risk of collision with humans in
collaborative experiences

” ..the world is a dynamic mess of jiggling things, if you look
at it right..

— Richard Feynman

(Rubber Bands in Fun to imagine, BBC series)

Building on the findings of the literature review outlined in Chapter 2, this chapter
continues the exploration initiated in Chapter 3. Hence, it delves into the knowledge to be
conceptualized within robot recognition and decision-making tasks in human-robot
collaborative scenarios. In those contexts, surely one of the most relevant aspects for robots to
recognize is the potential risk of collision with their human collaborators, which would be used
during robots’ decision making. Indeed, since the robot did not move during the collaborative
use case considered in Chapter 3, it makes sense to consider a different robotic scenario now.
Hence, this chapter explores the concept of triggering safety stops in collaborative scenarios
where humans and robots are in constant dynamic closeness. Time-to-contact (TTC) was used
to recognize and categorize the risk of collision and to adapt the robot’s behavior with respect
to the detected risk. The work contributed with a novel formulation to compute TTC in a
three-dimensional space, and an algorithm to stop the robot’s motion based on the computed
TTC. The approach was evaluated first, in simulation, and second, using a real robot and a
simulated human (aiming for repeatability). In both, using prototypical motions to validate the
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improvement of our approach in delaying the safety stop compared to two baseline methods. It
was also conducted a qualitative validation through the implementation of our approach in a
real use case: a complete collaborative task in which a human and a robot, closely interacting,
filled a tray with tokens. Note that there is always a trade-off between safety and efficiency,
and previous methods, while being protective, might tend to be quite simplistic obviating
important dynamic aspects of the interaction that TTC captures. By the end of the chapter, it is
also discussed how this work helped framing the scope of the conceptualized ontological
models presented in this thesis. For instance, the research made clear the need for considering
notions related to safety (e.g. risk) when conceptualizing the knowledge around collaborative
and adaptive robot experiences. Indeed, a formal conceptualization of such notions would be
of great help to regulate and certify autonomous robots to be used in human environments.
Furthermore, the addition of explanations to inform users about the robot’s estimation of risk,
might also contribute to increasing the acceptance of robots.

4.1 Motive

In 2011, the International Organization for Standardization released the ISO 10218.1 [ISO
10218-1:2011, 2011] and the ISO 10218.2 [ISO 10218-2:2011, 2011], which presented safety
guidelines for industrial robots. In 2016, the ISO/TS 15066 [ISO/TS 15066:2016, 2016]
extended the previous standards providing specific guidance for safety in collaborative
robotics, where a formulation to compute the minimum protective distance was proposed. One
of the main limitations of this formulation is that the real direction of motion of the robot and
the human is not taken into account. Hence, it results in an over-conservative risk estimator,
and prevents a proper collaboration in applications where humans and robots constantly and
closely share the workspace. Indeed, there is not a standard way to address this issue yet, and
the actual implementation of the formula is still greatly left to the discretion of the
integrator [Marvel and Norcross, 2017].

Inspired by the aforementioned ISO standards, several works about safety in collaboration
have been published during the last years [Vogel and Elkmann, 2017, Nikolakis et al.,
2019, Magrini et al., 2020, Zanchettin et al., 2015]. Indeed, some of them discussed and aimed
to overcome different ISO formulation drawbacks [Vicentini et al., 2014, Campomaggiore
et al., 2019]. However, there is still room for improvement, especially in collaborative tasks in
which the human-robot closeness is regular (such as the one in Fig. 4.1). Hence, this chapter
aims to explore an alternative to the ISO’s formulation well adapted to intensive human-robot
collaboration. Specifically, the concept of time-to-contact (TTC) [Hecht and Savelsbergh, 2004]
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Figure 4.1: Collaboratively filling a tray: example of an industrial task where the human and
the robot continuously share both the workspace and the execution of the task (pick and place).

is proposed as an indicator of the likelihood of the risk of collision during close human-robot
collaborations. Unlike most of the approaches within the literature, TTC naturally captures the
dynamics of the human-robot interaction, considering the actual pose, speed, and direction of
both agents. This would make TTC a more precise risk indicator, delaying safety stops and
allowing the robot to operate for longer times before stopping.

4.2 Related work

The ISO standards for safety in collaborative robotics [ISO 10218-1:2011, 2011, ISO
10218-2:2011, 2011, ISO/TS 15066:2016, 2016], proposed to use the Speed and Separation
Monitoring (SSM) approach, maintaining a robot’s speed and a minimum distance between the
robot and the human. SSM is utterly aligned with the scope of this chapter, and it has been
extensively applied in the collaborative robotics domain. For instance, some works proposed to
adapt the robot’s speed to the distance using discrete regions of the space [Vogel and Elkmann,
2017, Nikolakis et al., 2019, Magrini et al., 2020]. Aiming to enhance the collaboration’s
fluency, several authors suggested adapting the robot’s speed with respect to the current
human-robot distance continuously, but still without considering the human’s and robot’s
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motion direction [Lasota et al., 2014, Zanchettin et al., 2015, Joseph et al., 2020, Rosenstrauch
et al., 2018]. Looking for further improvement, more complex formulations to compute the
human-robot distance considered the human’s and/or the robot’s motion direction [Vicentini
et al., 2014, Byner et al., 2019, Campomaggiore et al., 2019]. In all those articles, as in this
chapter, the robot’s behavior is adapted based on the estimation of a possible risk of collision
with a human. The estimation is based on the distance between the human and the robot, and
the robot adapted its speed. This chapter proposes to simplify the formulation using the
time-to-contact concept, as it naturally embeds the directions and velocities of the two agents.

Time-to-contact has been widely used in the literature for automotive collision estimation,
warning, and avoidance [Li et al., 2016, Qu et al., 2018, Song et al., 2018, Yang et al., 2019].
Authors proposed different approaches: vehicle-to-vehicle and vehicle-to-driver warning,
obstacle avoidance, autonomous emergency braking system, etc. In those works, TTC was
computed in a two-dimensional space, since cars move in a plane. In this work, it is explored
how the ideas discussed in those articles might be extrapolated to collaborative industrial
scenarios, where humans and robots move in a three-dimensional space.

This chapter discusses an approach to stop the robot using the collision estimation metric,
because that is the most compliant strategy with the regulations of industrial environments
(e.g., ISO). However, TTC has also been used to control other robot’s reactions such as adapting
the speed or modifying the robot’s motion plan for different applications: robot docking and
landing [Kendoul, 2014, Zhang et al., 2017], unmanned aircraft system maneuvers [Eguíluz
et al., 2020], and obstacle avoidance and target chasing [Kaneta et al., 2010]. Those works
presented interesting approaches showing the potential use of TTC in different applications,
which might be considered as inspiration for future work.

4.3 Time-to-contact-based safety stop for close human-

robot collaborative experiences

4.3.1 Background on time-to-contact

TTC is a biologically inspired measure typically used for obstacle detection and reactive control
of motion. It can be defined as the time that an observer will take to make contact with a surface
assuming constant relative velocity. Hence, TTC is usually expressed in terms of the speed and
the distance of the considered obstacle:

ttc = �
Z
dZ
dt

, (4.1)
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where Z is the distance between the observer and the obstacle, and dZ/dt is the velocity of the
observer with respect to the obstacle. It is possible to compute TTC from a pure computer vision
perspective, by just detecting the deformation of objects in consecutive RGB images without
calibration [Alenyà et al., 2009, Kaneta et al., 2010, Garcia et al., 2016]. Those methods are very
sensitive to error detection, so in this chapter TTC was computed utilizing the actual observer’s
and obstacle’s poses and velocities, as there was access to these measurements. In this work, the
observer will be the end effector of a robot and the obstacle the hand of a human.

4.3.2 Time-to-contact computation

Inspired by Hou et al. [Hou et al., 2014] and their TTC formulation for 2D collisions between
circles, it is proposed here a 3D variation of their formula. Hence, the robot’s end effector and
the human’s hand are considered as spheres, and it is computed the TTC as the time that it
would take the two spheres to collide. Determining when two spheres collide is a matter of
determining the moment at which the distance between their centers is equal to the sum of
their radii.

Let ~r0 = (r0x, r
0
y, r

0
z) and ~h0 = (h0x, h

0
y, h

0
z) denote the positions of the robot and the human

respectively at the moment of contact. Hence, the distance between them is

d = ||(r0x, r
0
y, r

0
z)� (h0x, h

0
y, h

0
z)||. (4.2)

Knowing that when in contact the distance is equal to the sum of their radii and expanding
Eq. 4.2 one gets

radr + radh =
q
(r0x � h0x)

2 + (r0y � h0y)
2 + (r0z � h0z)

2, (4.3)

where radr and radh are the radii of the spheres representing the robot and the human respec-
tively.

Assuming that the human and the robot are not currently colliding and that both move with
constant linear velocity, their positions at the moment of contact can be rewritten based on their
current position and velocity:

~r0 = ~r + ~vrttc (4.4)
~h0 = ~h+ ~vhttc, (4.5)

where ~r = (rx, ry, rz) and ~h = (hx, hy, hz) denote the current positions of the robot and the
human, ~vr = (vrx , vry , vrz) and ~vh = (vhx , vhy , vhz) their current Cartesian velocity respectively,
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Algorithm 2: decision-making loop to compute TTC, stop the robot and select the
robot’s speed

Input: Time-to-stop (ttstop), nominal robot’s speed (Vrn), robot and human radii (radr,
radh)

1 safety_stop � false
2 while not(safety_stop) do
3 infor  � GetRobotPoseVelocity()
4 infoh  � GetHumanPoseVelocity()
5 ttc � ComputeTTC(infor, infoh, radr, radh)
6 if ttc  ttstop then
7 Vr  � 0
8 safety_stop � true

9 else
10 Vr  � Vrn

11 end
12 Publish computed robot’s desired speed Vr

13 end

and ttc is the corresponding time-to-contact. Substituting Eqs. 4.4 and 4.5 in Eq. 4.3, a quadratic
equation is obtained where, if real positive roots exist, the smallest value is the pursued TTC.

4.3.3 TTC-based safety stop algorithm

Given a TTC value between the human and the robot, it can be used to adapt the robot’s current
state to avoid possible collisions. In this work, it is proposed to follow one of the strategies
suggested in ISO 10218.1 [ISO 10218-1:2011, 2011]: issuing a safety-rated monitored stop.
Hence, the robot would continue its motion until a certain TTC threshold is violated, from now
on, time-to-stop (ttstop). Alg. 2 shows the decision-making process to compute TTC and stop
the robot given that TTC value. If the value of TTC is equal or smaller than ttstop, the robot will
stop its motion and a safety-rated monitored stop will be issued (see line 6 in Alg. 2). When
the value of TTC is greater than ttstop, the robot will continue its motion at the task’s nominal
speed (see line 9 in Alg. 2). Once a safety stop was issued, the robot would remain stopped
and it would exit the TTC-based safety stop loop (see line 2 in Alg. 2). Since the focus is on
very close human-robot applications, the robot would only resume the motion after a human’s
command. This recovery strategy is the most appropriate one for industrial scenarios similar to
the case discussed in this chapter.



4.4 Baseline approaches: ISO and Fuzzy ISO 69

4.4 Baseline approaches: ISO and Fuzzy ISO

In order to evaluate the proposed approach, two state-of-the-art metrics based on computing the
minimum protective distance are used. First, it was used the linear version of the formulation
defined in ISO/TS 15066 [ISO/TS 15066:2016, 2016]:

S = (vhTr + vhTs) + (vrTr + vsTs) + (C + Zr + Zs), (4.6)

where S is the protective distance, vh is the ‘directed speed’ of the operator (i.e., the rate of
travel of the operator toward the robot), vr is the directed speed of the robot in the direction
of the operator, and vs is the directed speed of the robot in the course of stopping. Tr is the
time for the robot system to respond to the operator’s presence, while Ts is the time to bring
the robot to a safe, controlled stop. The remaining terms capture measurement uncertainty,
where C is an intrusion distance safety margin based on the expected human reach, Zr is the
robot position uncertainty, and Zs is the operator position (sensor) uncertainty. There is not a
standard way to measure the human’s and the robot’s speeds, nor to compute the times. Indeed,
setting the values of the uncertainty constants might also be challenging [Marvel and Norcross,
2017]. Since a discussion of the proper values to choose was out of the scope of this chapter, it
was used a simplified version of the formula. First, it was assumed that the speed of the robot
while stopping, vs, was equal to the motion speed, vr. Finally, it was obviated the effect of the
uncertainty constants because they would equally affect all the methods compared in this work.
The simplified equation is:

S = (vh + vr)Tb, (4.7)

where Tb is the sum of Tr and Ts, thus the total time to brake, including the time to respond
to the human’s presence and to stop the robot. During the different evaluations, the value used
for Tb was also used to set the time-to-stop (ttstop). Hence, establishing a correlation between
our method (see Alg. 2) and the baselines presented in this section. Actually, it makes sense to
use the total time to brake as the minimum TTC used to stop (ttstop). It would ensure that the
robot would stop right before contacting the human, just as the minimum protective distance
would.

The second state-of-the-art method used for the evaluations, Fuzzy ISO, was proposed by
Campomaggiore et al. [Campomaggiore et al., 2019]. They presented a fuzzy-logic system to
merge the protective distance formulation with information on the current human’s and robot’s
motion direction. The fuzzy rules are used to scale the effect of the human’s and the robot’s
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velocities: e.g. when they are going away in opposite directions their method allows them to
relax the ISO’s formula. The resulting formula would be the Eq. 4.7 multiplied by the output of
the fuzzy-logic system ↵ 2 (0, 1):

S = ↵(vh + vr)Tb. (4.8)

Using the aforementioned two equations, the minimum protective distance (S) was
computed. When the Euclidean 3D distance between the spheres representing the human and
the robot was smaller or equal to S the robot would stop, analogously to the decision-making
process proposed in Alg. 2.

4.5 Evaluating time-to-contact as the trigger of robot

safety stop in close collaborative tasks

In order to evaluate the performance of the different safety stop methods, it was necessary
to constrain all the possible situations that might occur in the target task (Fig. 4.1). After a
comprehensive study, all possible robot-human collaborative dynamic states were summarized
in a taxonomy of just 7 prototypical cases (see Fig. 4.2). For the evaluation, only the cases that
would cause a safety stop were of interest, thus, the cases in which a collision might occur (see
Fig. 4.2 a, c and e). From now on, they will be referred to as cases: A, C, and E respectively. It is
important to remark that there is no need to evaluate the rest of the situations, nor the complete
task execution. The reason is that there will be no change of behavior among methodologies.

4.5.1 Evaluation I - Statistical analysis in simulation

First, the performance of the proposed approach was evaluated against the two baseline methods
presented in Sec. 4.4 (ISO and Fuzzy ISO). Recall that the evaluation was done considering only
three cases from the taxonomy: A, C, and E.

For each case, two spheres moving close to each other were simulated. They represented
the end effector of a robot and the hand of a human, from now on just robot and human. Once
the safety stop was triggered, the simulation finished. The first hypothesis is that the proposed
approach would allow the robot to move for more time before issuing a safety stop. The second
hypothesis is that our approach would let the robot to get closer to the human but would still
be safe, issuing a safety stop before any possible collision.

In order to validate the hypotheses, the approaches were evaluated for several human speeds
in each of the three selected situations. Other parameters such as the human’s and robot’s initial
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(a) (b) (c) (d)

(g)(f)(e)

Figure 4.2: 2D symbolic representation of the prototypical human-robot collaborative situations.
The module of the vector represents the robot’s (R) and human’s (H) velocity’s magnitude (vr
and vh). (a) Both agents approaching with probable contact. (b) Both agents approaching
without probable contact. (c) Robot following the human with probable contact (the robot
moves faster than the human). (d) Robot following the human without probable contact.
(e) Human following the robot with probable contact (the human moves faster). (f) Human
following the robot without probable contact. (g) Both agents getting away. Of all seven cases
only three can trigger a safety stop due to a potential contact: (a), (c), and (e).

position or the robot’s nominal speed, would affect the triggering of the safety stop. However,
the focus was on the human velocity parameter for two reasons. First, it has a direct effect on
the dynamics of the interaction, playing a fundamental role in the hypotheses. Second, it was a
parameter that could not be controlled by the robot in real scenarios, thus it was worth studying
how the three approaches reacted when it changed. Note that the human and the robot moved
along one axis. A total of 1000 different human velocities were randomly generated, uniformly
distributed within an interval of interest for each case. At each simulation timestamp, it was
also added different white Gaussian noise to the three axes of each of the velocities.

The power of the noise for all three axes of motion was -20 dBW. The noise allowed us
to simulate a realistic human motion, not just a straight line movement, as it can be seen in
Fig. 4.3. The simulation time (10s) was selected to match the robot’s speed (0.2m/s) and the
maximum reach (1m) of the robot used in this work, Kinova Gen3. The frequency was 100Hz,
and the ttstop (see line 6 in Alg. 2) and the Tb (see Eq. 4.7) were both set to 0.5s. The radii
of the spheres representing the human and the robot were fixed at 0.05m. The robot’s nominal
speed was 0.2m/s. The initial distance between the robot and the human was 0.9m, for case
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(a) (b)

Figure 4.3: Example of the human pose evolution for a single simulated noisy motion. (a) and
(b) show the evolution of the human pose along the planes XY and XZ, respectively. Note that a
noisy human velocity was simulated at each simulation timestamp aiming for a realistic human
motion, therefore, the pose evolution did not follow a straight trajectory.

A, and 0.4m for cases C and E. The intervals for the randomly generated human speeds for the
cases A, C and E were: [0.3, 0.6], [0.0, 0.15], and [0.3, 0.6], respectively. Recall that the motion
was mainly in one axis, although we added noise to it. Each case’s main direction is depicted in
Fig. 4.2.

Before a safety stop was issued, it was computed the time the robot was moving, and the
final Euclidean distance between the human and the robot. The time before stopping allowed us
to validate whether our method delayed the safety stop or not, confirming the first hypothesis.
The distance was reported to show that our method allows the robot to get closer while still
being safe (no collision), supporting the second hypothesis.

Evaluation I - First hypothesis: the robot moves more time

A statistical analysis was conducted to evaluate the significance of the proposed approach’s
improvement in delaying the safety stop with respect to the baseline methods: ISO and Fuzzy
ISO. For that purpose, it was measured the time the robot moved before the safety stop was
issued. Fig. 4.4 shows the distributions of measured time for each case and evaluated approach.

We manipulated the three different methods (independent variable) and assessed them with
respect to the time before stopping (dependent variable), for each of the prototypical cases.
First, Kruskal-Wallis was used to evaluate if there was a statistically significant difference in
group mean, obtaining �2(2) = 55.08, p < 0.001, for case A, �2(2) = 1113, p < 0.001, case C,
and �2(2) = 1812.8, p < 0.001, case E. Second, as the results rejected the null hypothesis, it was
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(a) (b) (c)

Figure 4.4: Distributions of the time the robot moved (a, b, c) for each simulated case and
approach. The mean value is represented by a dot. TTC clearly outperformed the others in (b)
and (c).

carried out a post-hoc analysis to find out where the differences occurred between the groups.
A Dunn & Sidák post-hoc multiple comparison test revealed a significant pairwise difference
between our method and the other two in two of the cases: C and E. In case C, the time before
braking using TTC was significantly different from the ones using ISO and Fuzzy ISO with a
p-value of 0 in both cases. In case E, TTC was also significantly different to ISO and Fuzzy ISO,
with a p-value of 0 for both comparisons. These results proved that the differences in the values
depicted in Fig. 4.4 are statistically significant. Hence, in these two cases, TTC allowed the
robot to move for a longer time before stopping. This fact decreased the human-robot protective
distance. Specifically, in case C, the robot using TTC moved a 110.52% more time on average
than with ISO, and a 71.81% more than with Fuzzy ISO. In case E, the improvement was far
greater, a 802.68% w.r.t. using ISO and a 358.83% w.r.t. Fuzzy ISO. These improvements would
be notorious in long-term collaborations, especially in tasks that would imply medium and high
levels of interaction (see Fig. 4.5). In case A, our method was significantly different from the
ISO method with a p-value of 9.010e�8, while no significant differences were found between
the Fuzzy ISO and TTC. However, the mean difference between TTC and ISO was really small
(5.85%), as it is shown in the values depicted in Fig. 4.4. Note that in case A, the human and
the robot approached each other, which is the default assumption that ISO’s formulation does.
Hence, it was expected that our method would capture the high risk of the situation and behave
similarly to the ISO.

Evaluation I - Second hypothesis: the robot gets closer but it is still safe

A second statistical analysis evaluated the significance of our approach’s improvement in allow-
ing closer but still safe human-robot distances. The analysis was again performed with respect
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(a) (b) (c)

Figure 4.5: Examples of the task’s distribution between the robot and the human with different
levels of interaction. Grey circles (R) indicate the tray’s compartments that the robot would fill,
while white circles (H) would be filled by the human. (a) Low level of interaction with nearly
zero possible crossing trajectories. (b) Medium level of interaction where a few of the robot’s
and human’s targets might involve trajectories’ intersections. (c) High level of interaction where
the distribution of the task’s targets would potentially cause crossing trajectories, leading to
several probable contacts and safety stops.

to the ISO and the Fuzzy ISO methods. The final human-robot distance was measured once the
safety stop was issued. Fig. 4.6 shows the distributions of measured distance for each case and
evaluated approach.

We manipulated the three different methods (independent variable) and assessed them with
respect to the human-robot distance after stopping (dependent variable). This is for each of the
three prototypical cases. First, Kruskal-Wallis was used to evaluate if there was a statistically
significant difference in group mean, obtaining �2(2) = 290.71, p < 0.001, for case A, �2(2) =

2138, p < 0.001, case C, and �2(2) = 2132.5, p < 0.001, case E. Second, as the results rejected the
null hypothesis, it was carried out a post-hoc analysis to find out where the differences occurred
between the groups. A Dunn & Sidák post-hoc multiple comparison test revealed a significant
pairwise difference between our method and the other two in the three prototypical cases: A, C
and E. In case A, the distance after braking using TTC was significantly different from the ones
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(a) (b) (c)

Figure 4.6: Distributions of the final distance to the human (a, b, c) for each simulated case and
approach. The mean value is represented by a dot. TTC produces shorter distances in (b) and
(c), but always ensuring safety and avoiding collisions.

using ISO and Fuzzy ISO with a p-value of 0 and 0.0018, respectively. In cases C and E, TTC was
also significantly different to ISO and Fuzzy ISO, with a p-value of 0 for both comparisons.

These results proved that the differences in the values depicted in Fig. 4.6 are statistically
significant. However, in case A, the mean difference in the human-robot distance produced by
TTC was really small w.r.t. the other two methods. Specifically, using TTC the average final
distance was a 7.69% smaller than with ISO and a 2.19% larger than with Fuzzy ISO. In cases C
and E, the differences were larger and TTC allowed the robot to get closer to the human before
stopping. Specifically, in case C, the robot using TTC produced a reduction in the final human-
robot of a 48,51% and a 42.46% w.r.t. ISO and Fuzzy ISO respectively. In case E, the reduction
was a bit larger, a 51.82% w.r.t. using ISO and a 49.06% w.r.t. Fuzzy ISO. Reducing the final
human-robot distance might affect safety, but TTC produced no collisions during the simulation.
Furthermore, the percentage reduction in the final distance is far smaller than the increase in the
time the robot moves before stopping. Hence, we can say that TTC greatly improves productivity
while slightly compromising safety.

4.5.2 Evaluation II - Real robot and simulated human (aiming for repeatability)

In this case, the previous simulation-based evaluation was contextualized, showing how the
proposed method may be useful in the real task shown in Fig. 4.1. The objective was to evaluate
our approach implemented in a real robot, avoiding the problem of repeatability of the human
operator. Hence, a realistic setup was prepared, where a real robot moved towards a specific
target pose. Meanwhile, the system was fed with the position and the velocity of a simulated
human, which moved accordingly to the three cases evaluated before. Specifically, for the cases
A and C, the real robot moved from the pose where the tokens would be grasped to the release
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(a) (b) (c)

Figure 4.7: The plots show the evolution of the robot’s distance to a target pose during the
second evaluation: real robot and simulated human. (a) Both agents approach with probable
contact. (b) Robot following the human with probable contact. (c) Human following the robot
with probable contact. Once the safety stop was triggered, the human’s simulation finished and
the robot remained stopped. This is why the distance to the target becomes constant in the
plots, implicitly representing the time the robot was moving before the safety stop.

pose of one of the tray’s compartments. This would be the case of a robot picking a token and
trying to place it on a compartment. For the remaining case, E, the real robot moved along the
opposite trajectory. In this case, emulating when the robot would have already placed the token
and it would go to pick a new one. In this evaluation, four human velocities were simulated, and
it was measured the final Euclidean distance from the robot to the target pose after stopping.
Note that the distance to the target is related to the two variables studied in Sec. 4.5.1: the
robot’s motion time and the distance to the human before stopping. Considering the previous
evaluation’s results, the hypothesis here was that the robot would clearly be able to get closer to
the target pose using our method in cases C and E. The robot Kinova Gen3 was used equipped
with the 2F-85 two-finger gripper from Robotiq, and the same parameters as in Sec. 4.5.1. The
four different simulated human speeds were selected from the intervals used in Sec. 4.5.1 for the
cases A, C and E: [0.3, 0.6], [0.0, 0.15], and [0.3, 0.6], respectively. Some videos of this evaluation
are shown in the additional material1.

Fig. 4.7 depicts the evolution of the distance to the target for the four human speeds and
each case. These results corroborated, in this case using a real robot, what was already
obtained in simulation in Sec. 4.5.1. In case A, the differences between the three approaches

1www.iri.upc.edu/groups/perception/TTC

www.iri.upc.edu/groups/perception/TTC
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Figure 4.8: Exemplification of the final distance to the target pose during the second evaluation
(case E): real robot and simulated human. The robot is trying to reach the target pose at 0.2m/s
while the human is following the robot at a faster speed (0.3m/s in this case). In the image,
we can see the target pose (red) and the final robot’s pose after the safety stop issued by ISO
(cyan), Fuzzy ISO (green) and TTC (yellow). As we can see, TTC allows the robot to get closer
to the target before stopping.

remained minimal, around 2%. Cases C and E TTC again outperformed the other two
approaches, allowing the robot to get closer to its target pose. Hence, our method let the robot
get closer to finishing its task (e.g. placing a token) before stopping. Specifically, in case C, the
final distance to the target using TTC was 23.22% and 19.92% shorter on average than with
ISO, and Fuzzy ISO, respectively. In case E, the improvement is even greater, a 31.53% and a
29.16% shorter distance to target on average w.r.t. ISO and Fuzzy ISO, respectively. Fig. 4.8
depicts a comparison of the final robot’s pose with respect to the target for the three methods
in one of the experiments for case E.

4.5.3 Qualitative validation - Demo of a collaborative task with the real robot
and a human

Finally, the proposed approach was implemented to be used in a realistic scenario where a robot
and a human shared the task of filling the compartments of a tray. The same task will also be
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Figure 4.9: Setup for the demo of a collaborative task: filling a tray.

used for the evaluation of the conceptual modeling and ontology-based explanation generation
discussed in Chapters 5 and 6, respectively. Hence, the symbolic model will be grounded directly
from the task’s data (Chapter 5), so that the explanations are built with both abstract knowledge
and data (Chapter 6). The video of one of the task executions can be found in the additional
material2. In this implementation, when the human filled one of the compartments the robot
was meant to fill, the robot modified its plan and continued with the other free targets. Once a
safety stop was issued, the robot was put in joint admittance mode (compliant), and it resumed
the motion only after the human’s command. The human’s pose and velocity were measured
using an HTC Vive tracker on their hand, and the tokens using an RFID-based board for fast
and precise detection. The measurement rate of the HTC and the robot was 100Hz. The robot
shared with the operator its interpretation of the collision’s risk using the lights on the robot’s
base (see Fig. 4.9).

2www.iri.upc.edu/groups/perception/TTC

www.iri.upc.edu/groups/perception/TTC
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4.6 Discussion

In this chapter, it was studied how the concept of time-to-contact (TTC) can be of use for
issuing a safety stop in close collaborative robotic scenarios. It was proposed a novel TTC
formulation and an algorithm to activate a robot safety stop when there is a potential contact.
The approach was evaluated against two state-of-the-art methods in a set of prototypical cases.
First, in simulation, where a statistical analysis was performed to study the significance of the
results. Second, with a real robot and a simulated human, aiming for a more realistic
evaluation while ensuring human repeatability. In both evaluations and two out of three cases,
our approach clearly produced a later safety stop than the other standard methods, increasing
the time the robot is moving/working. In the remaining case, the differences between the three
methods were too small to be relevant. Later stops resulted in shorter final distances between
the human and the robot. However, the distance was always large enough to avoid collisions.
Furthermore, the increment in the time the robot moves before stopping (productivity) is
higher than the reduction in the final human-robot distance (safety). This work is a step
forward to enabling robots to be closer to humans while sharing the execution of tasks safely
with them.

Beyond those contributions, the hands-on experience gained from this chapter also provided
intuition to frame the scope of the conceptualized ontological models presented in this thesis.
First, it became evident to us that notions related to ‘safety’ or ‘risk’ should be conceptualized and
modeled to ensure trustworthy human-robot collaboration. We think that a formal definition of
those terms would facilitate the certification and regulation of the autonomous collaborative
robots of the future, which will closely interact with humans. Note that regarding safety, the
reaction time is a crucial element, thus, we think that the robot’s decision-making process to stop
should occur at the level of data. The process of abstracting the data into ontological entities
and making the reasoning at a semantic level would probably require too much time, delaying
the robot’s reaction. However, the ontological conceptualization of safety-related terms would
still play a relevant role in building trustworthy robots. Robots equipped with an ontological
model of safety and risk would be able to reason about past risky experiences for introspection
and learning. Furthermore, they could store the experiential knowledge for later use in the
construction of monitoring reports or explanations. Indeed, the robotic task introduced in this
chapter is later used to validate the conceptual modeling for collaborative robotics (including
safety-related concepts), and the ontology-based explanation generation discussed in Chapters 5
and 6 respectively.





Part II

Ontological conceptualization and
modeling for explainable robots





chapterfive
Ontological modeling for robot reasoning in
collaborative and adaptive experiences

” ..the more I think about language, the more it amazes me
that people ever understand each other at all..

— Kurt Gödel

Chapter 2 revealed that the literature fell short of comprehensively addressing the use of
ontologies to support the cognitive task of recognition and categorization. However, the
inference power of ontologies would be a great tool to recognize and categorize different
robots’ experiences, thus this topic should be investigated. It was also discovered that focusing
on modeling industrial applications could translate into the formalization of domain
knowledge that is not covered in the literature (e.g. collaborative events, safety issues, etc.).
During the evaluation with users conducted in Chapter 3, when the robot inappropriately
adapted, users were confused. This raised questions such as whether a collaboration can exist
when the involved agents are not on the same page (i.e. they do not share a common intention
or plan), or how to model the cases in which robots adapt their plans to the changes in the
environment (e.g. the motive to adapt). Hence, it was concluded that the notions of
‘collaboration’ and ‘adaptation’ should be conceptualized and modeled to ensure trustworthy
human-robot collaboration. Furthermore, modeling those concepts would certainly support the
foundations of ontology-based explainable robots. The introduction in Chapter 1 discusses the
idea that explainable agency requires functional abilities such as: reporting the actions they
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executed (e.g. collaboration with humans), and explaining how actual events diverged from
what was planned and how agents adapted to it (i.e. adaptation). Finally, Chapter 4
emphasized the importance of considering an ontological conceptualization of safety-related
terms, which would play a relevant role in building trustworthy robots. Robots equipped with
an ontological model of safety and risk would be able to reason about past risky experiences for
introspection and construction of monitoring reports or explanations.

This chapter addresses the challenges raised during the previous chapters of the thesis by
introducing the Ontology for Collaborative Robotics and Adaptation (OCRA). An ontology
especially designed to represent, recognize and categorize the relevant knowledge entities in
collaborative scenarios where robots adapt their plans to the ongoing changes in the
environment. The use of the ontology is validated in a realistic case study in which a human
and a robot share the execution of a task. First, it is shown the capability of the ontology to
answer a set of competency questions in a contextualized scenario. Second, it is discussed how
the formalization would work in some limit cases in which wrong instances of collaborative and
adaptive events were purposely defined. OCRA is the very first ontology that allows to
formalize and reason about the execution of human-robot collaborative tasks, robot plan
adaptation, and different types of collaboration types and risks. Furthermore, it models
knowledge that is relevant to the development of some of the main functionalities of
explainable robots (e.g. explaining executed tasks and changes during the plan execution).

5.1 Motive

During the last decade, the industrial sector has shown a growing interest in more flexible
manufacturing processes where humans and robots are expected to work together. For that
purpose, collaborative robots, or co-bots, are robots specifically designed for direct interaction
with humans within a collaborative workspace [ISO 10218-2:2011, 2011]. Implementing
industrial processes where robots and humans collaborate, opens several questions such as
how to cope with uncertainty and safety. Hence, collaborative robots shall be able to, among
others, reason about their tasks’ requirements (e.g. safety, performance, etc.), about the
changes in their environment, and about the plan adaptations due to those changes.

The use of industrial collaborative robots has drawn the attention of many researchers,
becoming a prolific research domain [Gervasi et al., 2020, Gualtieri et al., 2021, Kim et al.,
2021]. Indeed, several works have discussed safety in collaborative robotic
scenarios [Vicentini, 2020, Gopinath et al., 2021, Liu and Wang, 2021]. Furthermore, due to
the usual high-productivity requirements of manufacturing processes, some authors have
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(a) (b) (c)

Figure 5.1: Examples of collaborative tasks in which the human and the robot continuously
share both the workspace and the execution of the task. (a) asking the robot for a tool, (b)
collaboratively fill a tray with tokens (this task was used during the validation), (c) hand-over
of a tool in which the robot and the human exchange forces.

researched the trade-off between productivity and safety [Zanchettin et al., 2019, Scimmi
et al., 2021]. Meanwhile, others have proposed adaptive robotic solutions for industrial
applications [Levine and Williams, 2014, Levine and Williams, 2018, Villani et al., 2019]. This
large list of promising works has also come with some drawbacks. The lack of consensus on the
meaning of concepts such as collaboration and adaptation has hindered the coherent
development of methodologies and techniques. This has already shown to be a problem in
safety applications, where the use of this terminology to assess risks might lead to confusion
and potentially mistaken implementations [Vicentini, 2020].

A common approach to harmonize terminology and enhance its reusability
is to use knowledge representation formalisms such as ontologies. Indeed, the use of ontologies
has spread in the industrial domain, where the modular and reusable nature of this formalism
has been of great help [Borgo et al., 2019a, Karray et al., 2019, Mohd Ali et al., 2019].
The 1872–2015 IEEE Standard Ontologies for Robotics and Automation [Schlenoff et al., 2012]
presented a core ontology for robotics and automation, which is currently being extended
to other robotics’ sub-domains [Fiorini et al., 2017]. Furthermore, ontologies have been
widely used for autonomous robotics during the last years [Olivares-Alarcos et al., 2019a],
and one can even find some initial steps towards ontologies for collaborative robotics [Umbrico
et al., 2020]. However, in none of these works can one find a comprehensive analysis and for-
malization of the notions this chapter focuses on: ‘collaboration’ and ‘adaptation’. Hence, this
chapter discusses a novel ontological conceptualization of those notions and other terms that
are related (OCRA), which can be useful in different kinds of collaborative tasks (see Fig.5.1).
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5.2 Related work

The 1872–2015 IEEE Standard Ontologies for Robotics and Automation [Schlenoff et al., 2012]
was conceived as a reference for knowledge representation and reasoning in the domain, and a
formal vocabulary for humans and robots to share knowledge about robotics and automation.
However, it did not cover terminology for particular robotic sub-domains. Hence, several
ontology-based systems for autonomous robots were implemented focusing on more specific
notions. Some examples are Knowrob [Tenorth and Beetz, 2009, Beetz et al., 2018],
ORO [Lemaignan et al., 2010], PMK [Diab et al., 2019] and CARESSES [Bruno et al., 2019a].
These works have explored and proven the relevance and usefulness of ontologies in robotics.
However, they did not address the terminology defined in OCRA.

Some other authors have focused on industrial robotic applications. Stenmark
et al. [Stenmark and Malec, 2015], proposed the ROSETTA ontology, aimed at supporting
reconfiguration and adaptation of robot-based manufacturing cells. Balakirsky [Balakirsky,
2015] implemented an ontology-based system for automatic recognition and adaptation to
changes in manufacturing workflows. Stipancic et al. [Stipancic et al., 2016], proposed to use a
set of ontologies to semantically enrich the robot sensors data in order to enhance the
decision-making process in a multi-agent scenario. Chen et al. [Chen et al., 2021], presented
an ontology for automatic disassembly applications to represent terms related to processes,
tools and production pieces such as fasteners. Although relevant for their domains, none of
these works provided a formal definition for the concepts discussed in this chapter. Of special
interest is the work of Umbrico et al. [Umbrico et al., 2020], who defined an ontology for
human-robot collaboration. They focused on terminology which was mostly different to the
notions defined in our work. Indeed, both ontologies could coexist and complement each other.
The only overlap was regarding the notion of Collaboration. The definition proposed in
this chapter is stronger and more general because it is based on a thorough analysis of how the
concept was defined in the literature. Hence, it does not only represent a single perspective but
also a view shared by several works, including theirs. Furthermore, their ontology lacked other
notions covered in OCRA such as Collaboration Place, or Plan Adaptation.

Finally, one can also find several works about ontologies for the industrial domain in
general [Liang, 2018, Sampath Kumar et al., 2019, Karray et al., 2019, Smith et al.,
2019, Borgo et al., 2019a, Mohd Ali et al., 2019, Liang, 2020]. Nonetheless, the content
defined in OCRA cannot be found in any of them.
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5.3 OCRA - Ontology for Collaborative Robotics and

Adaptation

There are several methodologies to help the knowledge engineer in the ontology construction
process, e.g., [Fernández-López et al., 1997, Spyns et al., 2008]. Due to the variety of possible
cases and the needed characteristics of the ontologies, none emerged as a definite standard.
Furthermore, those methods are not suitable for developing an ontology from a foundational
viewpoint where the characterization of the core concepts is more important than the coverage
of the application domain, as in this case. Thus, this work relies on ontological analysis, an
approach that precedes the usual ontology construction process and aims to fix the core
framework for the domain ontology. This choice led us to perform the following steps: to set
the ontology domain and scope (competency questions), to reconsider other conceptualizations
(selection of relevant literature), to enumerate, analyze and compare existing concepts
(identification of shortcomings), to develop and formalize a more solid conceptualization, and
to create instances of the concepts and show their use (implementation/validation). Of course,
there is some circularity in the actual procedure since this is a process of conceptual discovery
and (re-)organization. As a final step, it is also considered the documentation and maintenance
of the proposal. Note that to take the most out of different ontological languages, in this
chapter the whole ontology is first formalized using FOL. In this way, the obtained model can
express exactly what the notions mean. An OWL 2 DL version of the ontology is also provided,
which contains less knowledge but can be used for computational purposes and, therefore,
implemented in a real robot for run-time reasoning.

5.3.1 Scope, goal and competency questions

In order to develop OCRA, we followed a top-down approach. Hence, our ontology was built
upon other higher-level ontologies. Specifically, we developed an ontology that is compliant
with Knowrob [Tenorth and Beetz, 2009, Beetz et al., 2018], the most widely used
knowledge-based framework for robots. Therefore, we inherited the use of its upper ontology,
the DOLCE+DnS Ultralite (DUL) foundational ontology[Borgo et al., 2021]. Nevertheless, the
concepts presented in this work are general enough to be adapted to and used with other
upper ontologies. Furthermore, note that Knowrob is a system that has consistently improved
over the last decade. This justifies using DUL and helps to generalize our work, since we could
take advantage of some of their framework tools and experience.

OCRA was designed to represent relevant knowledge in the collaborative robotics domain,
with a special focus on collaboration and robot plan adaptation. A group of questions is proposed
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and a set of requirements on the content, which scope and delimit the subject domain that has
to be represented in the ontology. Particularly, OCRA should be able to answer the following
questions:

- Ontology coverage questions:

C1 - What is a collaboration?

C2 - What is a plan adaptation?

- Competency questions:

Q1 - Which and how many collaborations are running now?

Q2 - Which is the plan of a collaboration?

Q3 - Which is the goal of a collaborative plan?

Q4 - Are these agents collaborating?

Q5 - Where is a collaboration happening?

Q6 - How is a collaboration classified (e.g. non-physical)?

Q7 - Which is the risk of a collaboration?

Q8 - Which and how many plan adaptations are running now?

Q9 - Which is/are the agent/s participating in the plan adaptation?

Q10 - Why is an adaptation of an agent’s plan happening?

Q11 - Which is the plan before and after an adaptation?

Q12 - Which is the goal of the agent involved in the adaptation that is also the goal
to be achieved by both the old and the new plan?

5.3.2 On the meaning of Collaboration

Rationale - Ambiguity in the literature

The Oxford Dictionary defines Collaboration as ‘the act of working with another person or
group of people to create or produce something’ [OED, 2024]. This informal definition would
let us talk about collaborative events. However, a formal definition is needed to enable robots
to reason about these events. In this section, several informal definitions from the literature
are analyzed, highlighting their differences and common points, and motivating the need for a
comprehensive formal model for Collaboration.

In 2011, the International Organization for Standardization released the ISO 10218.1 [ISO
10218-1:2011, 2011] and the ISO 10218.2 [ISO 10218-2:2011, 2011], which defined
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Collaboration as ‘a special kind of operation between a person and a robot sharing a common
workspace’. Vicentini [Vicentini, 2020], discussed the ambiguity in the collaborative robotics’
terminology. He stated that at least, ‘there is a predominant consensus in assigning the concept
collaboration to continuous, purposeful interaction associated with potential or accidental physical
events (contacts)’. The Organization for Economic Co-operation and Development, defined the
collaborative problem-solving competency as: ‘the capacity to engage in a process whereby two
or more agents attempt to solve a problem by sharing the understanding and effort required to
come to a solution’ [OECD, 2017]. Oliveira et al. [Oliveira et al., 2007], defined collaboration
session (CS) as ‘an event that is composed of the actions of its participants. A CS has one or more
objectives, defining its main purpose’. Dillenbourg [Dillenbourg, 1999], discussed the definition
of collaborative learning. He stated that ‘collaborative situations involve symmetry between what
agents know and do, shared goals, and a low division of labor’. Silverman [Silverman, 1992]
defined Collaboration as ‘the mutual sharing of goals in completing the tasks’.
Terveen [Terveen, 1995], defined Collaboration as ‘a process in which two or more agents
work together to achieve shared goals’. He also derived a set of fundamental issues from his
definition: agreement on the goal, plan and coordination, shared context and understanding of
the current situation, communication, and adaptation and learning. Kolfshoten [Kolfschoten,
2007] studied several definitions of Collaboration and proposed a refined one: ‘a joint
effort toward a goal. This implies that all participants make an effort, combine it and direct it to
achieve a desired state or outcome (goal)’. Bauer et al. [Bauer et al., 2008], surveyed the
human-robot collaborative domain, for them, collaboration means ‘working with someone on
something, aiming at reaching a common goal. To work cooperatively on something the partners
need to agree on a common goal and a joint intention (plan) to reach that goal’. Ajoudani
et al. [Ajoudani et al., 2018], reviewed the state-of-the-art on human-robot collaboration. They
considered that human–robot collaboration ‘falls within the general scope of human–robot
interaction, and it is defined when human(s), robot(s) and the environment come to contact with
each other and form a tightly coupled dynamic system to accomplish a task’. Note that the
interaction or contact might also be non-physical (e.g. mental). Umbrico et al. [Umbrico et al.,
2020], defined the concept collaborative process as ‘a process, in order to represent production
events that modify over time the state of the production environment from an initial situation to a
final/resulting one’. Their formal definition was the closest one to ours, although it lacked
explicit mention of the shared plan and goal, only focusing on how a collaboration changes the
environment. Hence, we think that our definition is more general, and theirs might be
considered as a specialization of ours.

Even though all these definitions diverge, it is possible to find some patterns that most of
them follow: collaborative agents must share a goal and a plan (understanding/coordination),
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Definition source Formal Goal Plan Interaction/Execution
[ISO 10218-2:2011, 2011] No - - Yes
[Vicentini, 2020] No Yes - Yes
[OECD, 2017] No Yes Yes Yes
[Oliveira et al., 2007] Yes Yes - Yes
[Dillenbourg, 1999] No Yes Yes Yes
[Silverman, 1992] No Yes - -
[Terveen, 1995] No Yes Yes Yes
[Kolfschoten, 2007] No Yes Yes Yes
[Bauer et al., 2008] No Yes Yes* -
[Ajoudani et al., 2018] No Yes* - Yes
[Umbrico et al., 2020] Yes Yes* Yes* -
Ours Yes Yes Yes Yes

Table 5.1: Set of main aspects related to ‘Collaboration’ extracted from the literature.
‘Formal’ shows whether the literature definition was formalized or not. ‘Goal’, ‘Plan’ and
‘Interaction/Execution’ columns indicate whether the notion of each aspect was captured or
not by the definition. (*Implicit in the definition).

and there must be interaction [Borgo, 2019] between them while executing the plan. Table 5.1
depicts a summary with these main aspects of Collaboration for each of the studied articles.

Definition in natural language

Considering all the aforementioned definitions, Collaboration is usually defined as a special
kind of spatio-temporal entity (an event). Furthermore, it is often related to a goal and a plan,
and it requires interaction among the agents. Based on this, the proposed novel definition of
Collaboration is:

Definition 5.1. Collaboration is an event in which two or more agents share a goal and a plan to
achieve the goal, and execute the plan while interacting.

Interaction is used as an unspecified term as it belongs to a higher level ontology, it is thus
considered a primitive concept in OCRA. Informally speaking, interaction is ‘the act of
communicating with somebody, or having an effect on each other’ [OED, 2024]. For example,
during a collaboration, a robot and a human interact when they exchange forces, and also
when the robot is sharing its perception of the safety situation (e.g. by voice or lights). Note
that our definition states that the collaborative agents shall share a plan and the goal to be
achieved. Hence, even when an agent delegates a part of a plan, one shall understand that the
agent maintains co-responsibility for that part of the plan. For example, let’s consider that there
is a robot and a human that are collaborating to fill the different compartments of a tray with
work pieces, thus a collaboration exists as long as:
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- the robot and the human share a Plan to fill the tray. Note that the plan can include generic
activities, like ‘picking some pieces and placing them on the tray until it is full’, or more
specific activities like ‘picking the pieces starting from the closest and placing them on the
tray from left to right’;

- the robot and the human share the Goal to be achieved by the execution of the shared
plan. It may be general, e.g. ‘all tray’s compartments with a piece’, or specific, e.g. ‘each
tray’s compartment filled with a certain piece’; and

- the robot and the human execute the shared plan while they interact, thus, they share an
understanding of who is in charge of what during the execution.

Formalization in FOL

Formalizing the proposed definition of Collaboration, many classes and relationships were
reused from the foundational ontology DUL (note the prefix ‘dul.’). The final formalization in
FOL is:

Collaboration(e) ⌘ dul.Event(e)^

9y, z, p, g, t (y 6= z) ^ dul.Agent(y) ^ dul.hasParticipant(e, y)^

dul.Agent(z) ^ dul.hasParticipant(e, z) ^ dul.P lan(p) ^ dul.Goal(g)^

dul.hasComponent(p, g) ^ executesP lan(e, p) ^ dul.hasT imeInterval(e, t)^

8x (dul.Agent(x) ^ dul.hasParticipant(e, x))! hasP lan(x, p, t) ^ hasGoal(x, g, t).

(5.1)

The definition reads as follows: a collaboration is an event (e) in which at least two agents (y
and z) participate, it is the execution of a plan (p) with some goal (g), and for any agent (x) in the
collaboration its aim is to execute that plan and to achieve that goal.

Note that the definition was not restricted stating that the pursued goal must be achieved at
the end of the collaboration, thus, being general and considering cases in which the goal of the
collaboration is not achieved (and perhaps, unknown to the agents, even not achievable).
Furthermore, the relationship ‘executes plan’ was used here as a primitive which means
‘following the sequence of actions in the plan’. Hence, we did not consider this notion in the
strictest sense, which would be to execute the whole plan. This predicate holds between an
event and a plan that is executed by that event. It was also found necessary the use of two new
relationships that were not explicitly defined in DUL: ‘has plan’ and ‘has goal’. They relate an
agent with a plan and a goal, respectively, during a time interval. First, ‘has plan’ means that
‘an agent intends to execute a sequence of actions (plan)’. Second, ‘has goal’ implies that ‘an
agent desires to achieve a goal’.
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5.3.3 On the meaning of Adaptation

Rationale - Ambiguity in the literature

The Oxford Dictionary [OED, 2024] defines Adaptation as ‘the action or process of changing
something, or of being changed, to suit a new purpose or situation’. This informal definition
would be helpful to talk about adaptation events. However, a formal definition is needed to
allow robots to reason about these events. In this section, several informal definitions from the
literature are analyzed, spotlighting their discrepancies and shared points, and encouraging the
need for a comprehensive formal model for Adaptation.

Järvenpää et al. [Järvenpää et al., 2016], presented an adaptation approach for small-size
production systems, in which Adaptation ‘referred to all controlled changes the production
system goes through during its life cycle’. Martín et al. [Martín H. et al., 2008], proposed a
mathematical model of the phenomenon of Adaptation. Specifically, they defined a Law of
Adaptation: ‘every adaptive system converges to a state in which all kind of stimulation ceases’.
For them, an adaptive system ‘has at least one process which controls the system’s adaptation
to increase its efficiency to achieve its goals’. Lints [Lints, 2012], identified and discussed the
main aspects of adaptation from different fields of research. He defined Adaptation as ‘a
process to change something (itself, others, the environment) so that it would be more suitable or
fit for some purpose than it would have been otherwise’. Smit and Wandel [Smit and Wandel,
2006], reviewed the concept of adaptation regarding humans’ adaptation to global changes
such as climate change. The authors stated that Adaptation ‘might refer to a process, action
or outcome in a system, in order for the system to better cope with, manage or adjust to some
changing condition, stress, hazard, risk or opportunity’. Smit et al. [Smit et al., 2000], discussed
that a thorough description of adaptation should specify the system of interest that adapts, the
stimulus that causes the adaptation, and the involved processes and their outcomes. Gjorven
et al. [Gjorven et al., 2006], considered Adaptation as a service, and defined it as ‘a service
whose input event is an adaptation trigger, and whose output events are a set of services that
potentially has been modified or produced during the adaptation’.

All these definitions are ambiguous, but there are some patterns that most of them follow:
adaptation shall be triggered by a stimulus, shall occur on an entity that would change to a
new state, and shall aim to continuously pursue the achievement of a goal. Table 5.2 depicts a
summary with these main aspects of Adaptation for each of the definitions.
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Definition source Formal Trigger Entity Change Goal
[Järvenpää et al., 2016] No - Yes Yes -
[Martín H. et al., 2008] Yes** Yes Yes Yes Yes
[Lints, 2012] No - Yes Yes Yes
[Smit and Wandel, 2006] No Yes Yes Yes* Yes*
[Smit et al., 2000] No Yes Yes Yes* -
[Gjorven et al., 2006] No Yes Yes Yes* -

Ours Yes Yes Yes Yes Yes

Table 5.2: Set of main aspects related to ‘Adaptation’ extracted from the literature. ‘Formal’
column shows whether the literature definition was formalized or not. ‘Trigger’, ‘Entity’, ‘Change’
and ‘Goal’ columns indicate whether the notion of each aspect was captured or not by the
definition. *Implicit in the definition. **Mathematical model but not an ontological one.

Definition in natural language

After studying the state-of-the-art, we thought that providing a general definition of
Adaptation would be extremely challenging. Barandiaran et al. [Barandiaran et al., 2009],
discussed that adaptation involves a norm specifying which is the appropriate change to make.
Hence, depending on the type of norm, we could find different types of adaptations: task or
plan-based, evolutionary, ecological, etc. In this work, we focused on plan-based adaptations,
changes aimed at continuously pursuing the completion of a goal given an unexpected state or
situation. Hence, we proposed the following definition of Plan Adaptation:

Definition 5.2. ‘Plan Adaptation is an event in which one (or more) agent, due to its evaluation of
the current or expected future state, changes its current plan while executing it, into a new plan, in
order to continuously pursue the achievement of the plan’s goal.’

From the definition, one can extract the conclusion that if a plan was changed before
starting its execution, that would not be an adaptation. Also note that if a change was part of a
plan, we would not consider it to be an adaptation. Hence, if a robot’s plan included two
optional executions, choosing one would not be an adaptation. Indeed, some authors claimed
that the capacity to adapt depends on the observer who chooses the scale and granularity of
description [Di Paolo, 2005, Barandiaran and Moreno, 2008]. For instance, in a micro-scale,
obstacle avoidance might be seen as an adaptive behavior, but in an environment rich in
obstacles, it would not. For instance, let’s consider the previous example where a robot and a
human collaborate to fill the different compartments of a tray with work pieces, thus a plan
adaptation exists as long as:

- the robot has a plan, and it executes it while the perception of a current or future state
(situation) triggers the adaptation. A possible plan could be ‘moving to a compartment to
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release a piece’, and the trigger might be ‘the compartment is full’; and

- the robot changes its plan by no longer executing the action required by the previous plan,
and from now on executes the new plan. Still aiming to fill the tray, the new plan could
be ‘moving to another free compartment’.

Formalization in FOL

In order to formalize the natural language definition of Plan Adaptation, again it was reused
as much content as possible from the foundational ontology DUL (note the prefix ‘dul.’). The
final formalization in FOL is:

PlanAdaptation(e) ⌘ dul.Event(e)^

9s, g, a, o, n, i, f, p, q dul.Situation(s) ^ dul.Goal(g) ^ dul.Agent(a)^

dul.hasParticipant(e, a) ^ dul.P lan(o) ^ dul.hasComponent(o, g)^

dul.P lan(n) ^ dul.hasComponent(n, g) ^ dul.hasPostcondition(i, s) ^ betterP lan(s, n, o)^

dul.Event(i) ^ dul.hasT imeInterval(i, p) ^ dul.Event(f) ^ dul.hasT imeInterval(f, q)^

p < q ^ i+ f = e ^ executesP lan(i, o) ^ executesP lan(f, n) ^ ¬executesP lan(f, o)^

8x ((dul.Agent(x) ^ dul.hasParticipant(i, x))! hasP lan(x, o, p) ^ hasGoal(x, g, p))^

8x ((dul.Agent(x) ^ dul.hasParticipant(f, x))! hasP lan(x, n, q) ^ hasGoal(x, g, q)).

(5.2)

The definition reads as follows: a plan adaptation is an event (e), with at least one agent (a),
which is the change of a plan (o) with a goal (g) into a new plan (n) with the same goal, where
the change is due to the evaluation that the situation s holding after the first part of the event (i)
makes plan n in the second part (f) better than continuing plan o, and in the first part any agent
(x) aims to execute plan o, while in the second part any agent aims to execute the plan n, and every
agent has always the same goal (g).

Note that at least one agent participates in the whole adaptation event while other agents
may change due to the adaptation. A new predicate/relationship was included, ‘better plan’,
which relates two plans and a situation that makes one of the plans better to achieve a goal.
Hence, one could use this relation to state that a situation has caused one plan to be no longer
good, and a new plan is better for accomplishing a goal. Note that one could similarly define
‘worse plan’ as its inverse predicate if required.
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5.3.4 Complementary terminology

Rationale - Common terms in the literature

In the collaborative robotics literature, apart from the concept of Collaboration, it is widely
spread the use of terms such as workspace, safety, or collaboration types [Vicentini, 2020, ISO
10218-1:2011, 2011, ISO 10218-2:2011, 2011]. Most of this terminology is already defined
in well-established ISO standards, so one could just reuse the notions. However, there are no
formal standard definitions yet, so this chapter formally defines the concepts as part of OCRA.
Hence, allows robots to reason about the place where they collaborate, safety aspects, and the
different types of collaboration.

ISO 10218.1 [ISO 10218-1:2011, 2011] defined Collaborative Workspace as ‘a
workspace within the safeguarded space where the robot and a human can perform tasks
simultaneously during production operation’. This definition is broad enough to capture most of
the collaborative scenarios found in the industry, where a fixed workspace is often designed for
collaborations. However, aiming to be general, this concept shall also be considered from the
perspective of the place/environment where a collaboration occurs. In that case, the place
could dynamically change due to the collaboration needs (e.g. if the collaborators have to do
operations using machines in different areas of the shop floor). Indeed, some authors defined a
collaborative dynamic geometrical region that includes the intersection of both the robot’s and
the human’s workspace [Melchiorre et al., 2021]. Hence, two different concepts are defined:
one for the notion of the place where a collaboration occurs (Collaboration Place), and
another one for the common industrial notion of a fixed place for collaborations
(Collaborative Place).

Regarding safety, the standard is to follow the guidelines of the ISO 12100 [ISO
12100:2010, 2010], which focuses on machinery’s risk assessment and risk reduction. ISO
12100 defined risk as ‘combination of the probability of occurrence of harm and the severity of
that harm’. Recall that the notion of risk has already appeared in this thesis when investigating
time-to-contact as a collision risk indicator (see Chapter 4). In this work, the content from the
ISO is combined with our previous experience with risk indicators to formalize and define the
concept Collaboration Risk (see Sec. 5.3.4 for more details).

Finally, it would be interesting to classify different types of collaboration, so that robots
could behave differently depending on each type. The ISO 10218.2 [ISO 10218-2:2011, 2011]
defined four different collaborative operational modes for robots. They are useful for talking
about different robot behaviors or strategies, but they cannot directly be considered as sub-
classes of collaboration. Bauer et al. [Bauer et al., 2016], proposed a classification of different
collaboration levels: cell, coexistence, synchronized cooperation, and collaboration. However,
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these categories are ambiguously used in the literature [Vicentini, 2020], and they might lead to
confusion. For the time being, there is not a standard taxonomy of collaboration types, actually,
there can be many depending on the application domain. Hence, this chapter focused on a
classification that is relevant for the target application and for risk analysis, which is based on the
degree of physical human-robot interaction: Non-physical Collaboration, Indirectly
Physical Collaboration, and Directly Physical Collaboration. In the future,
other classifications might be considered to extend OCRA.

Definition and formalization

In OCRA, a Collaboration Place ‘is the spatial location or the place of a collaboration’.
This concept was formally defined as a sub-class of Place (DUL) that is location of a
Collaboration. Note that this definition focuses on the existence of a collaboration and
where it is located. Hence, a collaboration place is the union of the spatial locations of all the
entities involved in the collaboration, which could change over time. For instance, if the agents
involved in the collaboration move to other places, the collaboration place would also move.

It was also defined Collaborative Place as ‘a role of a place that is specifically dedicated
to collaborations’. It was formalized as a sub-class of Role (DUL) that classifies a Place.
Recall that this definition focuses on the place where collaborations can occur. It is meant to
capture the traditional view of an industrial collaborative workspace, in which a collaboration is
only considered inside of a fixed workspace. It is worth noting that when a collaboration occurs
in a place whose role is to be a Collaborative Place, there is also a Collaboration

Place that can be different from the first one. For instance, when a collaboration is occurring
at a work cell that plays the role of a Collaborative Place, if one of the agents goes out
of the work cell to do part of the collaboration, the place where the collaboration happens (the
Collaboration Place) would be different to the work cell.

Concerning safety, and based on the ISO 12100 [ISO 12100:2010, 2010], Collaboration
Risk was defined as ‘a quality that has a value used to characterize a collaboration, or a part of it,
which combines the probability of occurrence of a given harm and the severity of that harm during
that collaboration’. It was formalized as a sub-class of Quality (DUL) that is quality of a
Collaboration.

Regarding the different types of collaboration, it was first defined Non-physical

Collaboration as ‘an event type that classifies a collaboration, or a part of it, in which the
involved agents do not exercise any physical force’. For instance, selecting the next part of the
plan to execute, asking for a tool (see Fig. 5.1a), verbally communicating commands or
recommendations to collaborators [Nikolaidis et al., 2018, Chacón et al., 2020], or monitoring
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how a part of a plan is executed by another agent. Second, Indirectly Physical

Collaboration is ‘an event type that classifies a collaboration, or a part of it, in which the
involved agents exercise physical forces but they do not physically restrict the freedom of movement
of any of the other agents’. For instance, when a robot moves close to a moving human without
exchanging forces (see Fig. 5.1b). Third, Directly Physical Collaboration is ‘an event
type that classifies a collaboration, or a part of it, in which the involved agents exercise physical
forces, and they do physically restrict to some degree the freedom of movement of at least one of the
agents’. This includes the cases where the involved agents exchange contact forces, directly or
through an object, as shown in Fig. 5.1c. Hence, any movement of one of the agents would
affect some other agent. For instance, a collaborative hand-over [Pan et al., 2019], the
collaborative task of polishing an object [Olivares-Alarcos et al., 2019c], or the assembly of a
piece of furniture [Rozo et al., 2013].

In the case in which the freedom of movement is restricted by rules such as those related to
safety (e.g. robot stops if a human is closer than a given distance), a collaboration would still
be considered as Indirectly Physical Collaboration because the movement of the
robot is restricted by the safety behavior, not by a pure physical impediment. Of special interest
would be the case when a robot and a human [Pan et al., 2019], or two collaborative
robots [Garcia-Camacho et al., 2020], are holding a deformable object. If both agents held it
close enough so that there was still freedom of movement, we would consider it as a
Indirectly Physical Collaboration. If they went further, so that the deformable
object is completely stretched/extended, then we would be in a Directly Physical

Collaboration, because if one of the agents moved some of the others would be affected by
it. This example is related to a collaborative hand-over, a task that might also be categorized
under other characteristics (e.g. robots’ adaptability/responsiveness). In the future, other
features and tasks will be considered to enlarge the list of collaboration types included in
OCRA.

The three concepts were defined as sub-classes of Event Type (DUL) that classify a
Collaboration. It was considered the option of defining them as sub-classes of
Collaboration. Nevertheless, although they were useful concepts for reasoning, the
differences between them were not ontologically meaningful for us. Furthermore, note that it
was intentionally avoided the use of the concept ‘contact’ in the definitions. The proposed
classification is more general since it also considers other physical forces, not only whether or
not the human and the robot are touching each other.



98 Ontological modeling for robot reasoning in collaborative and adaptive experiences

5.3.5 OCRA formalization in OWL

Complementing the formalization in FOL, it is also provided an OWL 2 DL version of the
ontology. It contains less knowledge but can be used for computational purposes and can be
implemented in the robot for run-time reasoning. The ontology was implemented using
Protégé [Gennari et al., 2003], and the developed OWL file is publicly available together with
other additional material1 to facilitate reuse and comparison.

Most of the axioms that were defined in FOL were translated into OWL 2 DL, with the
exception of the three ternary relationships: has plan, has goal, and better plan. FOL
supports the use of ternary relationships, but OWL 2 DL does not (although in some cases
one can overcome this problem [Rector and Noy, 2006]). First, has plan and has goal

were defined as ternary to express that agents had a goal or a plan during an interval of time.
However, in the OWL 2 DL version of OCRA, the two properties only relate agents with their
plans and goals, without stating for how long those relationships hold. This is not necessarily
critical since the use of OWL 2 DL at run-time happens while the agents do have the plan and
goal. For a broader use of the OWL 2 DL formalization, this issue can be solved by ‘reification’,
introducing several relations hasGoal_tp(r, g), one for each instant (tp) in which the relation
holds. For instance, if the plan is to move objects and we do that at a frequency of 1 per minute
for a total of 1 hour, one could imagine checking every minute whether the agents maintain the
plan. For this, it is enough to introduce 3600 relationships hasGoal_tn(r, g) with n going from
0 (initial time) to 3599. This solution is activity-dependent so it is not presented in the general
definition. Furthermore, one can also exploit a temporal history of the knowledge base’s facts
(episodic memories) [Beetz et al., 2018]. Hence, one could determine the temporal interval
during which a relationship holds (e.g. the time an agent has a goal or a plan). Second, better
plan was defined as ternary to model that, given a situation, a plan is better than another plan.
In the OWL 2 DL version of OCRA, there is one relationship that substitutes the ternary one: is
better plan than, relating two plans. Since the relationship is better plan than is
evaluated at the time when the situation s holds, the notion formalized in OWL 2 DL is a good
approximation of the original one in FOL. Finally, note that other complementary relationships
were included (e.g. the inverse of all the previous ones).

5.4 Validation I - Answering the competency questions

In this section, the use of OCRA is qualitatively validated in a lab mock-up of a real task, where a
robot and a human share the task of filling the compartments of a tray (see Fig. 5.2). The video

1www.iri.upc.edu/groups/perception/OCRA

www.iri.upc.edu/groups/perception/OCRA
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Figure 5.2: Setup of collaboratively filling a tray: example of an industrial kitting task used
during the validation of this work.

of one of the experiments can be found in the additional material. This validation was meant
to evaluate the ontology’s capabilities to answer the set of competency questions proposed in
Sec 5.3.1. Note that the design requirements of the ontology were those competency questions.
Hence, answering them proves that the ontology was properly formalized, and that it meets the
desired prerequisites. Specifically, the competency questions were contextualized by illustrating
various situations extracted from the proposed collaborative scenario. For each situation, an
OWL 2 DL knowledge base populated with the proper instances was used to answer the queries.
Note that, as one can reason over OCRA using an inference engine (HermiT [Glimm et al.,
2014]), this validates the consistency and coherence of the ontology.

To reliably compute the risk of human-robot collision, it was used the method proposed in
Chapter 4, which computed the Time-To-Contact (TTC). Recall that TTC is the time that would
take the robot’s end effector and the human’s hand to collide if they kept moving at the same
relative velocity. Hence, the pose and velocity of the human was extracted from an HTC Vive
tracker attached to the human’s hand, and the measurements were taken at 100Hz. When the
TTC was lower than a certain threshold, the robot stopped (high risk of collision). The medium
degree of risk corresponded to when TTC was greater than the threshold and different to infinite.
When TTC was infinite, meaning that there was no expected contact, the level of risk was low.
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Instance name Ontological class
Collaborative_workspace Collaboration Place
Collaborative_workspace_role Collaborative Place
CollaborativelyFillingATray Event (later inferred as Collaboration)
FullTray Goal
Human_operator Physical Agent
Kinova_robot Physical Agent
PickingAndPlacingTokensUntilFullTray Plan
RFID_board Designed Artifact
RFID_board_current_capacity Available Capacity

Table 5.3: ABox overview to answer general competency questions about collaboration in
Protégé. Note that the knowledge also comprised relations between the different instances,
allowing to make inferences that were not originally asserted (e.g. that an event is indeed a
collaboration).

Using the lights on the robot’s base, the robot shared its interpretation of the collision’s risk with
the operator (Fig. 5.2). An RFID-based board was used for a fast and precise token-compartment
detection. The experiment’s software ran in a desktop PC with an Intel Core i7-7800X CPU (12x
3.50 GHz), a 32 GB DDR4 RAM, and an NVIDIA GeForce FTX 1080 Ti/PCLe/SSE2 GPU.

5.4.1 Filling a tray - Application ontology

In order to represent the knowledge of the proposed use case, some extra concepts were
necessary. They were defined as either instances or specializations of DUL’s classes. In the
scenario of filling a tray, there were different objects: the robot, the human operator, the board
(tray), the compartments, and the tokens. All of them were instances of different sub-classes of
PhysicalObject in DUL: ‘any Object (DUL) that has a proper space region’. The robot and the
human were defined as instances of PhysicalAgent, and the board, the compartments, and
the tokens as instances of DesignedArtifact. For the board and the compartments, a new
class was included: AvailableCapacity, defined as a Quality in DUL. This quality lets us
capture the knowledge about whether a compartment or the tray is already filled or not.

5.4.2 Part 1 - Questions about collaboration

We deal here with the first five competency questions presented in Sec. 5.3.1. Once imported
DUL and OCRA, all the entities that were involved in the collaboration are instantiated in the
knowledge base (see Table 5.3). Note that the queries are presented in a description-logic-like
syntax that is consistent to how the queries can be answered using a Protégé knowledge base.
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Which and how many collaborations are running now? (Q1)

0is instance of 0 Collaboration

If the query holds, i.e. the knowledge base contains asserted or inferred instances of
collaborative events, the answer contains all the possible values that make the query to be
‘true’. In this case, there is one existent collaboration: ‘collaboratively filling a tray’.

Which is the plan of a collaboration? (Q2)

0is plan executed in0 value CollaborativelyF illingATray

The answer would contain all the plans that are executed in the collaborative event: ‘picking
and placing tokens until full tray’.

Which is the goal of a collaborative plan? (Q3)

0is component of 0 some (Plan and 0is plan executed in0 value CollaborativelyF illingATray)

The answer would contain the goal to be achieved by executing the previously obtained
collaborative plan: ‘full tray’.

Are these agents collaborating? (Q4)

0is participant in0 value CollaborativelyF illingATray and 0hasgoal0 value FullTray

and 0hasplan0 value P ickingAndP lacingTokensUntilFullT ray

In this case, the answer contains that two different agents are collaborating: ‘Kinova robot’
and ‘Human operator’.

Where is a collaboration happening? (Q5)

0is location of 0 value CollaborativelyF illingATray

The answer to this query says that the collaboration is happening at: ‘Collaborative
workspace’.
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Instance name Ontological class
Collaborative_workspace Collaboration Place
Collaborative_workspace_role Collaborative Place
CollaborativelyFillingATray Event (later inferred as Collaboration)
CollaborativelyFillingATray_current_risk Collaboration Risk
CollaborativelyFillingATray_directly_physical Directly Physical Collaboration
CollaborativelyFillingATray_indirectly_physical Indirectly Physical Collaboration
CollaborativelyFillingATray_non-physical Non-physical Collaboration
FullTray Goal
Human_operator Physical Agent
Kinova_robot Physical Agent
PickingAndPlacingTokensUntilFullTray Plan
RFID_board Designed Artifact
RFID_board_current_capacity Available Capacity

Table 5.4: ABox overview to answer general competency questions about collaboration types
and risks in Protégé. Note that the knowledge also comprised relations between the different
instances, allowing to make inferences that were not originally asserted (e.g. that an event is
indeed a collaboration).

5.4.3 Part 2 - Questions about collaboration types and risk

In this case, the Protégé knowledge base contained the same content as before plus some
instances about the specific type of collaboration and the risk (see Table 5.4).

From the same collaboration event, different situations were extracted for each collaboration
type and risk. Three different types of collaboration were considered corresponding to the ones
defined in Sec. 5.3.4. Fig. 5.3 depicts a picture for each of the types. Regarding the collaboration
risks, it was selected the risk of collision, which had three different levels: high, medium and
low (see Fig. 5.4).

How is a collaboration classified? (Q6)

classifies value CollaborativelyF illingATray

The answer to this query says that the current type of collaboration is non-physical, but note
that this value may change according to the cases depicted Fig. 5.3.

Which is the risk of a collaboration? (Q7)

0is instance of 0 CollaborationRisk and isQualityOf value CollaborativelyF illingATray

and hasDataV alue value 0HIGH_RISK 0
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(a) (b) (c)

Figure 5.3: Collaboration types. (a) Non-physical collaboration: the robot selects the
compartment to place a token and the human monitors how the robot does its part of the
plan. (b) Indirectly physical collaboration: the human and the robot move to place a token
in different compartments without exchanging forces. (c) Directly physical collaboration: the
human moves the robot exchanging forces while the robot remains in admittance mode.

(a) (b) (c)

Figure 5.4: Collaboration risks. (a) Low risk - green light: there is not any potential detected
collision. (b) Medium risk - orange light: the robot has detected a possible collision. (c) High
risk - red light: the detected collision is imminent.

Note that the actual value of level of risk of a collaboration changes over time and is asserted
as a data value. However, using the OWL 2 DL reasoners from Protégé one would always get the
same answer, because they only work with classes and instances. In order to overcome this, and
to avoid introducing other languages such as SPARQL [Pérez et al., 2006], SQWRL [O’Connor
and Das, 2009], the data value of the current risk is restricted in the query. Hence, if the
entity containing the current risk had the queried data value, it would be returned as a result.
Otherwise, the result would be empty. In this case, the queried level is ‘high’ and there is a
non-empty answer: ‘Collaboratively filling a tray - current risk’.

5.4.4 Part 3 - Questions about adaptation

In this section, the remaining competency questions are answered. Once imported DUL and
OCRA, all the entities that were involved in the adaptation event were instantiated in the
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Instance name Ontological class
Collaborative_workspace Collaboration Place
CollaborativelyFillingATray Collaboration
Full_compartment_adaptation Event (inferred as Plan Adaptation)
Full_compartment_adaptation_final_plan Plan
Full_compartment_adaptation_final_plan_execution Event
Full_compartment_adaptation_initial_plan Plan
Full_compartment_adaptation_initial_plan_execution Event
FullTray Goal
Human_operator Physical Agent
Kinova_robot Physical Agent
RFID_board Designed Artifact
RFID_board_compartment_19 Designed Artifact
RFID_board_compartment_19_is_full Situation
RFID_board_compartment_19_current_capacity Available Capacity
RFID_board_current_capacity Available Capacity

Table 5.5: ABox overview to answer competency questions about plan adaptation in Protégé.
Note that the knowledge also comprised relations between the different instances, allowing
to make inferences that were not originally asserted (e.g. that an event is indeed a plan
adaptation).

knowledge base (see Table 5.5).

A new situation for the competency questions about adaptation is proposed. The robot
modified its symbolic task plan and continued with the other free targets after the human filled
one of the compartments the robot was meant to fill (see Fig. 5.5). Note that the robot’s path
planning was a simple point-to-point straight navigation.

(a) (b) (c)

Figure 5.5: Plan adaptation to unforeseen events. In the shown sequence, (a) the human and
the robot move towards the same compartment; (b) then the human fills the compartment; (c)
the robot adapts its plan and moves to another free compartment.
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Which and how many plan adaptations are running now? (Q8)

0is instance of 0 PlanAdaptation

The answer contains all the possible values that make the query to be ‘true’. In this case,
there is one existent plan adaptation: ‘full compartment adaptation’.

Which is/are the agent/s participating in the plan adaptation? (Q9)

0is participant in0 value Full_compartment_adaptation

The answer says that there is one agent participating in the adaptation: ‘Kinova robot’.

Why is an adaptation of an agent’s plan happening? (Q10)

0is instance of 0 Situation and isPostconditionOf some

(Event and isPartof value Full_compartment_adaptation and executesP lan some

(Plan and isWorseP lanThan some P lan))

The answer states that there is a situation that triggered the adaptation: the compartment
19 was full. In this case, one could further ask for the details of the adaptation’s cause, which
are also represented using OCRA:

hasSetting value RFID_board_compartment_19_is_full and hasQuality some

(AvailableCapacity and hasDataV alue value 0)

The query holds since the current situation is setting of compartment nineteen, whose avail-
able capacity is zero, thus the obtained answer is: ‘RFID board compartment 19’. This indicates
that the compartment is full, the reason why the robot adapts its plan.

Which is the plan before and after the adaptation? (Q11)

There are two queries to do in this case, one per each of the plans.

isP lanExecutedIn some (Event and isPartOf value Full_compartment_adaptation)
and isWorseP lanThan some P lan

This would return the initial plan (filling compartment 19).

isP lanExecutedIn some (Event and isPartOf value Full_compartment_adaptation)
and isBetterP lanThan some P lan

The answer to this query would return the final plan (filling compartment 4).
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Which is the goal of the agent involved in the adaptation that is also the goal to be achieved
by both the old and the new plan? (Q12)

isComponentOf value Full_compartment_adaptation_initial_plan and

isComponentOf value Full_compartment_adaptation_final_plan and isGoalOf some

(Agent and isParticipantIn value Full_compartment_adaptation)

The answer contains that the goal is: ‘Full tray’.

5.5 Validation II - Limit cases evaluation

This validation aims to study the robustness of the proposed ontological model, analyzing
OCRA’s performance in several limit cases of the formalization. Particularly, a set of examples
of Collaboration and Plan Adaptation is proposed that contain incongruent or
incomplete axioms (see Tables 5.6 and 5.7). We explore how the formal definitions in FOL and
OWL 2 DL behave in these cases, observing whether OCRA is able to exclude or not the
incorrect instances. The results show that the formal definitions within OCRA indeed exclude
them in most of the cases. This proves the strength of our formal model in situations where it
might be unclear whether an event is or not a Collaboration or a Plan Adaptation.

Case description Classification FOL OWL 2 DL

An agent (robot) during the exe-
cution of plan (o) and due to a
situation (s), realizes that there is
a plan (n) that has the same goal
and is better than the initial plan
(o). However, the agent continues
executing (f) the old plan (o).

Not a plan
adaptation
since the agent
still executes
the initial plan.

executesPlan(f,n) ^
¬executesPlan(f,o)
are violated, thus
the case is excluded
by the definition in
FOL.

executesPlan(f,n) ^
¬executesPlan(f,o)
are violated, thus
the case is excluded
by the definition in
OWL 2 DL.

An agent (robot) during the execu-
tion of a plan (o) decided to change
and execute another plan (n) that
has the same goal. Nevertheless,
the new plan (n) is not better than
the original plan (o) due to the
actual situation (s) realized after the
execution of an initial part (i) of the
original plan (o).

Not a plan
adaptation
since no
situation makes
the new plan a
better one.

betterPlan(s,n,o) is
violated, thus the
case is excluded by
the definition in
FOL.

isBetterPlanThan(n,o)
is violated, thus the
case is excluded
by the definition in
OWL 2 DL.

Table 5.6: Ontology robustness evaluation of the formalization of Plan Adaptation.
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Case description Classification FOL OWL 2 DL
A human (h) and a robot share
the plan and the goal during
the plan’s execution (e) but the
human performs no activity.

Not a
collaboration
since only one
of the agents
(the robot) is
active.

dul.hasParticipant(e,h)
is violated, thus the
case is excluded by the
definition in FOL.

dul.hasParticipant(e,h)
is violated, thus the
case is excluded by the
definition in OWL 2
DL.

A human and a robot share the
plan (p) and the goal during an
event (e) in which they both
perform activities but without
executing the shared plan.

Not a
collaboration
since the
event does not
execute the
shared plan.

executesPlan(e,p) is vi-
olated, thus the case is
excluded by the defini-
tion in FOL.

executesPlan(e,p) is vi-
olated, thus the case is
excluded by the defini-
tion in OWL 2 DL.

A human and a robot have the
same plan (p) and goal (g) dur-
ing the time that both execute
the plan, but the plan’s goal is
different from the shared goal.

Not a
collaboration
since the agents
execute a plan
to achieve a
goal that is not
shared.

dul.hasComponent(p,g)
is violated, thus the
case is excluded by the
definition in FOL.

dul.hasComponent(p,g)
is violated, thus the
case is excluded by the
definition in OWL 2
DL.

A human and a robot share
the plan during the time that
its execution lasts (t). They
also share the goal (g) but not
during the whole execution,
because the robot (r) changes
its goal at some point.

Not a
collaboration
since the
human and
the robot do
not share the
goal during
the whole
execution of
their plan.

hasGoal(r,g,t) is vio-
lated, thus the case is
excluded by the defini-
tion in FOL.

hasGoal(r,g) holds
some time, thus the
case is not excluded
by the definition in
OWL 2 DL. It might be
solved by ’reification’,
introducing
several relations
hasGoal_tp(r, g), one
for each instant (tp)
in which the relation
holds. This solution is
activity-dependent so
we do not present it in
the general definition.

Table 5.7: Ontology robustness evaluation of the formalization of Collaboration.

5.6 Discussion

This chapter proposed OCRA, an Ontology for Collaborative Robotics and Adaptation. In
harmony with the findings of the initial chapters, it has been built around two main concepts:
collaboration, and plan adaptation. The proposed definitions included in the ontological model
are consistent with the state of the art, and they were formalized in FOL, to take advantage of
its expressiveness, and in OWL 2 DL for practical computational purposes. The ontological
theory was qualitatively validated in a realistic case study in which a human and a robot shared
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the execution of a task. First, the capability of the ontology to answer a set of competency
questions in a contextualized scenario was assessed. Second, it was discussed how the
formalization would work in some limit cases in which we purposely defined wrong instances
of Collaboration and Plan Adaptation. Using OCRA, robots can formally represent,
reason about, and recognize adaptive and collaborative events in unstructured collaborative
robotic scenarios.

This work is a step forward to more reliable collaborative robots, and also to enhance the
interoperability and reusability of the terminology in this domain. It remains open though how
this work can contribute to foster the development of ontology-based explainable robots. The
introduction in Chapter 1 already discussed that explainable agency requires functional
abilities such as: reporting the actions robots executed (e.g. collaboration with humans),
explaining how actual events diverged from what was planned and how robots adapted to it
(i.e. plan adaptation), and explain decisions made during plan generation (comparing
alternatives). The ontological model proposed in this chapter lets robots represent knowledge
related to the first two functional abilities. However, further research needs to be conducted on
how robots can manipulate such knowledge to construct explanations of collaborative and
adaptive experiences (see Chapter 6). Furthermore, a more comprehensive model would be
needed to generate ontology-based explanations about decisions made during plan generation
and comparison, which is discussed in Chapter 7.



chaptersix
Robots narrating collaborative and adaptive
experiences

” ..the universe is made of stories, not of atoms..

— Muriel Rukeyser

(The speed of darkness)

This thesis aims to explore the use of ontologies as an integrative framework for
explainable robotics, advocating for the storage of ontology-based robot episodic memories for
latter retrieval and explanation construction. Chapter 1 discussed that explainable robots
would require functional abilities such as: producing reports of their executed actions (e.g.
collaborative experiences), and explaining how they adapted to unexpected changes (e.g.
adaptive events). In this regard, the validation with users from Chapter 3 disclosed interesting
insights about the potential benefits of explainable robots in collaborative and adaptive
scenarios. Using a simple LED armband already seemed to help users to understand why the
robot was not adapting accordingly to the expected collaboration, which boosted mutual
understanding. We thought that more comprehensive robot knowledge about collaborative and
adaptive events would lead to greater advancements. Hence, a novel ontological model for
collaborative robotics and adaptation was introduced in Chapter 5, allowing robots to
represent knowledge about their collaborative and adaptive experiences. Expanding upon
those prior contributions, the current chapter deals with investigating how robots might
leverage such knowledge to construct and communicate explanations of what robots know
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about those experiences. For that, it is proposed a sound methodology that integrates three
main elements: first, the ontology for collaborative robotics and adaptation presented in
Chapter 5, which models the domain knowledge; second, an episodic memory for time-indexed
knowledge storage and retrieval; third, a novel algorithm to extract the relevant knowledge
and generate textual explanatory narratives. The algorithm produces three different types of
outputs, varying the specificity, for diverse uses and preferences. A pilot study was conducted
to assess the usefulness of the narratives, yielding promising results in fostering a shared
understanding between humans and robots. Finally, the chapter discusses how the
methodology can be generalized to other ontologies and experiences. Note that since the
approach is time-sensitive (the knowledge is episodic), it can be used to narrate details of short
and also long-term robot past experiences. This chapter marks the foundational stone for
further advancements in ontology-based explainable robotics within this thesis.

6.1 Motive

The development of applications where humans and robots collaborate triggers the appearance
of several issues such as those related to trustworthiness between the collaborative agents. For
proper cooperation, mutual understanding of the ongoing events and communication between
teammates become essential [Yuan et al., 2022]. In this regard, narratives seem to help with
understanding agents’ actions [Carr, 2008]. Hence, collaborative robots could narrate what they
know of their experiences, i.e., collaborations and plan adaptations, to be more understandable.
Those robot narratives may boost explainable agency (i.e., explaining the reasoning of goal-
driven agents and robots), which has recently gained significant momentum [Anjomshoae et al.,
2019, Chakraborti et al., 2020]. Robotic tasks may involve several events and a lot of contextual
knowledge. Hence, time-indexed narratives of events (i.e., narrating events when they occur)
make more sense in robotics than in other artificial intelligence tasks (e.g. classification), where
single post hoc and time-independent narratives or explanations might suffice.

Langley et al. [Langley et al., 2017], discussed the need for three elements of explainable
agency: a representation of the domain knowledge, an episodic memory to store the
knowledge, and the ability to access and retrieve that knowledge to generate explanations.
Episodic memory is the collection of past personal experiences that occurred at particular times
and places [Tulving, 1972]. Beetz et al. [Beetz et al., 2018], presented the second generation
of KnowRob, a knowledge-based framework for robotics, which includes formal domain
ontologies, and narrative-enabled episodic memory (NEEM) storage and retrieval. NEEMs may
be useful for generating human understandable explanatory narratives, but this is still
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Figure 6.1: Overview of the methodology for the generation of explanatory ontology-based
narratives for collaborative robotics and adaptation (XONCRA).

unexplored, especially in the collaborative robotics and adaptation domain. Hence, this chapter
proposes a methodology (see Fig. 6.1) for the generation of eXplanatory Ontology-based
Narratives for Collaborative Robotics and Adaptation (XONCRA). The proposed methodology
and its evaluation are designed to address the following research questions:

- RQ1 - How can robots construct the narrative of their collaborative and adaptive events
(experiences)?

- RQ2 - How does the narratives’ specificity affect the users perceived usefulness of the
received information?

6.2 Related work

We found great inspiration in the narrative and storytelling literature. Labov et al. [Labov and
Waletzky, 1997], defined a narrative ‘as a way of recounting past events, in which the order of
narrative clauses matches the order of events as they occurred’. Carr [Carr, 2008], stated that
to provide explanatory information, a narrative should contextualize the agent’s experiences in
time. Both works emphasized the importance of the time when the events occurred, reinforcing
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the need for episodic memory. Narratives have already been an applied for robot task plans’
verbalization [Rosenthal et al., 2016, Flores et al., 2018, Canal et al., 2022].

A sound approach to represent domain knowledge is to use representation formalisms such
as ontologies. The 1872–2015 IEEE Standard Ontologies for Robotics and
Automation [Schlenoff et al., 2012] and the 1872.2-2021 IEEE Standard for Autonomous
Robotics Ontology [Gonçalves et al., 2021b] were developed to become references for
knowledge representation in the domain. Indeed, the use of ontologies has spread to several
robotic sub-domains such as service and assistive robotics [Olszewska et al., 2017, Fiorini et al.,
2017, Olivares-Alarcos et al., 2019a]. Some examples are manufacturing and collaborative
robotics [Stenmark and Malec, 2015, Balakirsky, 2015, Chen et al., 2021, Borgo et al.,
2019b, Sampath Kumar et al., 2019, Umbrico et al., 2020, Olivares-Alarcos et al., 2022], robot
co-design [Ramos et al., 2018b, Ramos et al., 2018a], and service and general purpose
robots [Beetz et al., 2018, Bruno et al., 2019a, Beßler et al., 2020b]. All these works are steps
towards the harmonization and formalization of the knowledge in the robotics domain. Hence,
they have the potential to play a major role in the explainable agency.

The notion of episodic memory was first introduced in a classical work by Tulving as the
collection of past personal experiences that occurred at particular times and places [Tulving,
1972]. Its essence lies in the conjunction of three concepts: self, autonoetic awareness, and
subjectively sensed time [Tulving, 2002]. Beetz et al. [Beetz et al., 2018], introduced a
knowledge-based framework for robots that includes an episodic memory, the
narrative-enabled episodic memory (NEEM). It consists of the NEEM experience (low-level
time-indexed information) and the NEEM narrative (symbolic descriptions, e.g., goals, states,
etc.). NEEMs have already been used in human-robot interaction [Bartels et al., 2019], and
robot learning [Bozcuoğlu et al., 2019]. Nevertheless, their role in the generation of robot
textual narratives still remains unexplored.

In the literature, several authors worked on automatic text generation using knowledge
modeled in OWL (Web Ontology Language) or RDF (Resource Description
Framework) [Androutsopoulos et al., 2013, Nguyen et al., 2019, Ngonga Ngomo et al.,
2019, Dalianis and Hovy, 1996]. Although inspiring, none of those works discussed the
generation of different types of texts based on the preferred specificity. Furthermore, in ours,
the target knowledge to be included in the textual narratives is automatically retrieved, while
the others just assumed that the knowledge atoms or tuples were given.



6.3 Explanatory ontology-based narratives for collaborative robotics and adaptation 113

6.3 Explanatory ontology-based narratives for

collaborative robotics and adaptation

6.3.1 Preliminary notation

Let’s assume countable pairwise disjoint sets NC , NP , and NI of class names, property names,
and individuals, respectively. The standard relation rdf:type, which relates an individual
with its class, is abbreviated as type and included in NP . A knowledge graph G is a finite
set of triples of the form hs, p, oi (subject, property, object), where s 2 NI , p 2 NP , o 2 NI if
p 6= type, and o 2 NC otherwise. The semantic knowledge of an episodic memory can be seen
as a time-indexed knowledge graph GT , which is a finite set of tuples of the form hs, p, o, ti, tf i,
where ti, tf 2 R > 0, and denote the time interval (initial and final time) in which the triple
hs, p, oi holds. Knowledge graphs commonly comply with the open-world assumption, thus,
non-asserted triples are unknown instead of false. For this reason, the second version of the Web
Ontology Language (OWL 2) allows to make explicit negative properties assertions: hs, p, oi is
false.1 Hence, in GT one may store, for instance, that during an interval of time, hti, tf i, an
event e is not an instance of the class Collaboration: he, type, Collaboration, ti, tf i is false.
In this work, querying the GT , we build what we called ‘narrative tuples’ of an instance event, Te:
hs, p, o, ti, tf , signi, where sign indicates whether the time-indexed triple comes from a positive
or negative assertion.

6.3.2 NEEMs for collaborative robotics and adaptation

The proposed methodology incorporates a knowledge-based episodic memory for collaborative
robots that adapt to unstructured scenarios. It consists of the integration of an ontology for
collaborative robotics and adaptation (OCRA) [Olivares-Alarcos et al., 2022], into the NEEMs
ecosystem of Knowrob [Beetz et al., 2018]. It allows robots to represent time-indexed
knowledge of their collaborations and adaptations, store it and retrieve it for a later generation
of textual explanatory narratives.

Background on OCRA

The ontology, introduced in Chapter 5), was developed to enhance the reusability of the
domain’s terminology, and to allow robots to formalize and reason about two main concepts:
collaboration and plan adaptation. Collaboration is defined as ‘an event in which two or

1www.w3.org/2007/OWL/wiki/FullSemanticsNegativePropertyAssertions

www.w3.org/2007/OWL/wiki/FullSemanticsNegativePropertyAssertions
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(b)

(c)

Figure 6.2: Visualization of a recorded NEEM of a prototypical collaborative kitting task (filling
a tray) with different episodes within it (a, b, and c).

more agents share a goal and a plan to achieve the goal, and execute the plan while interacting’.
Plan Adaptation is ‘an event in which one (or more) agent, due to its evaluation of the
current or expected future state, changes its current plan while executing it, into a new plan, in
order to continuously pursue the achievement of the plan’s goal’. Considering these definitions,
narratives of Collaborations shall include knowledge about the shared plan and goal, and
the agents executing the plan. Meanwhile, narratives of Plan Adaptations must contain
details regarding the initial and new plans, the situation triggering the adaptation, and the
involved agent. In this chapter, the OCRA’s formalization in OWL 2 DL, a description logic
version of OWL 2, is used.

Background on NEEMs

For every activity the robot (agent) performs, observes, or prospects, it can create an episode
and store it in its memory. An episode is best understood as a video recording that the robot
makes of the ongoing activity (see Fig. 6.2). In addition, those videos are enriched with a very
detailed log of the actions, motions, their purposes, effects, and the agent’s sensor information
during the activity. The episodic memories created by Knowrob are named narrative-enabled
episodic memories (NEEMs). A NEEM consists of the NEEM experience and the NEEM
narrative. The NEEM experience captures low-level data such as the agent’s sensor
information, e.g. images and forces, and records of poses of the agent and its detected objects.
NEEM experiences are linked to NEEM narratives, which are logs of the episode described
symbolically. These narratives contain information regarding the tasks, the context, intended
goals, observed effects, etc. In this chapter, the focus is on the NEEM-narrative, since the aim is
to explain the symbolic understanding that the robot has of its experiences. A detailed
overview of NEEMs can be found in the NEEM Handbook [Beetz et al., 2020].
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Integration

NEEMs are modeled using OWL 2 DL ontologies built upon the DOLCE+DnS Ultralite (DUL)
foundational ontology [Borgo et al., 2021], the same upper-level ontology that OCRA relies on.
OCRA was integrated into Knowrob’s and NEEMs’ ecosystem without causing any ontological
inconsistency. The knowledge base is accessible to the robot through a prolog-based service
implemented as a ROS (Robot Operating System) package: rosprolog.2 Here it was implemented
a novel ROS package (know-cra) in which OCRA is integrated into Knowrob’s framework. This
implementation is publicly available on a GitHub repository,3 and illustrates how to load and
use OCRA, and some instantiated use cases, with Knowrob. Furthermore, the shared code also
includes examples of manipulating recorded NEEMs.

6.3.3 AXON - An algorithm for explanatory ontology-based narratives

AXON is the major theoretical contribution of this chapter, a novel algorithm that extracts
knowledge about target experiences or events from episodic memories, and uses it to construct
textual explanatory narratives. The algorithm leverages the structure of ontological episodic
knowledge, assuming that knowledge connected to a robot experience is semantically relevant
to narrate it. The time-indexed knowledge graph GT stored in the episodic memory is the first
algorithm’s input. Furthermore, AXON takes three more inputs: the ontological class (or
classes) of the events to narrate, the temporal locality (time interval of the events of interest),
and the level of specificity. Although our focus is on narratives about Collaborations and
Plan adaptations, AXON is general enough to work with other OWL 2 DL ontologies and
classes, as it is discussed in Sec. 6.5. There are three different narrative types, depending on
the selected specificity. In this work, specificity refers to the amount of detail used to construct
the textual narrative, more precisely, the number of knowledge tuples. This section first
introduces the main algorithm (see Alg. 3), and then explains its three major routines: Retrieve
Instances With Time Interval, Retrieve Narrative Tuples, and Construct Narrative. An
implementation of the algorithm and an example of use can be found in an online repository.4

AXON first retrieves a set IT of tuples he, ti, tf i, containing the event instances e of the
provided classes C whose time interval (ti, tf ) exists, at least partially, within the temporal
locality (Li, Lf ) (line 2). Second, based on the specificity S, the algorithm retrieves a set of
knowledge tuples Te related to each instance (line 4). Third, an explanation Ee for every
instance is constructed using their respective tuples (line 5). Finally, the algorithm

2www.github.com/knowrob/rosprolog
3https://github.com/albertoOA/know_cra
4https://github.com/albertoOA/explanatory_narratives_cra

www.github.com/knowrob/rosprolog
https://github.com/albertoOA/know_cra
https://github.com/albertoOA/explanatory_narratives_cra
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Algorithm 3: AXON
Input: Episodic memory (GT ), events to narrate (C), temporal locality (Li, Lf ),

specificity (S)
Output: Narrative (E)

1 E  � ;

2 IT  � RetrieveInstancesWithTimeInterval(GT , C, Li, Lf )
3 foreach he, ti, tf i 2 IT do
4 Te  � RetrieveNarrativeTuples(GT , he, ti, tf i, S)
5 Ee  � ConstructNarrative(Te)
6 E  � E [ Ee

7 end

concatenates the new explanation to the set of explanations E (line 6).

Retrieve instances with time interval routine

Given a time-indexed knowledge graph GT , an ontological existing class or a set of them,
C ⇢ NC , and a time interval hLi, Lf i, this routine retrieves a set IT containing all the
time-indexed instances he, ti, tf i of the given classes such that
8he, ti, tf i 2 IT ! 9c 2 C ^ he, type, c, ti, tf , signi ^ hti, tf i \ hLi, Lf i. Some examples of
instances of events to narrate with their time interval may be the following:
hEvent_15, 100.0, 142.0i,

hEvent_27, 200.0, 240.0i.

Retrieve narrative tuples routine

Given GT , an instance event e to narrate with the time interval in which it exists hti, tf i, and the
specificity level S, this routine retrieves all the relevant tuples, hs, p, o, ti, tf , signi, to construct
the narrative. The first level of specificity can be considered as a baseline and only returns
tuples containing the class c of each instance: he, p, c, ti, tf , signi 2 GT ^ p = type. In the second
level, the algorithm adds all the tuples in which the instance e is related to an object o through
any property different to type: he, p, o, ti, tf , signi 2 GT ^ p 6= type. Finally, the third level
adds all the tuples in which the objects o from the second level are related to other objects ox:
ho, px, ox, tix, tfx, signxi 2 GT ^hti, tf i\htix, tfxi. As robots’ experiences are tied to a time frame,
the search was restricted to tuples whose time interval htix, tfxi intersected the time interval of
the instance hti, tf i. This aimed to avoid retrieving tuples that were irrelevant to the narrative
of the instance e. Furthermore, if a tuple or its inverse already exists in the retrieved set Te, it is
not added. Note that the retrieved tuples for each level are also included in upper levels (e.g.,
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Figure 6.3: Graphical representation of the different levels of specificity (S) and their respective
depth in the knowledge graph. (a) S = 1, (b) S = 2, and (c) S = 3.

the tuples from the first level are also returned in the second and the third). In an intuitive way,
this would be equivalent to going deeper into the knowledge graph (see Fig. 6.3). Using as an
example the task of filling a tray (from Chapter 5), some instances of the retrieved narrative
tuples Te of an event are:
T e1 . hRobot, hasPlan, Place Tokens By Color, 200.0, 240.0, positivei,

T e2 . hEvent_27, hasParticipant, Robot, 200.0, 240.0, positivei,

T e3 . hPlace Tokens By Color, isPlanOf, Human, 200.0, 240.0, negativei,

T e4 . hHuman, isParticipantIn, Event_27, 200.0, 240.0, positivei,

T e5 . hHuman, type, Physical Agent, 1.0, 1000.0, positivei.

Construct narrative routine

Given the narrative tuples Te of an instance event to narrate e, this routine constructs the final
explanatory narrative following a set of rules: casting, clustering, ordering, and grouping.
These rules, proposed by Dalianis et al. [Dalianis and Hovy, 1996], define the aggregations that
humans usually do in natural language.

Casting consists of homogenizing all the properties used in the tuples. First, making sure
that in all the tuples Te concerning the target instance e (Te2 and Te4 in the previous example),
e acts as the subject of the tuple. Hence, when Te contains a tuple in which e acts as the object,
hs, p, e, ti, tf , signi 2 Te, the algorithm inverts the tuple to: he, p�1, s, ti, tf , signi, where p�1 is
the inverse property of p. In the tuples shown before, the tuple Te4 containing the property
isParticipantIn would be changed using its inverse hasParticipant. Once this is done,
all the tuples regarding e are added to the set of cast tuples TeCast . The second step in casting
involves the tuples not concerning e (Te1 , Te3 and Te5), ensuring that each tuple’s property is
consistent with the properties already existent in the cast tuples. Otherwise, the tuple is inverted
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before adding it to TeCast . In the example, Te1 is added to TeCast (following the order), thus, Te3
needs to be inverted before added.

Then the routine clusters all the tuples hs, p, o, ti, tf , signi that share the subject s. Therefore,
when generating the narrative, all the information about a specific subject will appear together.
In the example, Te2 and the inverted Te4 , and the inverted Te3 and Te5 would be clustered.

Next, the tuples are ordered: externally and internally. The external ordering consists in
ordering the subjects from more information (more tuples) to less. This rule has one exception,
the information about the target instance is always at the top front of the list. The internal
ordering ensures that the tuples with the property p = type are at the front of the list for each
subject. In the example, after applying all these rules the set of tuples would change to:
T 0

e1
. hEvent_27, hasParticipant, Robot, 200.0, 240.0, positivei,

T 0
e2

. hEvent_27, hasParticipant, Human, 200.0, 240.0, positivei,

T 0
e3

. hHuman, type, Physical Agent, 1.0, 1000.0, positivei,

T 0
e4

. hHuman, hasPlan, Place Tokens By Color, 200.0, 240.0, negativei,

T 0
e5

. hRobot, hasPlan, Place Tokens By Color, 200.0, 240.0, positivei.

Finally, the tuples are grouped into a sentence, constructing the final textual narrative Ee.
First, the tuples with the same subject, property, interval, and sign are joined (object grouping).
Hence, if there are two tuples: hs, p, oa, ti, tf , signi and hs, p, ob, ti, tf , signi, the algorithm joins
them to: hs, p, oa and ob, ti, tf , signi. In the example tuples, T 0

e1 and T
0
e2 would be joined into:

hEvent_27, hasParticipant, Robot and Human, 200.0, 240.0, positivei. Second, the tuples for
each subject are joined into separated sentences (subject grouping) considering their sign and
using the conjunction ‘and’ and the propositions ‘from’ and ‘to’. The adverb ‘not’ is included
before the property when generating the text of a negative assertion. Furthermore, it is excluded
the time interval of a tuple if it was equal to the time interval in which the instance exists. The
names of properties, classes, and instances are kept, only the property ‘type’ is changed to ‘is a
type of’. The final narrative for the ongoing example would be:
‘Event_27’ has participant ‘Robot and Human’ from 200.0 to 240.0. ‘Human’ is a type of ‘Agent’ from 1.0 to

1000.0 and (not) has plan ‘Place Tokens By Color’. ‘Robot’ has plan ‘Place Tokens By Color’.

6.4 Validation: Setting the methodology to work

6.4.1 Collaborative task: filling a tray with tokens

The validation of XONCRA was contextualized in a lab mock-up of a real task, where a robot
and a human shared the task of filling the compartments of a tray/board (see Fig. 6.4). The
task’s objective was to obtain a tray full of tokens. The specific order changes to create different
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tasks (e.g., tokens are sorted by color, in ascending numerical order, etc). When a token was
not useful to accomplish the task’s goal (e.g., compartments for that color are already filled),
it was discarded. The risk of human-robot collision was computed using the pose and velocity
extracted from an HTC Vive tracker attached to the human’s hand using the Time-To-Contact
(TTC) method presented in Chapter 4.

Figure 6.4: Setup of filling a tray, the validation task.

6.4.2 Robot experiences about collaboration and adaptation

Following the schema described in the proposed methodology XONCRA (see Fig. 6.1), RQ1 is
addressed. The first step is to run executions, twelve in this case, of the validation task. Those
executions were designed to showcase diverse situations of collaborations and adaptations
according to how they are defined in OCRA. Hence, varying their main elements: the goal, the
plan, and the workload distribution between the human and the robot. In order to ensure a
curated knowledge base, the knowledge tuples involved in those executions were manually
stored into a single NEEM after recording videos of the executions. From now on, we will refer
to that NEEM as validation NEEM.

The twelve events included three cases of collaboration, six robot plan adaptations, and three
other situations with non-collaboration. According to OCRA’s definitions, in the collaborations,
the human and the robot shared the goal (e.g. full board with tokens in columns ordered by
color) and the plan, and both of them participated in accomplishing the goal. In the adaptations,
the robot stopped executing a plan due to an unexpected situation and started executing a
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Name in the NEEM Case description

Event 28 An example of collaboration, the shared goal was to have a full board with
tokens with odd numbers.

Event 30 An example of collaboration, the shared goal was to have a full board with
tokens in ascending order.

Event 33 An example of collaboration, the shared goal was to have a full board with
tokens by color in columns.

Event 9 An example of non-collaboration, the human stopped participating in the event
to start taking notes.

Event 15 An example of non-collaboration, the human stopped participating in the event
to leave the workspace.

Event 27 An example of non-collaboration, the human stopped executing the shared
plan (filling in ascending order) to start executing a different plan (filling by
colors in columns).

Event 39 An example of plan adaptation, the robot issued a safety stop due to a high risk
of collision.

Event 43 An example of plan adaptation, the robot discarded the token to the trash
because the number on the token was too small according to the current tokens
on the board. The human has placed a token on the board that triggered the
adaptation.

Event 49 An example of plan adaptation, the robot changed its target compartment
because the human filled it.

Event 51 An example of plan adaptation, the robot placed the token on the auxiliary pile
for later use because the target compartment is busy with an incorrect token.
Note that the human is expected to pick and place the incorrectly placed token
(freeing the compartment) because the robot cannot reach the pose where it
should go.

Event 59 An example of plan adaptation, the robot discarded the held token to the trash
because the number on the token was too large according to the current tokens
on the board.

Event 63 An example of plan adaptation, the robot changed its target compartment
because the human filled it.

Table 6.1: Collaborative and adaptive experiences stored in the validation NEEM.

new plan better suited to accomplish the goal (e.g. the robot went to another compartment
when the human filled the one that the robot wanted to fill). Finally, the events showing non-
collaborations (i.e. broken collaborations) represented cases when one of the axioms needed
for a collaboration to exist was violated (e.g., the human stopped participating, or the goal/plan
was not shared). Table 6.1 provides a description of each of the events.

6.4.3 Explanatory narratives generation: an example

The focus here is on one event among the twelve stored in the validation NEEM. Event 15 shows
the human stopping the collaboration (see Fig. 6.5). Using AXON with the parameters GT =
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(a) (b) (c)

Figure 6.5: Example of a non-collaboration in which the human stops participating in the shared
task. (a) The human wears off its HTC tracker. (b) The human leaves the workspace. (c) The
robot continues performing the task alone.

validation NEEM, C = Collaboration, (Li, Lf ) = (100.0, 142.0), S = 3, one obtains a narrative of
the specific event. Recall that the level of specificity 3 includes the result of levels 1 (red) and 2
(blue).

‘Event_15’ (not) is a type of ‘Collaboration’ and is a type of ‘Event’ from 100.0 to 142.0 and executes plan ‘Place

Tokens In Columns By Color’ and has participant ‘Robot’ and (not) has participant ‘Human’. ‘Place Tokens In

Columns By Color’ is a type of ‘Plan’ from 1.0 to 1000.0 and has component ‘Full Board With Tokens In Columns

By Color’ and is plan of ‘Robot and Human’. ‘Robot’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal

‘Full Board With Tokens In Columns By Color’. ‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has

goal ‘Full Board With Tokens In Columns By Color’.

To see the rest of the generated narratives read Appendix D.

6.4.4 Pilot study: analysis of the usefulness of information

The length of an explanatory narrative plays a major role in the comprehension of its relevant
information. The aim is to be informative, providing as much information as is needed, and no
more [Grice, 1975]. Hence, a pilot study was carried out to assess the perceived usefulness of
the narratives depending on their specificity, addressing RQ2.

Specifically, participants watched a video containing the twelve events included in the
validation NEEM. The video depicted a textual narrative generated by our method after each of
the events. Users were asked to imagine that they were about to receive training (the video
with the narratives) aimed at preparing them to collaborate with a robot. This may be a real
case in an industrial environment, where a video of a human-robot collaboration plus
automatically generated narratives of the collaboration can be used to train new operators. A
between-subject study was conducted, with three groups that evaluated each of the narratives’
types. Groups 1, 2, and 3 evaluated the narratives with specificity 1, 2, and 3, respectively.
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Procedure

The study was conducted in an isolated room to avoid distractions. The experimenter informed
each participant of the procedure and asked them to fill out an informed consent form, in
which they gave permission to gather their data for scientific purposes. Next, users were shown
a warm-up video with the experiment’s context and the narratives’ format, ensuring that users
received the same information before the experiment. Then, users watched the video with the
twelve events recorded in the NEEM plus a textual narrative after each of the events. After
watching the video, the participants were asked to fill out a questionnaire with two parts:
information quality (usefulness) assessment, and open qualitative questions. The questionnaire
is shown in Appendix C, and the videos are provided as supplemental material.5

Participants

30 participants (10 per group) were recruited. There was no withdrawal. Participants were
aged between 21 and 59 (26.7% of them were female), with M=29 and SD=7.61. Most of them
(93.3%) had a background in engineering, artificial intelligence, or robotics, and at least 70%
had already interacted with other unspecified robots. Participation in the study was voluntary.

Quantitative and qualitative analysis

For a quantitative subjective analysis, it was used the quality of information measurement
discussed by Lee et al. [Lee et al., 2002]. They presented a model for Information Quality, a
questionnaire to measure it, and analysis techniques to interpret the measures. This chapter
uses one of the quadrants of their model and its relative questionnaire: usefulness. It aims to
assess whether or not the information is relevant to the user’s task, in our case, the ‘new
operator training task’. In particular, usefulness was measured through five dimensions:
appropriate amount, relevancy, understandability, interpretability, and objectivity. For each
dimension, a set of questions had to be evaluated using an 11-point Likert scale ranging from
completely disagree (0) to completely agree (10). The results of the study are shown in Fig.
6.6. Looking at them, one notes that the three levels of specificity produced useful narratives
(all above 6.5 points). However, the second level (Group 2) was perceived as the most useful.
Focusing on each dimension, the preferred narratives regarding the appropriate amount and
the interpretability were those with specificity 2. Nevertheless, it is interesting to see that
narratives with larger specificity (Group 3), were perceived to contain more understandable
information. Other dimensions show negligible differences.

5www.iri.upc.edu/groups/perception/XONCRA

www.iri.upc.edu/groups/perception/XONCRA
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Figure 6.6: Results for the quantitative analysis of the information usefulness. Users’ group
number also corresponds to the specificity level of the assessed narratives. Usefulness is
computed as the average of the other five dimensions.

The questionnaire also included some qualitative measures in the form of four open
questions. First, the users were asked if a video without narratives would prepare them for real
interaction with the robot and why. 86.7% of the participants answered that the video without
explanation would not be enough to be prepared to collaborate with a real robot. This
corroborated the need for a narrative, regardless of the specificity. The second question asked
whether the explanation had helped to prepare them for real interaction with the robot and
why. 66.7% found the narratives greatly helpful. However, this percentage changes if one looks
at the isolated answer provided by each group: 50%, 70%, and 80% for Groups 1, 2, and 3,
respectively. Hence, narratives with higher specificity seemed to be more helpful. Third, it was
asked if they would prefer a summarized or a complete but repetitive narrative and why. 50%
of the participants as a whole would prefer a summarized explanation. Nevertheless, that
percentage grows to 70% for the participants of Group 3, who read longer narratives. Finally, it
was asked if there was any content they would add to the narratives. Some participants
proposed to include graphical information.
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6.5 Discussion

This chapter introduced XONCRA, a methodology for the generation of explanatory
ontology-based narratives for collaborative robotics and adaptation. It is built upon an existent
ontology (OCRA) (see Chapter 5), and a knowledge-based episodic memory framework
(NEEM) [Beetz et al., 2018]. These two elements together enable the representation, storage,
and later retrieval of time-indexed knowledge. XONCRA also comprises a novel algorithm,
AXON, which automatically retrieves knowledge from NEEMs to construct an explanatory
narrative with it. It can produce three types of results based on the level of specificity. We
provide an implementation of the methodology and some examples, addressing RQ1. The
methodology sets an initial basis for ontology-based explainable robots, since it encompasses
the three key elements of explainable robotics: representation, episodic memory, and
explanation generation.

Depending on their specificity, the perceived narratives’ usefulness was assessed through
a pilot study, answering RQ2. Results indicated that participants found the three types to be
useful. However, it was discovered that users preferred narratives generated with level 2 of
specificity, especially for their appropriate amount and interpretability. Nevertheless, narratives
with larger specificity (3), were perceived to contain more understandable information. The
positive finding of this analysis is that all the narratives produced by XONCRA can help and be
useful. Moreover, the methodology can address different preferences with respect to different
trade-offs: appropriate amount vs understandability, etc.

Note that even though we focused on narratives of robot Collaborations and Plan

Adaptations, the methodology generalizes beyond such a use case. By construction, it can
deal with any other ontological class as long as it is formalized in the appropriate format to use
the NEEMs framework. Indeed, there is a large list of available NEEMs generated for other
purposes, e.g., a human setting up a table for breakfast, a robot monitoring a shelf in the retail
domain, etc.6 Utilizing those NEEMs, XONCRA might produce narratives about Actions,
Tasks, Objects, etc. Indeed, we explore the use of the proposed approach to narrate pairs of
alternative plans in Chapter 7.

We observe that thanks to the ontological representation of the information, one of the
potential benefits of our proposal is that explanations can be adapted to the user and the
situation. For example, starting by a shallow explanation and iteratively going deeper when
more information is required. Or avoiding to repeat information when more than one
explanation is required during the execution of a task. This is a very interesting research line

6https://neemgit.informatik.uni-bremen.de/neems

https://neemgit.informatik.uni-bremen.de/neems
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that needs to be explored in the future.
We have focused on leveraging the knowledge structure from the episodic memory to obtain

the relevant information to form a proper explanation. One of the limitations of the presented
approach is that the generated explanations are not natural enough, which may hinder their
understanding. The improvement of our explanations using more sophisticated natural language
techniques remains a research line to investigate in the future.





chapterseven
Beyond plain robot narratives: ontological con-
trastive explanations

” ..being able to embrace contradictions is a sign of
intelligence..or insanity..

— Richard Kadrey
(Butcher Bird)

Chapter 6 introduced the first ever ontology-based framework for explainable robots that
comprises the three fundamental aspects of explainable agency: domain knowledge
representation, an episodic memory, and explanation construction. The automatically
generated explanations were satisfactorily evaluated with users, yielding promising results in
fostering a shared understanding between humans and robots. The current chapter questions
the scope of the proposed framework, challenging the coverage of the previously formalized
knowledge, and investigating new types of explanations.

Hence, this work aims at generalizing the work presented in Chapters 5 and 6 beyond plain
narratives of collaborative and adaptive experiences. First, through an ontological analysis, a
new ontological model is obtained, augmenting the scope of the ontology proposed in
Chapter 5. Specifically, a new theory for plan comparison is formalized, focusing on the
properties and relationships that allow to compare plans. The robot’s knowledge about the
plans to compare is stored, and together with some logical rules, it is used to infer which plan
is better. Second, a novel algorithm for contrastive explanatory ontology-based narratives is
proposed, extending the methodology from Chapter 6 to contrastive explanation generation.
From the robot knowledge, the algorithm retrieves the divergent information about the plans,
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and then it constructs the final textual contrastive narrative. The proposed algorithm produces
different types of narratives based on the chosen amount of detail (specificity), addressing
different users’ preferences. Based on objective evaluation metrics and using several planning
domains, the algorithm is evaluated with respect to the original algorithm proposed in
Chapter 6, which is used as a baseline. The proposed algorithm outperforms the baseline, using
less knowledge to build the narratives (skipping repetitive knowledge), which shortens the
time to communicate the narratives. Finally, it is briefly discussed how the proposed algorithm
can be slightly modified to enhance and restrict the knowledge selection, which helps to
shorten the constructed narratives and can be useful to personalize the explanations.

7.1 Motive

Autonomous artificial decision-making in environments with different agents (e.g., robots
collaborating with or assisting humans) is complex to model. This is often due to the high
degree of uncertainty and potential lack of communication among agents. For instance, robots
might need to choose between competing plans, comparing their properties and deciding
which one is better. Note that this decision-making problem is different from finding a single
plan through automated planning, as here the idea is that there are already two valid plans to
execute and the robot shall compare them and identify the best one. This might happen when a
human gives an ambiguous command (e.g. ‘can you bring me a drink?’), thus the robot may
find different plans to achieve the abstract command (such as bringing any of the available
drinks). Then it would be needed to compare and disambiguate the plans (see Figure 7.1). In
these cases, mutual understanding of the ongoing decisions and communication between
agents become crucial [Yuan et al., 2022]. Hence, trustworthy robots shall be able to model
their plans’ properties to make sound decisions when contrasting them. Furthermore, they shall
also be capable of narrating (explaining) the knowledge acquired from the comparison. Note
that robots add the possibility of physically executing the plan, which may affect the human,
strongly motivating the need for explanations, which may serve two purposes: justifying the
robot’s selection of a plan, or asking the human to help in the disambiguation (i.e. the human
may prefer the plan that the robot inferred as worse). Reflecting on these thoughts, this work
addresses the following research questions:

- RQ1 - How could robots model and reason about what differentiates (two) plans, making
one better?

- RQ2 - How could robots leverage the proposed ontological model to explain (narrate)
what differentiates (two) plans?
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Could you bring
me a drink?

A

B

I could bring a cola (plan A), 
but also a tea (plan B), 
let's compare the plans

'bringing a tea' is faster, shorter
and cheaper than 'bringing a cola',
 thus, it is a better plan, I'd do that

Figure 7.1: A prototypical scenario where a robot contrasts two plans and reasons about which
plan is better to execute.

7.2 Related work

Concerning the modeling of domain knowledge for reasoning, a common approach is to use
sound formalisms such as formal ontologies. The literature shows that multiple ontologies have
been lately developed and even standardized for different robotic applications and
domains [Schlenoff et al., 2012, Gonçalves et al., 2021b, Fiorini et al., 2017, Olivares-Alarcos
et al., 2019a]. The literature also encompasses various works that have concentrated on
ontologically modeling concepts related to plans and their properties. In this regard,
Bermejo-Alonso [Bermejo-Alonso, 2018] conducted a survey of that domain, reviewing existing
task and planning vocabularies, taxonomies, and ontologies, while also discussing their
potential integration. The surveyed works mostly defined general concepts regarding plans,
and only in some cases plan properties were discussed (e.g. cost and constraints).

A significant source of inspiration was discovered surrounding the notion of explainable
agency (i.e., explaining the reasoning of goal-driven agents and robots). In their work, Langley
et al. [Langley et al., 2017] advocated for the idea that explainable agency demands four
distinct functional abilities. Among those, one can find the ability to explain decisions made
during plan generation, involving the comparison of alternatives. Related to this, there are
some literature efforts towards investigating how to boost explainable agency by narrating or
verbalizing robots’ internal knowledge about plans (e.g., a plan’s sequence, the rationale to
include a task in the plan, etc.) [Rosenthal et al., 2016, Flores et al., 2018, Canal et al.,
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2022, Sridharan, 2023]. However, it is still unexplored how robots may explain their reasoning
when comparing competing plans as a whole, not just specific plan tasks.

These two research domains, ontologies and explainable agency, are certainly connected.
Langley et al. [Langley et al., 2017] also discussed that an explainable agent would need three
main elements: a representation of the knowledge that supports explanations, an episodic
memory to store agent experiences, and the ability to access the memory and retrieve and
manipulate the stored content to construct explanations. Chapter 6 proposed a novel
methodology comprising those three elements for the construction of explanatory
ontology-based narratives for collaborative robotics and adaptation
(XONCRA) [Olivares-Alarcos et al., 2023a]. It consisted of a knowledge base for collaborative
robotics and adaptation (know-cra) that works as an episodic memory, and an algorithm to
generate explanatory narratives using ontological knowledge (AXON). One might wonder
whether the XONCRA methodology could be used to model and narrate the divergences
between plans. Indeed, XONCRA uses the ontology OCRA [Olivares-Alarcos et al., 2022],
presented in Chapter 5, which defined the relationship ‘is better plan than’, associating two
plans denoting that one of the plans is considered to be better. However, it was not modeled in
OCRA how an agent might find divergences between two plans and decide which one is better.
Hence, it is necessary to propose a new ontological theory that formalizes the properties of
plans for the purpose of contrasting them during robots’ decision making. Moreover, while
being a potential baseline solution, the narratives generated by AXON were not optimized for a
contrastive case as the one that concerns this chapter, and a new approach shall be
investigated.

7.3 Model for robot plan comparison

As stated before, there exist several useful methodologies to construct ontologies, e.g.,
[Fernández-López et al., 1997, Spyns et al., 2008], but none arise as a definite standard.
Indeed, not all those methods are suitable for this work, in which the aim is to develop an
ontological model from a foundational perspective (i.e. the characterization of the main
concepts is more important than the coverage of the application domain). Hence, this chapter,
just as Chapter 5 did, relies on ontological analysis, an approach that precedes the usual
ontology construction process and aims to fix the core framework for the domain ontology.
Based on this selection, the steps to perform are: to set the ontology domain and scope
(competency questions), to enumerate, analyze and compare existing concepts (identification
of shortcomings), to develop and formalize a more solid conceptualization, and to create
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instances of the concepts and show their use (implementation/validation). Finally, it is also
considered the documentation and maintenance of the produced theory.

7.3.1 Ontological scope of the proposed theory

The novel model will formalize the ontological classes and relationships to represent knowledge
of plans and their characteristics for plan comparison and later contrastive narration. In order to
scope the subject domain to be represented in the intended model, a set of competency questions
is proposed, which are a set of requirements on the ontology content. Specifically, the proposed
ontological model is expected to be able to answer the following questions:

- CQ1 - Which are the characteristics of a plan?

- CQ2 - How do the characteristics of different plans relate?

- CQ3 - How do different plans relate to each other?

The new model is going to be built upon OCRA, re-utilizing the existing model and extending
it. Therefore, OCRA’s upper ontology is inherited, the DOLCE+DnS Ultralite (DUL) foundational
ontology [Borgo et al., 2021]. In addition to the proposed competency questions, for this work
it is also interesting to represent the sequence of actions included in a plan, which is already
covered by the DUL ontology.

7.3.2 Ontological shortcomings in OCRA and their theoretical remedy

Which are the characteristics of a plan? (CQ1)

OCRA did not define any ontological classes or relationships to model the properties of plans.
Hence, an extension is required to be able to answer CQ1. For such an extension, a top-down
approach is followed and the new model is built upon general entities defined in the upper-level
ontology, DUL. In order to represent the features of other entities, DUL defines the class Quality
as ‘any aspect of an Entity (but not a part of it), which cannot exist without that Entity’. DUL also
includes the relationship ‘has quality’, ‘a relation between entities and qualities’. In this work, we
specialize both the class and the relation to define the particular qualities of plans.

Plans can have many different qualities that would highly depend on the application
domain. Defining all of them is out of the scope of this chapter. Instead, we aim to find a set of
qualities that are usually present in most of the planning domains, with a special focus on those
more relevant to robotics. Particularly, we will use temporal planning domains in which actions
have a duration. In robotics, finding a valid plan is just the first part of the work to do, because
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the focus is on the execution of the plan. Hence, considering the estimated duration (or
makespan) of actions makes much more sense than in other artificial intelligence domains.
After carefully studying temporal planning problems, it was discovered that three major
generic qualities of plans were: cost, expected makespan, and number of tasks. Of course, one
might consider as relevant other qualities (e.g., the expected risk of human injury, the
probability of failure/success, the workload percentage among collaborative agents, etc.). We
argue that our approach is easy to extend to accommodate the specific details of their
applications. The proposed definition and formalization for each of the qualities is as follows:

Definition 7.1. Plan Cost is a Quality that captures the cost of executing a Plan.

PlanCost(q) ⌘ dul.Quality(q) ^

9p dul.P lan(p) ^ hasCost(p, q).
(7.1)

Definition 7.2. Plan Expected Makespan is a Quality that captures the expected time that would
be required to execute a Plan.

PlanExpectedMakespan(q) ⌘ dul.Quality(q) ^

9p dul.P lan(p) ^ hasExpectedMakespan(p, q).
(7.2)

Definition 7.3. Plan Number Of Tasks is a Quality that captures the number of tasks included in a
Plan.

PlanNumberOfTasks(q) ⌘ dul.Quality(q) ^

9p dul.P lan(p) ^ hasNumberOfTasks(p, q).
(7.3)

The definitions include the notion of ‘executing a plan’, used here as a primitive which means
‘following the sequence of tasks in the plan’. The prefix ‘dul’ denotes that a term was re-used from
DUL, while novel terms and relations have no prefix. The plan’s properties are modeled as
qualities (in DUL) that are related to a plan they qualify. New relations between the plans
and the qualities were introduced: ‘has cost’, ‘has expected makespan’ and ‘has number of tasks’.
Additionally, their inverse relations were also defined: ‘is cost of ’, ‘is expected makespan of ’, and
‘is number of tasks of ’. These two pairs of three new relations were defined as specializations of
the DUL’s relations ‘has quality’ and ‘is quality of ’, respectively.
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How do the characteristics of different plans relate? (CQ2)

The idea here is to be able to model knowledge such as: ‘the characteristic Xa of plan Pa is worse
than the characteristic Xb of Pb’. OCRA does not provide a formal way to compare the properties
of plans. Considering the previously formalized classes, the aimed relations should hold between
qualities of plans (e.g. ‘PlanCost’). Looking at the modeled qualities, one notices that all of them
are numerical, hence, they could be related with comparative words such as: ‘higher’, ‘lower’,
etc. However, it would be better to keep the new ontological model as reusable as possible,
for instance, using more generic notions (e.g. worse/better quality). Indeed, qualities between
plans can be worse and better, but also equal or equivalent, thus, this should also be modeled.

In total, three new transitive relations are formalized: ‘is better quality than’, ‘is worse
quality than’, ‘is equivalent quality to’. The first two are inversely related, while the third one is
symmetric. The three are defined as sub-relationships of the relation ‘associated with’ (from
DUL). They hold between two qualities, thus, they can be used beyond the scope of this work
(e.g. comparing the qualities of robots, drinks, etc.). The proposed ontology is designed to
model the outcome of comparing two qualities. However, it falls outside the scope of the model
to make any commitment regarding the comparison criteria. Sec. 7.4.2 proposes some general
inference rules for this. Users of the ontology may use them or define their own.

How do different plans relate to each other? (CQ3)

The OWL 2 DL version of OCRA defines the binary relationships ‘is better plan than’ and ‘is worse
plan than’ which relate two plans stating that one of the plans is better or worse to achieve a goal.
They were defined in the context of plan adaptations (i.e. events in which an agent decides to
adapt an ongoing plan replacing it with a better option). Those two relations might be sufficient
for the case of plan adaptations. Nevertheless, one might wonder what would happen in more
general cases when two plans have equivalent properties. Neither of the plans would be better
or worse than the other, thus, OCRA would fall short of modeling this. Furthermore, OCRA did
not make any commitment about how an agent should compare plans and decide which one is
better (see Sec. 7.4.2).

Given the lack of a formalization in OCRA on this matter, this chapter extends its coverage
by formalizing specializations of the relationships ‘is better plan than’ and ‘is worse plan than’.
For each of them, three new sub-relations are introduced, one per quality: ‘is cheaper plan than’,
‘is faster plan than’, ‘is shorter plan than’; and ‘is more expensive plan than’, ‘is slower plan than’,
‘is longer plan than’, respectively. Furthermore, it is also added the relation ‘is equivalent plan
to’, defined as disjoint with ‘is better plan than’ and ‘is worse plan than’. Under this new relation,
other three relations are created: ‘is plan with same cost as’, ‘is plan with same expected makespan



134 Beyond plain robot narratives: ontological contrastive explanations

as’, ‘is plan with same number of tasks as’. Recall that all these relations hold between two plans,
answering CQ3.

7.3.3 Formalization of the model in OWL 2 DL

For practical use, the proposed ontological theory was formalized in OWL 2 DL. Hence, the
axioms listed in this paper were translated to DL, more specifically, to the SROIQ(D) fragment of
DL. It was possible to formulate each of the axioms in the target formalism with the exception of
the value of plans’ qualities. Note that quality is often used as a synonym for property but not in
DUL, where qualities are particulars and properties are universals. In this regard, DUL considers
that ‘qualities inhere in entities’ [Gangemi et al., 2003]. Every entity (including qualities) comes
with its own exclusive qualities, which exist as long as the entity exists. DUL distinguishes
between a quality (the cost of a plan) and its value or quale (a numerical data value). Hence,
when saying that two plans have the same cost, their costs have the same quale, but still they
are distinct qualities. This is convenient to model and answer CQ2, since OWL 2 DL cannot
model relationships between two data values or quales (i.e. one cannot state that 5 is a better
cost than 10). However, one can model the relation between the qualities (e.g. ‘cost A’ has better
quality value than ‘cost B’). Let’s consider that a plan ‘p’ has a cost ‘c’ whose value is ‘10’. Hence,
the knowledge would be modeled as:

PlanCost(c) ^ dul.P lan(p) ^ hasCost(p, c) ^ hasDataV alue(c, 10).

For consistency, the label of the relations comparing two qualities: ‘is better quality than’, ‘is
worse quality than’, ‘is equivalent quality to’; were modified to ‘has better quality value than’, ‘has
worse quality value than’, ‘has equivalent quality value than’.

7.3.4 Modeling the tasks of plans using DUL

The sequence of tasks described in a plan is one of the useful aspects of comparing plans.
Therefore, modeling such knowledge would allow its use to narrate the differences between
plans. The foundational ontology DUL already covers this knowledge, thus, there is no need for
a new extension. As an example, let’s imagine that there is a plan ‘p’ that consists in executing
three tasks in the following order, ‘t1’, ‘t2’, and ‘t3’. This knowledge might be represented as
follows:

dul.Task(t1) ^ dul.Task(t2) ^ dul.Task(t3) ^

dul.P lan(p) ^ dul.definesTask(p, t1) ^

dul.definesTask(p, t2) ^ dul.definesTask(p, t3) ^

dul.directlyFollows(t2, t1) ^ dul.directlyFollows(t3, t2).



7.4 The theory at work 135

Plan Nº of Tasks Cost Makespan (s)

‘bringing tea’ 6 27 27
‘bringing cola’ 8 59 59

Table 7.1: Knowledge from the example of bringing drinks

7.4 The theory at work

The validation of an ontological model consists in creating instances of the concepts and
showing their use. In this regard, the knowledge about instantiated plans (e.g., sequence of
tasks, and qualities) would first be asserted to a knowledge base. Then, reasoning rules would
be used to contrast the plans and infer which one is better. This section discusses the process of
instantiating the model, and also introduces the reasoning rules used for contrasting the plans
and their implementation. Finally, it shows how the model is able to answer the competency
questions, validating the theory.

7.4.1 Instantiating the ontology with plans

The aim here is to demonstrate how to instantiate the model in a realistic scenario, providing
as many resources as possible to potential users of the model. For this, the assertion of the
knowledge about the plans was integrated with the planning system of the robot. Therefore,
when a robot generates a plan by means of automated planning, it may also assert the
knowledge about the plan, both its sequence and qualities. As a technical contribution, it was
developed a novel knowledge-based framework that integrates existing robot planning tools
and the use of the proposed ontology to model the comparison of plans (know-plan). This
implementation is publicly available on a Github repository,1 and illustrates how to instantiate
the ontology with automatically generated plans. Planning is done using ROSPlan [Cashmore
et al., 2015], a commonly used framework for planning in robotics. The ROSPlan framework
provides a collection of tools for AI Planning for robots equipped with the Robot Operating
System (ROS). Once a plan is found, the sequence of tasks and the plan’s qualities are asserted
to a knowledge base. As an example, a planning domain inspired by the scenario depicted in
Fig. 7.1 is used, where a robot delivers drinks at an office. In order to have two plans to
compare, the process is executed twice with different planning problems in which the drink
that the robot should bring changes: a tea or a cola. A summary of the asserted knowledge of
the plans’ qualities is presented in Tab. 7.1.

1https://github.com/albertoOA/know_plan

https://github.com/albertoOA/know_plan
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7.4.2 Reasoning for plan comparison

The proposed ontological theory allows agents to represent the fact that a plan is better, worse
or equally good than another one. However, none of the proposed axioms automates the com-
parison of plans and thus the inference of which plan is better.

Logical rules to infer the relation between plan’s qualities

Let’s assume that there is a consistent instantiated ontology O that contains knowledge about the
qualities of different plans (Pa, Pb) as a set of triples hsubject, relation, objecti (see Sec. 7.4.1).
The first step would be to compare the qualities’ values and infer the relation between them
(e.g. the cost of ‘bringing cola’ has a worse value than the cost of ‘bringing tea’). Additionally,
it can also be inferred the relation between the plans based on how the qualities relate (e.g. a
plan is cheaper than another one). For instance, given the two plans (Pa, Pb), one can obtain
their cost (Ca, Cb) and their cost’ values (Va, Vb) such that:

hasCost(Pa, Ca) ^ hasCost(Pa, Cb)^

dul.hasDataV alue(Ca, Va) ^ dul.hasDataV alue(Cb, Vb).

Then, if the values are equal (Va = Vb) two new triples would be added to the knowledge base
indicating that both costs have an equivalent quality value and that both plans have the same
cost:

O  O [ hCa, hasEquivalentQualityV alueThan,Cbi;
O  O [ hPa, isP lanWithSameCostAs, Pbi.

Similarly, when the values are different the asserted knowledge would refer to whether one of
the costs/plans is worse/better than the other. Note that the cost’s value is numerical, and it is
usually assumed that the smaller it is, the better. Hence, when Va > Vb:

O  O [ hCa, hasWorseQualityV alueThan,Cbi;

O  O [ hPa, isMoreExpensiveP lanThan, Pbi.

The final case would be when Va < Vb, which would equally result in a triples’ assertion of
the inferred knowledge. As a whole, the complete described process becomes a logical rule to
compare two plans’ cost, which infers the relations between them and how this relation affects
the connection between the plans. For the other qualities of plans formalized in the proposed
model (expected makespan and number of tasks), analogous rules were defined. The criteria for
the comparison were the same, since the rest of the qualities are numerical and for all of them,
the lower their value is, the better.
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Logical rule to infer which plan is better

Having inferred how the qualities and the plans relate, the next step is to infer which plan is
better. Here, the criteria to decide if a plan is better than another one is satisfied when all the
relations holding between them indicate that the plan has better qualities. This is, if all those
relations are sub-properties of the relation ‘is better plan than’:
8RhPa,R, Pbi ! hR, rdfs.subpropertyOf, ocra.isBetterP lanThani. The prefix ‘rdfs’ is used to
denote that relations belong to the Resource Description Framework Schema (RDFS) [McBride,
2004]. When the condition is satisfied, the knowledge indicating that one plan is better would
be asserted:

O  O [ hPa, ocra.isBetterP lanThan, Pbi.

It would similarly be defined for the cases of worse and equivalent plans, which as a whole would
be the logical rule to infer, between two plans, which one is better. Note that this is general as
depending on the application other criteria can be defined along with the corresponding rules.
For instance, the effect of the different qualities might have a different weight (e.g. it may be
more important to have a cheaper plan than a shorter one).

7.4.3 Implementation of the inference rules

Inherited from know-cra, this work uses Knowrob [Tenorth and Beetz, 2009, Beetz et al., 2018],
a general framework for knowledge representation and reasoning for robots. The framework
allows reading OWL-based ontologies and loading them into a knowledge base that is built using
Prolog [Clocksin and Mellish, 2012]. Since the knowledge base is accessible through a prolog-
based interface, it is possible to use the logical reasoning power of Prolog to make inferences.
Therefore, the inference rules introduced in Sec. 7.4.2 can be implemented in Prolog. This would
integrate the decision-making process to compare plans into the knowledge base, augmenting
the reasoning capabilities of the proposed ontological model. Note that the implementation of
know-plan also introduced some extra Prolog predicates to automate the call of the different
rules. Specifically, it was implemented a predicate that runs all the rules for all the pairs of
different plans stored in the knowledge base. The rules imply (binary) comparisons between
pairs of qualities, and their complexity is linear with respect to the number of qualities, which
would be added to the ontology (OWL 2 DL) complexity.

7.4.4 Answering the competency questions

The example of a robot delivering drinks (see Sec. 7.4.1) was used to showcase how to answer
the competency questions. Note that the answers will contain the instantiated knowledge shown
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in Tab. 7.1, plus inferred knowledge after applying the implemented rules. The queries are
presented in prolog-like syntax (e.g. containing unbounded variables), since the knowledge
base is written in Prolog.

Which are the characteristics of a plan? (CQ1)

triple(0bringing tea0, dul.hasQuality,Q), triple(Q, dul.hasDataV alue, V ).

If the query holds, i.e. the knowledge base contains the query triples, the answer contains
an assignment of all the possible combinations of values of Q and V that make the query to be
‘true’. Some examples of answers would be: ‘cost of bringing tea’ (Q) and ‘27’ (V ), or ‘number
of tasks of bringing tea’ (Q) and ‘6’ (V ).

How do the characteristics of different plans relate? (CQ2)

triple(0bringing tea0, dul.hasQuality,Qa), triple(0bringing cola0, dul.hasQuality,Qb),

triple(Qa,R,Qb).

The answer would contain an assignment of all the possible combinations of values of Qa, R
and Qb. For instance, ‘cost of bringing tea’ (Qa), ‘has better quality value than’ (R), and ‘cost of
bringing cola’ (Qb). Note that this can only be answered after some of the inference rules have
been applied (see Sec.7.4.2).

How do different plans relate to each other? (CQ3)

triple(0bringing tea0, R,0 bringing cola0).

The answer would contain all the assignments to R that make the query to be ‘true’ in the
knowledge base. In total, R could take four values: ‘is cheaper plan than’, ‘is shorter plan than’,
‘is faster plan than’, and ‘is better plan than’. In order to answer this competency question, all
the inference rules should have been applied.

7.5 Contrastive explanatory narratives of robot plans

7.5.1 May explanatory narratives do the work?

The ontological model proposed in this work augments the knowledge coverage in know-cra to
model the divergences between plans (see Sec. 7.3), and to automate the inference of whether
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those differences make one plan better than others (see Sec. 7.4). Hence, one might think that
using the new model together with the XONCRA methodology from Chapter 6 would be
enough to narrate what robots know about competing plans. In particular, given the
knowledge about two plan instances and how they relate, XONCRA could produce a narrative
about each of the plans using the AXON algorithm. The two narratives together would include
the relevant knowledge for a robot to infer which plan is better, thus, humans could read the
narratives and understand the inference. The differences between the two narratives could
even be highlighted, as others have done when contrastively explaining the traces of two
plans [Krarup et al., 2021]. However, such an approach would still require humans to extract
their own conclusions by reading the complete narratives. Therefore, while being a potential
baseline solution, the narratives generated by AXON do not seem to be optimized for the cases
that concern this chapter, and a better approach might be developed.

7.5.2 Beyond plain explanatory narratives

Miller [Miller, 2019] stated that explanations are contrastive, selected, and social. Contrastive
because they are sought in response to counterfactual cases that open questions such as: why
a plan is better instead of others. Explanations are selected as they usually contain just part of
the reasons, extracted by agents from a larger knowledge and based on specific criteria. Finally,
explanations transfer knowledge in a conversational format, being part of a social interaction
between agents. These three aspects of explanations set the basis to design a better algorithm,
an alternative to AXON that:

- constructs contrastive narratives instead of plain narratives;

- enhances the selection of knowledge, extracting only the differences between the
compared plans; and

- reduces the needed time to communicate a narrative, which might boost the (social)
interaction.

7.5.3 Preliminary notation

Let’s assume countable pairwise disjoint sets NC , NP , and NI of class names, property names,
and individuals, respectively. The standard relation ‘rdf:type’, which relates an individual with
its class, is abbreviated as ‘type’ and included in NP . A knowledge graph G is a finite set of triples
of the form hs, p, oi (subject, property, object), where s 2 NI , p 2 NP , o 2 NI if p 6= type, and
o 2 NC otherwise. In this thesis, the knowledge base works as an episodic memory [Beetz et al.,
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2018, Olivares-Alarcos et al., 2023a], thus it allows the assertion of triples with the time interval
in which they hold. Hence, the stored knowledge can be seen as a time-indexed knowledge
graph GT , which is a finite set of tuples of the form hs, p, o, ti, tf i, where ti, tf 2 R > 0, and
denote the time interval (initial and final time) in which the triple hs, p, oi holds. Note that non-
asserted knowledge is considered unknown and never false, since knowledge graphs usually
comply with the open-world assumption. For this, the Web Ontology Language 2 (OWL 2) was
developed to allow the explicit negative assertion of properties: hs, p, oi is false. Hence, GT

may contain, e.g., that during an interval of time, hti, tf i, a task k is not defined in a plan p:
hk, dul : isDefinedIn, p, ti, tf i is false. In this work, querying the GT , we build what we called
‘contrastive narrative tuples’ of a pair of instance plans, TP : hs, p, o, ti, tf , signi, where sign

indicates whether the time-indexed triple comes from a positive or negative assertion.

7.5.4 ACXON - An algorithm for contrastive explanatory ontology-based
narratives

ACXON is a novel theoretical contribution, an algorithm that leverages the structure of the
knowledge stored in episodic memories to retrieve knowledge about divergences between
ontological entities (e.g. plans), for later construction of textual contrastive explanatory
narratives. The algorithm takes as an input a time-indexed knowledge graph GT (as described
in Sec. 7.5.3), the ontological class (or classes) of the pair of instances to narrate, the temporal
locality (time interval of interest), and the level of specificity. Our focus is on contrastive
narratives about Plans, but ACXON is general enough to work with other OWL 2 DL ontologies
and classes. For instance, it might contrastively narrate the capabilities of a pair of agents (e.g.
one can move for longer periods), or how two drinks are different to each other (e.g. one is
healthier, tastier, etc.). Based on the level of specificity, there are three types of contrastive
narratives. In this work, specificity refers to the amount of detail to be used during the
narrative construction, i.e., the number of knowledge tuples.

ACXON (see Alg. 4) first retrieves a set IPT of sets comprising the instantiated pairs of the
provided pair of classes P, which exist, at least partially, within the temporal locality hLi, Lf i

(line 2). Each IP is a set of tuples he, ti, tf i, containing the two pair’s instances e with their
time interval (ti, tf ) (line 4). Second, for each of the instantiated pairs
hhea, tia , tfai, heb, tib , tfbii 2 IPT , a set of knowledge tuples TP is retrieved according to the
specificity level (line 5). Third, from the initial narrative tuples TP , it is selected the sub-set
containing only divergent knowledge between the pair of instances DP (line 6). Fourth, for
each instantiated pair a contrastive explanation EP is built using their relative tuples (line 7).
Finally, the new explanation is added to the set of explanations E (line 8). The implemented



7.5 Contrastive explanatory narratives of robot plans 141

Algorithm 4: ACXON
Input: Time-indexed knowledge graph (GT ), pairs to narrate (P), temporal locality

(Li, Lf ), specificity (S)
Output: Contrastive Narratives (E)

1 E  � ;

2 IPT  � RetrieveInstantiatedPairsWithTime(GT , P, Li, Lf )
3 foreach hhea, tia , tfai, heb, tib , tfbii 2 IPT do
4 IP  � hhea, tia , tfai, heb, tib , tfbii
5 TP  � RetrieveNarrativeTuples(GT , IP , S)
6 DP  � ExtractDivergentNarrativeTuples(TP)
7 EP  � ConstructContrastiveNarrative(DP)
8 E  � E [ EP
9 end

algorithm and examples of its use are available online.2

Retrieve instantiated pair with time routine

With a time-indexed knowledge graph GT , a pair of ontological existing classes or a set of
them, P ⇢ NC , and the temporal locality hLi, Lf i, this routine retrieves a set of sets IPT

comprising all the instantiated pairs of the given pair of classes, IP , which contain the two
time-indexed instances hhea, tia , tfai, heb, tib , tfbii of each pair such that their time intervals exist
within (intersect) the temporal locality:

8hhea, tia , tfai, heb, tib , tfbii 2 IPT ! 9hca, cbi 2 P^

hea, type, ca, tia , tfa , signai 2 GT ^ (htia , tfai \ hLi, Lf i)^

heb, type, cb, tib , tfb , signbi 2 GT ^ (htib , tfbi \ hLi, Lf i) .

Examples of time-indexed instances of plans to narrate may be:

hhbringing water, 10.0, 150.0i, hbringing juice, 0.0, 150.0ii;

hhbringing tea, _ , Infi, hbringing cola, _ , Infii.

Note that the time interval is not always numerical, see the second example. This happens
when a triple has held true in the knowledge base since an undetermined instant of time (‘_’),
and it will remain true as long as the knowledge base stays active (‘Inf ’).

2www.iri.upc.edu/groups/perception/ontology-based-explainable-robots

www.iri.upc.edu/groups/perception/ontology-based-explainable-robots
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Figure 7.2: Graphical representation of the different levels of specificity (S1, S2, S3) and their
respective depth in the knowledge graph. Nodes in black correspond to initially retrieved tuples
that are later pruned because they are non-divergent.

Retrieve narrative tuples routine

For each instantiated pair to narrate IP , with the GT , and the level of specificity S, the routine
would retrieve all the tuples about the pair, hs, p, o, ti, tf , signi, that are relevant to build the
contrastive narrative. The first level of specificity retrieves tuples comprising all the relations p

holding between the two instances of a pair: 9p 2 NP^ (hea, p, eb, ti, tf , signi 2 GT _

heb, p, ea, ti, tf , signi 2 GT ). In the second level, the routine adds all the tuples in which at least
one of the instances hea, ebi is related through a property p to an object o: 9p 2 NP^

(hea, p, o, ti, tf , signi 2 GT _ heb, p, o, ti, tf , signi 2 GT ). Following a similar logic to the first
level, the second level also retrieves tuples that relate the different objects o. When the
instances hea, ebi are related to two objects hoa, obi through the same property p, the tuples
relating those two objects hoa, q, ob, ti, tf , signi are also added to the list of narrative tuples:
9p, q 2 NP^ hoa, q, ob, ti, tf , signi^ hea, p, oa, tia , tfa , signai 2 GT ^ heb, p, ob, tib , tfb , signbi 2 GT .
These are horizontal links in Fig. 7.2.

Then, in the third level the routine adds all the tuples in which the objects o from the
second level are related to other objects ox: ho, px, ox, tix, tfx, signxi 2 GT ^ hti, tf i \ htix, tfxi.
Robots’ experiences may be tied to a time frame, thus, the search was restricted to tuples whose
time interval htix, tfxi intersected the time interval of the pair’s instances htia , tfai and htib , tfbi.
This prevented the routine from retrieving tuples with irrelevant knowledge about the pair of
instances to narrate hea, ebi. The third level finishes collecting the tuples relating the different
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objects ox between each other, similarly to how it is done in the second level: 9px, qx 2 NP ^

hoxa , qx, oxb , ti, tf , signi ^ hoa, px, oxa , tia , tfa , signxai 2 GT ^ hob, px, oxb , tib , tfb , signxbi 2 GT . For
any of the levels, when the narrative’s set of tuples TP already contains a tuple or its inverse,
the tuple is not added. Furthermore, the tuples are retrieved incrementally from the first to the
third level. Hence, when the specificity level is three, the returned tuples also contain those
from the first and second levels. This would equate to moving deeper in the knowledge graph
representing the instanced pair (see Fig. 7.2). Utilizing the ongoing example of bringing a drink
(see Fig. 7.1), some instances of the retrieved narrative tuples TP of an instantiated pair are:

TP1 h‘bringing tea’, isBetterPlanThan, ‘bringing cola’, _, Inf, positivei,

TP2 h‘bringing tea’, definesTask, ‘T2-grasp object’, _, Inf, positivei,

TP3 h‘bringing tea’, definesTask, ‘task 0 - find person’, _, Inf, positivei,

TP4 h‘bringing cola’, definesTask, ‘task 0 - find person’, _, Inf, positivei,

TP5 h‘T3-go to waypoint’, directlyPrecedes, ‘T5-give object’, _, Inf, positivei,

TP6 h‘T7-give object’, isTaskDefinedIn, ‘bringing cola’, _, Inf, positivei,

TP7 h‘bringing tea’, definesTask, ‘T3-got to waypoint’, _, Inf, positivei,

TP8 h‘bringing tea’, definesTask, ‘T5-give object’, _, Inf, positivei,

TP9 h‘T3-go to waypoint’, directlyFollows, ‘T2-grasp object’, _, Inf, positivei,

TP10 h‘bringing tea’, isCheaperPlanThan, ‘bringing cola’, _, Inf, positivei,

TP11 h‘bringing cola’, hasCost, ‘cola cost’, _, Inf, positivei,

TP12 h‘bringing tea’, hasCost, ‘tea cost’, _, Inf, positivei,

TP13 h‘cola cost’, hasDataValue, ‘59’, _, Inf, positivei,

TP14 h‘tea cost’, hasDataValue, ‘27’, _, Inf, positivei,

TP15 h‘cola cost’, hasWorseQualityValueThan, ‘tea cost’, _, Inf, positivei.

Extract divergent narrative tuples

From the initially selected narrative tuples TP , the routine would just retrieve the set of
knowledge tuples DP that capture divergences between the two pair’s instances. The routine
identifies the non-divergent tuples that exist in TP and prunes them. A pair of tuples
hhs1, p1, o1, ti1 , tf1 , sign1i, hs2, p2, o2, ti2 , tf2 , sign2ii 2 TP will be non-divergent when:
(s1 6= s2) ^ (p1 = p2) ^ (o1 = o2) ^ (ti1 = ti2) ^ (tf1 = tf2) ^ (sign1 = sign2). Note that the
routine prunes the whole branch of a non-divergent tuple, which includes tuples in which the
shared object (o1 = o2 = os) acts as the subject: hos, qp, op, ti, tf , signi. The process will apply to
tuples extracted at any of the specificity levels, as it is depicted in Fig. 7.2. In the example, after
applying this routine, the tuples TP3 and TP4 would be pruned and the set of remaining tuples
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would be:

DP1 h‘bringing tea’, isBetterPlanThan, ‘bringing cola’, _, Inf, positivei,

DP2 h‘bringing tea’, definesTask, ‘T2-grasp object’, _, Inf, positivei,

DP3 h‘T3-go to waypoint’, directlyPrecedes, ‘T5-give object’, _, Inf, positivei,

DP4 h‘T7-give object’, isTaskDefinedIn, ‘bringing cola’, _, Inf, positivei,

DP5 h‘bringing tea’, definesTask, ‘T3-got to waypoint’, _, Inf, positivei,

DP6 h‘bringing tea’, definesTask, ‘T5-give object’, _, Inf, positivei,

DP7 h‘T3-go to waypoint’, directlyFollows, ‘T2-grasp object’, _, Inf, positivei,

DP8 h‘bringing tea’, isCheaperPlanThan, ‘bringing cola’, _, Inf, positivei,

DP9 h‘bringing cola’, hasCost, ‘cola cost’, _, Inf, positivei,

DP10 h‘bringing tea’, hasCost, ‘tea cost’, _, Inf, positivei,

DP11 h‘cola cost’, hasDataValue, ‘59’, _, Inf, positivei,

DP12 h‘tea cost’, hasDataValue, ‘27’, _, Inf, positivei,

DP13 h‘cola cost’, hasWorseQualityValueThan, ‘tea cost’, _, Inf, positivei.

Construct contrastive narrative routine

Considering the divergent tuples DP of a pair of instances hea, ebi to narrate, the routine builds
the contrastive explanatory narrative applying a set of rules: casting, clustering, ordering,
and grouping. These rules describe aggregations commonly used by humans in natural
language [Dalianis and Hovy, 1996].

Casting consists of homogenizing the ontological properties appearing in the tuples. First, by
ensuring that for all the tuples DP that concern any of the pair’s instances hea, ebi the instances
are the tuple’s subject. In the ongoing example: DP1, DP2, DP4, DP5, DP6, DP8, DP9, and
DP10. Hence, when DP contains a tuple in which any of the instances e acts as the object,
hs, p, e, ti, tf , signi 2 DP , the casting rule reverses the tuple to: he, p�1, s, ti, tf , signi, where
p�1 states for the inverse property of p. In the list of tuples from before, the tuple DP4 that
contains the property ‘isTaskDefinedIn’ would be reversed using ‘definesTask’. Then, all the tuples
concerning any of the two instances, both reversed tuples and those that did not need to be
inverted, are added to a new set DPCast of cast tuples. Casting has a second step that involves
the tuples not concerning the pair’s instances (DP3, DP7, DP11, DP12, and DP13). Guaranteeing
that the properties of the tuples to add are consistent with those that already exist in the cast
tuples. Hence, if this is not the case, the tuple is reversed before adding it to DPCast. In the
example, DP3 is added to DPCast (following the order) thus, DP7 needs to be inverted before
added. DP11, DP12, DP13 are just added.
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Next, this routine applies clustering, which structures the tuples in a way that each cluster
will later be used to form a single sentence within the whole narrative. The narratives shall
contrast the knowledge relating the pair’s instances, revealing the divergences between them.
Therefore, an effective strategy for cluster generation is to utilize the structure of the
knowledge graph formed by the retrieved tuples (see Fig. 7.2). First, a cluster is created with
the tuples hea, p, eb, ti, tf , signi that relate the pair’s instances hea, ebi, in the example, DP1 and
DP8. Second, the routine clusters the remaining tuples by property p in three different steps
named: direct, indirect, unrelated. The tuples directly related through p to the instances to
compare: hea, p, oa, ti, tf , signi, heb, p, ob, ti, tf , signi, are clustered together with the tuples
relating their objects: hoa, q, eb, ti, tf , signi. Note that when only one of the instances hea, ebi is
related to an object through p, e.g., hea, p, oa, ti, tf , signi 2 DP ^ heb, p, ob, ti, tf , signi /2 DP ; the
knowledge will be clustered later at the unrelated step. In the example, DP9, DP10, DP13 form
a cluster, and DP2, DP5, DP6 and the reversed DP4 another one. New clusters are created for
the tuples indirectly related to the instances to compare, i.e. those related to the objects hoa, obi
of the previous step: hoa, px, oxa , tia , tfa , signxai, hob, px, oxb , tib , tfb , signxbi. As before, those
clusters include the tuples holding between their objects hoxa , oxbi. Recall that the tuples are
only clustered if the objects hoa, obi are each related to one of the main instances to compare.
In the example, DP11 and DP12 form a cluster. Finally, (unrelated) clusters are created with the
remaining tuples sharing the same property p, thus DP3 and the inverted DP7 are clustered.

Subsequently, the clustered tuples are ordered externally (between clusters) and internally
(between tuples). When externally ordering, the set of clusters is ordered according to the
sequence followed during the clustering: first the cluster relating the pair’s instances followed
by the clusters obtained in the direct, indirect, and unrelated steps. Then, within the clusters
from a single step, the clusters are ordered from more knowledge (more tuples) to less. The
internal ordering just assures that the tuples with the property p = type are at the front of each
of the clusters. In the example, after applying all these rules the set of tuples would now be:



146 Beyond plain robot narratives: ontological contrastive explanations

DP1 h‘bringing tea’, isBetterPlanThan, ‘bringing cola’, _, Inf, positivei,
DP2 h‘bringing tea’, isCheaperPlanThan, ‘bringing cola’, _, Inf, positivei,

DP3 h‘bringing tea’, definesTask, ‘T2-grasp object’, _, Inf, positivei,
DP4 h‘bringing tea’, definesTask, ‘T3-got to waypoint’, _, Inf, positivei,
DP5 h‘bringing tea’, definesTask, ‘T5-give object’, _, Inf, positivei,
DP6 h‘bringing cola’, definesTask, ‘T7-give object’, _, Inf, positivei,

DP7 h‘bringing cola’, hasCost, ‘cola cost’, _, Inf, positivei,
DP8 h‘bringing tea’, hasCost, ‘tea cost’, _, Inf, positivei,
TP9 h‘cola cost’, hasWorseQualityValueThan, ‘tea cost’, _, Inf, positivei,

DP10 h‘cola cost’, hasDataValue, ‘59’, _, Inf, positivei,
DP11 h‘tea cost’, hasDataValue, ‘27’, _, Inf, positivei,

DP12 h‘T3-go to waypoint’, directlyPrecedes, ‘T5-give object’, _, Inf, pos.i,

DP13 h‘T2-grasp object’, directlyPrecedes, ‘T3-go to waypoint’, _, Inf, pos.i.

Finally, the tuples of each cluster pass through several grouping steps, obtaining the
sentences of the final textual contrastive narrative EP . First, object grouping, the tuples sharing
subject, property, interval, and sign are united. Thus, given hs, p, oa, ti, tf , signi and
hs, p, ob, ti, tf , signi, at this step the routine unites them to: hs, p, oa and ob, ti, tf , signi. In the
example, DP3, DP4, and DP5 are grouped into: h‘bringing tea’, definesTask, ‘T2 - grasp object’
and ‘T3 - got to waypoint’ and ‘T5 - give object’, _, Inf, positivei. The second step consists in
grouping tuples by predicate (property), thus tuples sharing subject, object, interval, and sign
are joined. Considering two tuples: hs, pa, o, ti, tf , signi and hs, pb, o, ti, tf , signi, the routine
unites them to: hs, pa and pb, o, ti, tf , signi. In the example, DP1 and DP2 would be grouped.
The final grouping stage generates textual contrastive sentences for the knowledge stored in
each of the clusters of tuples by translating the tuples into text and connecting them. For
instance, a cluster may contain the tuples hs, p, o, ti, tf , signi and ho, q, ox, tix , tfx , signi. Hence,
the knowledge is connected as a subordinate sentence using the pronoun ‘which’. In the
example, this happens with DP7 and DP9. Note that when the subordinate is introduced in
tuples that have gone through object grouping, it is also added the phrase ‘and also’ for
readability purposes. The explanations are contrastive, thus the conjunction ‘while’ is added to
emphasize the divergent (contrastive) knowledge: e.g. hea, p, oa, tia , tfa , signai and
heb, p, ob, tib , tfb , signbi. In the example, ‘while’ is used to compare the knowledge from the
grouped DP7 and DP9, and DP8; and DP6 and the grouped DP3, DP4, DP5. The the same
applies for indirectly related clusters such as the one including tuples DP10 and DP11. The
tuples from unrelated clusters, e.g. DP12 and DP13, are connected using ‘and’. The propositions
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‘from’ and ‘to’ are also added to introduce the tuples’ time intervals, but only if they are
different to the interval of the pair’s instances. Indeed, if the interval is undetermined (_, Inf),
it is obviated. The names of ontological entities (instances, classes and properties) are kept,
only some properties are slightly changed to more understandable terms (e.g. using ‘includes
task’ instead of ‘definesTask’, or ‘has a higher value than’ instead of
‘hasWorseQualityValueThan’). The final narrative for the ongoing example would be:

‘bringing tea’ is better plan than and is cheaper plan than ‘bringing cola’. ‘bringing tea’ includes task ‘T2-grasp

object’ and ‘T3-got to waypoint’ and ‘T5-give object’, while ‘bringing cola’ includes task ‘T7-give object’. ‘bringing

cola’ has cost ‘cola cost’, which has a higher value than ‘tea cost’; while ‘bringing tea’ has cost ‘tea cost’. ‘cola

cost’ has value ‘59’, while ‘tea cost’ has value ‘27’. ‘T3-go to waypoint’ directly precedes ‘T5-give object’, and

‘T2-grasp object’ directly precedes ‘T3-go to waypoint’.

7.6 Evaluating explanatory narratives

To evaluate the quality of the narratives generated by ACXON, the AXON algorithm from
Chapter 6 was used as a baseline. Specifically, both algorithms were used to narrate the
knowledge about contrasting plans. Following the ideas discussed in Sec. 7.5.1, these two
algorithms can be compared by using AXON twice (i.e. to narrate each of the plans
independently). By construction, ACXON is expected to reduce the amount of knowledge used
in the explanations, and also to ensure shorter explanation communication times.

7.6.1 Evaluation procedure and setup

The evaluation was done using a set of temporal planning PDDL domains from recent
international planning competitions (IPC) [Fox and Long, 2003]. The set included the IPC’02
Rovers domain [Fox and Long, 2003] (10 instantiated problems), the IPC’08 Crew planning
domain [Barreiro et al., 2009] (15 problems), and the IPC’14 Match cellar domain [Halsey
et al., 2004] (20 problems). First, given a domain and two problems, we run a planner with
both problems to obtain two plans for which their respective knowledge (sequence and
qualities) is instantiated as described in Sec. 7.4.1. Then, the inference rules are applied,
performing the comparison of the two plans and asserting the inferred knowledge (e.g. which
plan is better). Finally, both algorithms are used to extract the knowledge from the active
knowledge base and construct the explanations. The algorithms have the same inputs: a
time-indexed graph (the active knowledge base), a time interval (_, Inf) and the level of
specificity (the three levels were used). A set of metrics discussed in Sec. 7.6.2 are computed
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for each of the generated narratives. Note that for each of the planning domains, five pairs of
instances were randomly selected (fifteen in total). The software for the test was run on a
desktop PC with an Intel Core i7-8700K CPU (12x 3.70 GHz), 16 GB DDR4 RAM, and an
NVIDIA GeForce GT 710/PCIe/SSE2 GPU.

7.6.2 Metrics for explanation evaluation

To evaluate the explanations we have selected a set of offline objective evaluation metrics,
aligned with the existing literature. The metrics aim to evaluate two of the main features of
explanations: the selection of content (number of attributes), and the social aspect
(communication time and readability).
Number of attributes. The metric is commonly used to evaluate explainable models.
Especially when evaluating the explainability of black box models (e.g. machine learning (ML)
models) [Rosenfeld, 2021]. Nevertheless, this metric has also been used to evaluate non-ML
explanatory systems [Georgara et al., 2022]. In this work, the number of attributes is equal to
the number of tuples DP used to construct the narratives.
Communication time. Explanations are social, thus a good quality index is to measure how
much time would require an agent to communicate them. In this work, the communication
time is computed as a combination of the construction time CT and the actual interaction time
IT . For the interaction, two channels are considered: auditory (ITA) and visual (IT V ). For
retaining information, people are comfortable with a speaking pace of 150-160 words per
minute (wpm), while the pace for silent reading is 250-400 wpm [Rayner et al., 2016]. In this
work, the interaction time is estimated by counting the number of words in the narratives and
considering the fastest pace for each channel: 160 wpm (auditory), and 400 wpm (visual).
Readability metric. Since the narratives are generated using natural language, the Dale–Chall
readability RDC formula [Chall and Dale, 1995], a well-known readability metric, is also used.
Most of the readability metrics use a similar formula including two terms: (a) the proportion of
‘complex words’ relative to the total number of words; and (b) the number of words per
sentence. Usually, the word length or a number of syllables is used to decide whether a text’s
words are ‘complex’ (i.e. difficult to understand). More interestingly, Dale-Chall defines words
as ‘complex’ if they are not familiar (i.e. not included in a list of 3000 common words) [Chall
and Dale, 1995]. The resulting score indicates the reading level by educational grade needed
to comprehend the text.
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7.6.3 Results of the evaluation and discussion

The average evaluation results for the fifteen pairs of plans and each algorithm and level of
specificity are summarized in Tab. 7.2. ACXON outperforms the baseline method in most cases,
especially for levels two and three of specificity. Regarding the number of tuples DP , using
ACXON results in an overall reduction of more than 40% and 70% for levels 2 and 3
respectively. This is because ACXON does a better selection of the narrative tuples. First, by
avoiding repeated tuples by collecting them for the whole pair instead of individually selecting
tuples for each of the instantiated plans (retrieve narrative tuples routine in Sec. 7.5.4). Second,
by pruning the non-divergent knowledge between the plans (extract divergent narrative tuples
routine in Sec. 7.5.4). Hence, the contrastive narratives only contain what makes the plans
different without undesired repetitions. For the construction time CT , there are no major
differences. However, it is worth commenting that the generation for level 3 would even
require more than two seconds on average for any of the algorithms. Note that in some cases,
the narrated plans contained more than 50 actions, hence, narratives of level 3 were long.
ACXON produces a decrease in the interaction times ITA and IT V of approximately the 40%
and 70% for specificity 2 and 3, respectively. The average times for the baseline method would
be completely prohibitive for realistic interaction with humans. For level 3 of specificity, it
would take 13 and 5 minutes for a human to listen and read the narratives, respectively.
Indeed, although ACXON reduces those times to 4 and 1.5 minutes, the improvement still falls
short of ensuring a fluent and socially acceptable interaction. To overcome this, the robot might
provide the short explanation of level 1, and only more details if required. Concerning this,
ACXON produces longer times when the specificity is 1. This is because ACXON is more
informative than the baseline method since it includes the relationships between the plans at
that level (e.g. shorter, better plan, etc.). Meanwhile, the baseline algorithm only states that
both plans are instances of the class ‘Plan’, refer to Chapter 6 for more details about the
baseline. Finally, in relation to the readability index RDC both behave similarly with a metric
value close to 9, denoting a high portion of complex words. Specifically, such a value indicates
that the explanations would be easily understood by an average college student. Hence, people
with a lower education level may require a higher effort to interpret the narratives.
Interestingly, the baseline method obtains a better value for specificity 3, because its narratives
contain multiple short sentences, which is favored in the metric. In ACXON, since the
narratives are contrastive, they contain several subordinate sentences, which results in a higher
degree of complexity.
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Method Baseline (AXON) ACXON
Specificity 1 2 3 1 2 3

DP 2.00 77.40 305.73 3.80 44.27 91.33
CT (s) 0.73 0.87 3.50 0.56 0.75 2.53
ITA (s) 5.25 170.55 782.80 8.68 101.00 258.85
IT V (s) 2.10 68.22 313.12 3.47 40.40 103.54
RDC 9.62 8.86 2.81 8.78 9.24 7.88

Table 7.2: Average evaluation results for the 15 pairs of plans.

7.7 What if explanations were more selective?

The evaluation results demonstrated that ACXON enhances the selection of knowledge for
explanatory contrastive narratives with respect to the baseline. However, it still requires long
communication times for specificity levels 2 and 3, thus it shall be more selective. For instance,
one might use the structure of the knowledge to constrain the tuples retrieval performed by the
retrieve narrative tuples routine from Sec. 7.5.4, focusing on part of the contrastive knowledge
(e.g. only the plans’ qualities).

Following this rationale, it is proposed here a modification to the retrieve narrative tuples
routine to focus on specific aspects of plans. Specifically, at the second level of specificity, when
the routine adds all the tuples in which at least one of the instances hea, ebi is related through a
property p to an object o. Instead of considering tuples containing any object, the ontological
class c of the object is restricted: 9p 2 NP ^ 9c 2 NC ^ (hea, p, o, ti, tf , signi 2

GT _ heb, p, o, ti, tf , signi 2 GT ) ^ ho, type, c, ti, tf , signi. This minor modification reduces the
number of tuples retrieved at level 2, but its effect is also propagated to level 3, producing a
larger decrease in the final number. Let’s imagine that in the ongoing example from before, the
algorithm is asked to compare the plans only using the qualities of plans (i.e. instances of
dul.Quality), the retrieved tuples would be reduced from 15 to 7:

TP1 h‘bringing tea’, isBetterPlanThan, ‘bringing cola’, _, Inf, positivei,

TP2 h‘bringing tea’, isCheaperPlanThan, ‘bringing cola’, _, Inf, positivei,

TP3 h‘bringing cola’, hasCost, ‘cola cost’, _, Inf, positivei,

TP4 h‘bringing tea’, hasCost, ‘tea cost’, _, Inf, positivei,

TP5 h‘cola cost’, hasDataValue, ‘59’, _, Inf, positivei,

TP6 h‘tea cost’, hasDataValue, ‘27’, _, Inf, positivei,

TP7 h‘cola cost’, hasWorseQualityValueThan, ‘tea cost’, _, Inf, positivei.

The rest of the algorithm’s routines would be applied as was shown before, producing a
shorter narrative:
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‘bringing tea’ is better plan than and is cheaper plan than ‘bringing cola’. ‘bringing cola’ has cost ‘cola cost’,

which has a higher value than ‘tea cost’; while ‘bringing tea’ has cost ‘tea cost’. ‘cola cost’ has value ‘59’, while

‘tea cost’ has value ‘27’.

With this modification ACXON does a better selection of the knowledge used in the
contrastive narrative, shortening the explanations and reducing the communication time.
Furthermore, the algorithm now captures the preferred content to use in contrastive narratives,
which might be used to provide personalized explanations. Hence, the modification, while
being simple, contributes to generating potentially more socially acceptable explanations.

7.8 Discussion

This work presents a method for robots to model and reason about the differences between
plans, to infer which one is better and to narrate the inferences to other agents (e.g. humans).
The approach comprises a novel ontological model for robots to describe plans and their
qualities for reasoning during plans comparison, and a new algorithm to construct
ontology-based contrastive explanatory narratives. The approach is general to be used with
other ontologies, beyond the case of contrasting plans (e.g. modeling the qualities of two
drinks and narrating the differences). The model is validated by instantiating it to answer a set
of competency questions. The algorithm is evaluated against a baseline with respect to a set of
objective metrics. Our solution outperforms the baseline in general, doing a better selection of
knowledge tuples to build the explanation (avoiding non-divergent knowledge), and producing
explanations that would require less time for the robot to communicate them. In the future, we
will look at making more accessible the narratives’ language, and a user study will be
conducted to evaluate their quality. Note that robots add the possibility of physically executing
the plan, which opens issues to investigate: the ‘preferred’ moment to explain (e.g. before or
after executing), or the context in which the competing plans are conceived (e.g. due to an
adaptation while executing).





chaptereight
Conclusion

” ..¡qué imprudencia más ridícula hablar de lo definitivo!
¡qué ganas de cerrar puertas que han de abrir los que
vengan detrás!..

..dejemos las conclusiones para los imbéciles..

— Pío Baroja

(La ruta del aventurero)

This thesis demonstrates the viability of employing ontologies as an integrative framework
for constructing robot explanations, particularly within interactive settings involving humans.
Each chapter navigates the reader through an exhaustive research expedition culminating in
the establishment of a solid foundational basis for ontology-based explainable robots. The
expedition commences by exploring the literature on ontological frameworks to support robot
autonomy (Chapter 2), helping us to do an informed selection of the target reality phenomena
to be conceptualized. The exploration continues by acquiring insightful hands-on experience
developing novel robot perception methods (Chapters 3 and 4), which served to grasp a proper
understanding on the domain knowledge and frame the ontological scope of the models
proposed in the thesis. Building upon insights acquired in these initial stages, the journey
progresses into ontological conceptual modeling (Chapters 5 and 7), and it finally arrives to the
utilization of these models for fostering explainable agency in robotics (Chapters 6 and 7).
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8.1 Findings and lessons learned

From the exploration of the state of the art, we understood that a proper literature review is of
especial relevance in the research domain where applied ontology and robotics intersect. In
this domain, a robotics engineer might be tempted to engineering a new ontology for a specific
robotic task without making the effort of finding an existing model and reusing it. Such a
practice would indeed be contrary to the essence of applied ontology (i.e. understanding,
clarifying, making explicit and communicating people’s assumptions about the nature and
structure of the world). When analyzing and reviewing different works, we found similar
concepts defined in multiple ontologies at the same time. This is perfectly understandable,
since the conceptualization process might be biased by researchers’ background and needs.
However, the existence of multiple inconsistent definitions that do not properly acknowledge
each other hinders research advancements in the domain. Hence, new research works shall
identify potential conflicts between existing definitions, and propose a novel conceptualization
when there is a justified need for it. From experience gained in Chapters 5 and 7, we know that
those issues can be alleviated and even prevented by relying on ontological analysis, an
approach that precedes the usual ontology construction process and aims to fix the core
framework for the domain ontology.

Ontological analysis is especially useful when developing an ontology from a foundational
viewpoint where the characterization of the core concepts is more important than the coverage
of the application domain. A foundational perspective helps with the construction of a flexible
and general ontology, often small, which can be applied or easily adapted to different domains
and applications, thus facilitating the ontology’s reusability. Indeed, this perspective is often
considered when developing upper-level (i.e. general) ontologies. However, one might wonder
if such a general approach is appropriate for the robotics domain. General and reusable concepts
might be of little help for actual reasoning tasks needed in a realistic robotic application. Hence,
there is indeed a trade-off between flexibility and applicability, which is especially prominent in
robotics due to its practical nature. In this thesis, such a trade-off is successfully addressed by
starting the ontological analysis from a deep understanding of the target robotic applications,
which was gained from the hands-on experience developing robot perception tasks (Chapters 3
and 4).

Related to the idea of starting from actual robotic tasks, it is easy to face a challenge that
we here refer to as the relevance problem. Robots are often exposed to huge amounts of internal
and external data, and it can be difficult to find the relevant data to abstract into knowledge
(i.e. the relevant knowledge to conceptualize). An apprentice ontology developer may opt for
abstracting as much data as possible, constructing large ontologies that would hopefully allow
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robots to perform many complex reasoning tasks. However, the process in which the perception
data is abstracted may add some complexity to the robotic system, presenting some scalability
issues. Indeed, abstracting all the data the robot is exposed to would certainly result in codifying
huge volumes of seemingly irrelevant knowledge. In order to mitigate these issues, it was useful
to look at this problem from a foundational viewpoint. Specifically, we carefully identified the
knowledge to conceptualize considering the robot reasoning tasks that would make sense to
solve using ontological knowledge. From the cognitive capabilities considered in Chapter 2,
we focused on recognition and categorization, and decision making and choice, barely covered
in the literature. Hence, we set the perception tasks with the aim to recognize and categorize
human intentions (Chapter 3), and degrees of risk of collision (Chapter 4), in both cases, to
adapt the robot’s behavior appropriately. For such recognition tasks, we learned that it would
not make sense to use ontologies, because reasoning over knowledge would require too much
time. In general, collaborative robots would be expected to react quickly to the intention of their
collaborators, and the same for any potential safety issue. For this reason, we decided to make
the recognition and classification of the different cases directly using data, reducing the amount
of potential data to abstract. In the end, we decided to conceptualize knowledge that is useful
to recognize and categorize events such as collaborations and adaptations, and also knowledge
to decide and choose between competing plans.

The selection of the ontological language is an essential decision to make, since the
language properties will directly affect to the reasoning abilities of the model. In Chapter 5, we
used FOL because its expressiveness captured the actual meaning of our conceptualizations,
and OWL 2 DL because it allows runtime reasoning in the robot. Of course, the formalization
in OWL 2 DL results in a loss of part of the intended meaning, which shall be discussed and
even mitigated if possible. For instance, the formal definitions in FOL from that chapter include
ternary relationships, which cannot be modeled using OWL 2 DL and would require a
workaround (e.g. reification). However, some of the potential limitations could only be solved
by using a different language. The logical rules to compare plans from Chapter 7 are not
expressible in OWL 2 DL because co-reference of an entity with different roles in an axiom
cannot be expressed. This means that if the same entity (e.g. an instantiated plan) appears
more than once in an ontological axiom (or rule), there is no way to enforce that both are the
same. For this, it was useful to write the proposed rules using FOL syntax and implement them
as predicates in Prolog, the language that we used to build the robot’s knowledge base. Based
on the research presented in this thesis, we think that using different ontological languages is
probably a reasonable approach in robotics, since autonomous robots will surely need different
types of reasoning. However, this will be an advantage as long as one takes care of the
implementation details regarding the integration of the different inferences.
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An ontological model captures the semantic structure of the target conceptualization, which
can be thought as a graph comprising the semantic relations between the different ontological
entities of interest. This thesis postulates that explainable robots shall use ontologies to
represent their experiential knowledge as episodic memories, which shall later be visited to
retrieve content for an explanation construction. Note that these memories are certainly more
powerful than mere data logs, since data is semantically enriched and structured using
ontological knowledge. Hence, episodic memories will keep the semantic graphical structure
defined in the ontology while adding a temporal dimension. One might wonder how robots
might do the retrieval or selection of knowledge depending on the desired explanation. In this
thesis, we proposed to leverage the structure of the knowledge, under the assumption that
connected knowledge in the graph is semantically relevant to explain that part of the graph. In
Chapter 6, we propose a novel algorithm that navigates the knowledge graph’s depth to extract
the relevant knowledge to narrate collaborative and adaptive robot events. The approach is
successfully validated with human users that found the explanations to be useful for
understanding robot’s experiences. However, even if they are useful and contain all the
relevant knowledge, the narratives could be improved by shortening them and generating them
using a more human-friendly format. Chapter 7 continues exploring the idea of exploiting the
knowledge’s structure to build contrastive explanations of competing robot plans. The chapter
proposes a novel algorithm that is objectively evaluated against the previous one obtaining
positive results. Note that since the principle behind these algorithms is to leverage the
knowledge structure, they are general and reusable solutions to build ontology-based
explanations even beyond robotic scenarios.

8.2 Challenges and opportunities for future research

8.2.1 Beyond the thesis domain and application scope

It was challenging to model the concept of plan adaptation, but also insightful and inspiring
since it plays a relevant role in decision making and explainability for robots beyond
collaborative scenarios. There are many concepts related to it that would be worth modeling,
but one especially got our attention: the notion of adaptation trigger. The proposed
formalization of plan adaptation already provided some intuition about the trigger of the
adaptation, however, a deeper investigation in this regard would be needed. Note that the
formalization of adaptation trigger would unlock the possibility of constructing new types of
ontology-based robot explanations: causal (why did the robot adapt?), or counterfactual
(would have the robot adapted if something else had happened?).
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8.2.2 Knowledge-based long-term robot memories

Ontology-based episodic memories have proved to be useful for explainable robots, but we think
that their true potential remains unexplored. In this thesis, memories were used in relatively
short-term tasks, however, episodic memories are one of the types of long-term explicit memory
in humans. Hence, it would be interesting to explore the benefits and address the challenges of
using them in long-term robot tasks. In those cases, they might be useful for robot introspection
for learning how to perform better, or for detecting when it is necessary to improve the learned
models. We like to imagine the idea of robots performing tasks during daytime and allowing
them to go to sleep to reflect on what can be improved during the night. These ideas seem
promising although we understand that building robot memories in the long term would open
many issues to attack: what knowledge is relevant to store, when and how robots shall decide
to forget, which knowledge to forget, etc. Finally, episodic memories have been used here
to construct explanations in this thesis, and we think that explanatory experiences could also
be stored in memory. This would help robots to remember what content has already being
explained, which can be used to avoid repetitions when explaining similar knowledge.

8.2.3 Knowledge representation formalisms for explainable robots

This work presented in this thesis supports and promotes the use of several formalisms and
languages when working with ontologies in robotics. In this regard, we think that there are
some formalisms that were not used in our work and would be relevant for robot reasoning
tasks in general, and especially useful for explainability purposes. For instance, robots often
face uncertainty, especially in human-robot interactive scenarios, and the formalisms used in the
thesis fail to model it. For this, one might use non-monotonic logic, which is devised to capture
and represent defeasible inferences, i.e., a kind of inference in which reasoners draw tentative
conclusions, enabling reasoners to retract their conclusion(s) based on further evidence. Note
that this type of logic supports abductive reasoning, a form of logical inference that seeks the
simplest and most likely conclusion from a set of observations. We think that such a type of
reasoning will be fundamental in the future advances of explainable robots, and this is supported
by some works in the literature [Sridharan, 2023].

8.2.4 Ontology-based robot explanations as a social interaction

The focus of our research was on finding effective general methods to retrieve sound knowledge
to construct explanations. Hence, the produced explanatory narratives, which were built with
the extracted knowledge chunks, were not utterly human-friendly and they would certainly need
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to be enhanced. We think that foundational large language models would be of great help with
re-writing the textual explanations we built using a more accessible language. Indeed, it would
be interesting to use them so that robots could provide explanations interactively, maintaining a
dialogue with humans. However, there are some cases in which those models might hallucinate
resulting in wrong or false explanations. In this regard, the domain of retrieval augmentation
generation (RAG) will surely be source of inspiration for future advancements. This would allow
robots to communicate with humans in a natural fashion while providing explanations that are
built upon sound ontological knowledge and reasoning.
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Complementary material for reviewing ontological mod-
els for autonomous robots

This appendix comprises information that complements the work presented in Chapter 2.

B.1 A classification of ontologies for autonomous robots

B.1.1 Ontology scope

Object The Oxford dictionary defines the term Object as a material thing that can be seen
and touched. But often a more fine-grained definition is needed that is not limited to material
objects, e.g. holes, or to things in physical space, e.g. behavioral patterns. More generally,
mental and social objects depend on material acts (like brain activities and communication
acts) but they may be neither material (made of matter) nor physical (located in a region of
space). A significant number of foundational ontologies make a distinction between
Endurants and Perdurants [Borgo et al., 2021, Niles and Pease, 2001]. Endurants (aka
continuants or objects) are wholly present at any time, but may change over time. Perdurants
(aka occurrents or events), on the other hand, are extended in time, and only partially present
at any time. This dichotomy is crucial in systems that have to cope with time. Physical objects
are often further classified into Artifact and Non-Artifact, where artifacts are
intentionally created, often according to a design, to fulfill a certain function, etc [Borgo et al.,
2014]. Objects may further be classified as Agent or Non-Agent, where agents are capable of
generating intentional behavior.

We humans tend to categorize objects because of the variety of Qualities and
Properties that they exhibit, which give us a way to cluster them into similarity classes.
There have been long philosophical discussions about what qualities and properties are, and
among them which are primary or not, and if they can be exhaustively listed. One important
reason to focus on qualities and properties is the understanding of (qualitative) change. One
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branch of formal models considers individual qualities (roughly, the way an individual
manifests characteristics like weight, size, shape etc.) as basic entities in the ontology. Each
individual quality is existentially dependent on a unique endurant (or perdurant) and
associated with a quale (plural: qualia). Qualia are used to compare entities, and thus to
discuss similarity/dissimilarity (w.r.t. the associated quality) across objects and events [Masolo
and Borgo, 2005]. In this view, qualities form a third fundamental category along with
endurants and perdurants, and the associated qualia change over time to explain the changes
in their corresponding endurants (or perdurants). Qualia are further organized in Spaces
(e.g. the space of weight, the space of colors etc.) and can be given a quantitative/qualitative
value (e.g. numerical) once the space is enriched with a reference system and unit of measure.
An alternative approach uses the notion of Tropes (also called ‘abstract particulars’) where
qualitative change is expressed through the substitution of tropes [Neuhaus et al., 2004]. Thus,
when an object changes, this modeling view assumes that the existing trope ceases to exist and
a new one is created. Continuous change (like the increasing of room temperature) is often
considered problematic to model in this latter approach.

Environment Map The term Environment is defined in the Oxford dictionary as the
surroundings or conditions in which a person, animal, or plant lives or operates while Map is
described as a diagrammatic representation of an area of land or sea showing physical features,
cities, roads, etc. Although some general way to understand the meaning of environment in
robotics has been proposed [Borgo et al., 2019a], in this domain the focus is more often
oriented to the representation of the environment [Chella et al., 2002]. The format and
information content of a map is not only diagrammatic in robotics as it is influenced by how
and for what the map is to be used by the robot. Collision maps, for example, encode 3D
geometric information of the environment to support generating collision-free motions in 3D
space, while navigation maps usually only use a 2D geometrical representation to support
finding collision-free navigation paths. The term Semantic Environment Map is often used
to refer to environment representations that make explicit the semantics of the environment
and objects in the environment. Semantic Object Maps encode spatial information about the
environment but, in addition, enrich the information content with encyclopedic and
common-sense knowledge about objects, and also include knowledge derived from
observations [Rusu et al., 2009].

Affordance The term Affordance was introduced by Gibson as what the environment offers
the animal, what it provides or furnishes, either for good or ill [Gibson, 1979]. More recently, the
meaning has shifted towards "(perceived) possibility for action" [Norman, 2002], i.e., something
the object offers that allows the agent to interact with it or, more generally, something that
allows objects to participate in actions or processes. However, there is no common agreement
in the ontology engineering community on how this concept should be modeled. One way
to model affordances is as individual qualities of an object [Ortmann and Kuhn, 2010], or as
relational qualities of a pair object-agent [Turvey, 1992]. Another approach is to model them as
events, as proposed by Moralez [Moralez, 2023]. A notion of affordance is relevant to talk about
possibilities as it enables to answer questions such as "what can the robot do with an object?",
and "is it possible for an object to take a particular role when some task is performed?".
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Action and Task There has been a lot of confusion about the meaning of the words Task
and Action, and how these relate to each other. The Oxford dictionary defines an action
as the fact or process of doing something, typically to achieve an aim. There have been several
attempts to define action in different disciplines. A notable one is Donald Davidson’s philosophy
of action, where he defined an action as something intentional under some description [Davidson,
2001]. Krüger and colleagues surveyed the meaning of action in the robotics field [Krüger et al.,
2007], and argued that a notion of action in robotics needs to take into account several aspects
including perception, actuation, embodiment and learning.

A task can be understood as a piece of work that has to be done [OED, 2024]. Hence, tasks
denote pending work, independently from how an agent exactly accomplishes this work. In this
view, an action would be a way to execute a task. Technically, one can approach this by defining
tasks as types (of events) used to classify actions, which then allows one to explicate that a task
can be accomplished in different ways, and to talk about individual tasks independently from
their possible executions. A notion of task in robotics has been proposed recently by Balakirsky
et al. [Balakirsky et al., 2017].

Tasks and actions may further be classified according to their complexity, temporal extension,
inter-task (inter-action) relationships, etc. However, such classifications are often not clear,
e.g., the distinction between simple vs. complex tasks would be dependent on the adopted
granularity or robot’s capabilities.

Activity and Behavior The Oxford dictionary defines an Activity as the condition in which
things are happening or being done. The term Behavior, on the other hand, is defined as the
way in which one acts or conducts oneself, especially towards others. Hence, both terms refer to
situations in which an agent performs actions, but with different viewpoints. Activities rather
having an intrinsic, and behaviors an extrinsic viewpoint, e.g., was it good or bad behavior,
how it affected other agents, and so on. Note that in the case of behavior, it can also apply to
non-agents as it is common to talk of the behavior of devices or tools, for instance.

In the 80’s, Rodney Brooks and his colleagues did fundamental work in the field of
behavior-based robotics where the term behavior also refers to extrinsic characteristics of task
execution. The field of behavior-based robotics is motivated by the observation that complex
behavior can be generated by simple control systems, and that intelligence lies in the eye of the
observer [Brooks, 1991]. Brooks has also postulated that the world is its own best model, and
hence argues that simple Sense-Act loops can be used to directly interact with the world
without relying much on symbolic representations.

Other authors have focused on the terms Behavior and Function, for instance claiming
that the function of an object denotes its intrinsic aspects (i.e., how it works), and behavior the
extrinsic aspects (i.e., what it does). An engineering discussion of this dichotomy is provided
by Salustri for the context of computer-based design tools [Salustri, 2000] while an ontological
assessment is provided by Mizoguchi et al. [Mizoguchi et al., 2016].

Plan and Method A Plan is a detailed proposal for doing or achieving something [OED, 2024].
Similarly, the DOLCE+DnS Plan Ontology [Gangemi et al., 2004] defines Plan as a description
that defines or uses at least one task and one agentive role or figure, and that has at least one goal as
a part. Hence, plans have explicit goals to be achieved when the plan is executed by appropriate
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sequences of actions that comply with the plan. An execution of the plan can succeed, fail, be
postponed, aborted, etc.

The generation and assessment of plans is a long-standing sub-area of artificial intelligence.
A prominent approach is the Planning Domain Definition Language (PDDL) [McDermott et al.,
1998]. PDDL tasks denote the initial and goal state, and how the state can be modified by
applying actions or operators. General purpose solvers are then used to generate a plan given the
domain definition. Several authors have further combined standard planning techniques, such
as PDDL, with more expressive representations. A survey about these approaches is provided by
Gil [Gil, 2005].

A Method, on the other hand, is more abstract than a plan. The Oxford dictionary defines
it as a particular procedure for accomplishing or approaching something, especially a systematic or
established one. In a sense, methods are guidelines for agents to choose actions towards achieving
a specific goal instead of specifying beforehand an explicit sequence of actions that would cause
the goal to be achieved.

Capability and Skill According to the Oxford dictionary, Capability is the power or ability
to do something. Hence, a distinction is made between capabilities that are enabled by physical
qualities and those that are enabled by social role(s) within a certain community. The term
Skill, according to the Oxford dictionary, is more restrictive, namely, the ability to do
something well. Thus, it only includes what the agent can do because of its physical qualities
and, in addition, it implies that the achievement is positively qualified (in terms of manners
and results) [Fazel-Zarandi and Fox, 2013]. One widespread use of the term in robotics is skill
learning where it is used to refer to the ability of the robot to achieve something via a behavior
learned through observation, communication, experimentation or simulation. However, both
terms are also often used as synonyms of each other, for example by Perzylo and colleagues in
their work on the description and orchestration of manufacturing skills [Perzylo et al., 2019a].

Having capabilities represented in a formal model, the robot can reason about whether the
necessary capability is present to perform a certain task in a given situational context and, if
not, how the task could be accomplished otherwise. This is usually approached by defining
capabilities with respect to hardware and software components of the robot [Kunze et al., 2011,
Buehler and Pagnucco, 2014]. A navigation capability would be enabled by a mobile base which
is controlled by a navigation software component that interfaces with the mobile base. Tiddi et
al. have used a notion of capability to provide a more intuitive, capability-based interface to
control robots [Tiddi et al., 2017].

Capabilities may not be manifested in arbitrary situations. For example, wheeled robots are
not able to navigate along stairs and thus might not be able to reach a target location on another
floor. However, if an elevator can be used and the robot is able to operate it, the robot may still
be able to reach its navigation goal. Hence, capabilities do not automatically enable the robot
to perform a task. Their use depends on suitable conditions of the situational context in which
the robot should operate – e.g. who can perform the task, what specific variant of the task can
be performed, and where the task can be performed. The degree of how capable a robot is may
change over time to the point that a capability cannot be manifested at all, for example, due to
attrition of hardware, broken hardware or missing (hardware or software) components.
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Hardware components Ontologies may be used to explicate what chains of robot links and
joints form what BodyParts, and how body parts can contribute to performing, for instance,
tasks and capabilities.

One of the most widely used formats to represent hardware components of robotic agents is
the Unified Robot Description Format (URDF). URDF allows to represent kinematic chains made
of links and joints, and also to define the limits of each joint. This information is used, e.g.,
by inverse kinematics solvers to find a valid joint configuration in which the end-effector of the
robot reaches a dedicated goal pose1. URDF files include both actuators (e.g. servos of the joints,
grippers, etc.) which act in the environment and sensors (e.g. cameras, sonars, etc.) which used
to perceive the environment.

A Sensor is a device which detects or measures a physical property and records, indicates,
or otherwise responds to it [OED, 2024]. Sensors can be used for different objectives such
as measuring robot parameters for control loops, correcting for errors in the robot’s models
of itself and of the world, and detecting and avoiding failure situations, among others. The
Semantic Sensor Network (SSN) is an ontology for describing sensors and their observations,
the involved procedures, the studied features of interest, the samples used to do so, and the
observed properties, as well as actuators [Compton et al., 2012]. SSN includes a lightweight
but self-contained core ontology called SOSA (Sensor, Observation, Sample, and Actuator).

Software components A notion of robot software components in ontologies is crucial when
these shall be automatically introspected and integrated into task execution. One of the most
widely employed ontologies for modeling software in ontologies is the Ontology of Information
Objects (IO) ([Gangemi et al., 2004]) where a distinction is made between an abstract
DataStructure and the DigitalResource that concretely realizes the data structure
within some physical storage medium. The broad goals for software ontologies in robotics are
to enable the robot’s automated software discovery and installation to dynamically compose its
control system for a given task, to decide for a given control system whether some capability
can be realized by invoking some of the software components, and to support introspection in
case some software failure occurred.

One of the most widely used middlewares in robotics nowadays is the Robot Operating
System (ROS). ROS organizes robot software components in a communication graph, where
each node is a piece of software either listening or publishing messages on named topics, or
offering a service that can be called via the node. Messages are defined using an abstract syntax,
and concrete realizations of the message type in different target languages such as C++ and
Python are generated automatically by ROS.

Interaction and Communication Interaction is a reciprocal action or influence [OED,
2024] between two or more entities. This comprehensive definition includes those interactions
in which there is not an explicit exchange of information. For example, interactions happening
at atomic level or stigmergic interaction, through the environment in which agents act. Work in
robotics tends to concentrate on information exchange. Indeed, in the literature, both the
Human-Computer Interaction [Dix, 2009] and the Human-Robot Interaction [Yanco and Drury,

1An end-effector is a device located at the end of a kinematic chain, designed to interact with the environment.
Its task depends on the application of the robot.
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2002, Yanco and Drury, 2004] domains, tend to provide a less general formal definition of
Interaction which may be closer to Communication.

The term Communication is the imparting or exchanging of information by speaking, writing,
or using some other medium [OED, 2024]. Gangemi et al. [Gangemi and Mika, 2003] proposed
to formalize this term within the Description & Situation Ontology viewpoint distinguishing two
cases: an ontology for communication situations and roles, and an ontology for peer-to-peer
communication.

B.1.2 Reasoning scope

Recognition and categorization For the purpose of establishing a contact between its
environment and its knowledge, a robot must be able to recognize events or situations (static
and dynamic) and categorize them as named instances of already known patterns. For
instance, let’s consider a kitting collaborative robotic task in which a human and a robot aim to
fill the compartments of a tray with tokens. The robot must recognize and cateogorize the tray
state and the different pieces to manipulate (static), as well as a the human’s intentions, the
risk of collision with the human, or when a collaboration has finished (dynamic). This thesis
presents contributions related to this cognitive capability in Chapters 3, 4, and 5. Note that
recognition and categorization are related to perception, since all of them operate on the
output generated by perception systems, thus they often are seen as a unique capability.
Nevertheless, Langley et al. addressed them separately because they can individually operate on
abstract mental structures [Langley et al., 2009]. The authors emphasize that in order to
support recognition and categorization, a cognitive architecture shall provide a form to
represent patterns and situations in memory. This is related to the elements of explainable
agency depicted in Fig. 1.2.

Decision making and choice An autonomous robot requires the ability to choose among
several alternatives, which usually is considered together with the recognition and
categorization problem in a recognize-act cycle. Nonetheless, Langley et al. considered the
capability of decision making independently. It is important not to mistake this capability with
planning, whose focus is on the achievement of a goal and it will be explained later along this
section. For example, a collaborative robot would apply decision making to compare and
choose between two competing plans (e.g. one that has a balanced workload or one that is
faster but implies a higher robot workload). Meanwhile, planning would be used to find the
sequence or sequences of actions for each of those competing plans. Note that cognitive
architecture should be able to represent the different choices and their characteristics in a
format the robot can understand and easily manipulate to select one option. Indeed, that
representation could also be used to improve the decision making through learning, or to
construct explanations about the robot’s decisions. In this regard, Chapter 7 presents
contributions to allow robots to compare alternative plans, decide which one is better based on
some criteria, and construct a contrastive explanation comparing them.

Perception and situation assessment The environment where the robot exists, must be
sensed, perceived and interpreted. First, the robot senses its surroundings through possibly
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muti-modal sensors. Then, the robot is able to perceive the environmental entities (e.g. objects
and events), using the gathered information and relying on recognition and categorization,
discussed earlier, and on inferential mechanisms, which will be covered shortly. Finally, the
situation assessment takes place when the perceived objects and events are interpreted.
Following with the example used before, the collaborative robot would look at the tray, the
pieces and at the human’s movements to sense the environment. The human, its pose and
motion, and other information would be recognized and categorized in order to assess the
environmental situation so that the robot could, for example, interpret that there is a potential
risk of collision with the human and it is needed to adapt. Just as occurred with previous
cognitive capabilities, the inherent knowledge of the whole process must be represented in a
manner the robot understands. Note that the representation requires memory, a resource
which is often limited. Hence, the notion of attention emerges, meaning that the robot not only
has to perceive but also it could be asked to decide to focus only on a specific region of the
environment or a specific moment in time.

Prediction and monitoring Prediction is a cognitive capability which requires the
representation in memory of a model of the environment (e.g. an ontology-based model), the
actions that can take place and their effects. Therefore, the robot could predict future events
and situations which did not occur yet by means of a proper mechanism which utilizes the
representation. Applied to the collaborative robotics’ example, it would be possible for the
robot to predict the human’s intentions, so that the robot could adapt faster to them. Note that
prediction enables robots to also monitor processes. When the perceived situation differs from
the expected one, it means that either our knowledge is not complete or something did not go
as it was supposed to. In the former case, it would be possible to store the facts in memory for
posterior learning, in the later case, an alarm or an adaptation could be triggered. In the
example, the robot could monitor the risk of collision, or whether a human has stopped
collaborating.

Problem solving and planning In novel situations where robots are meant to achieve their
goals, it is necessary for them to be able to plan and solve problems. For the purpose of
generating a plan, the robot needs a model of the environment utilized to predict the effects of
its actions. Furthermore, the cognitive architecture must be able to represent a plan as an (at
least partially) ordered set of actions, their expected effects, and the manner in which these
effects enable subsequent actions. Sometimes, a robot could have a memory with previous
plans which could be re-used with and without further modifications. Note that it is also
considered the case of having conditional actions and different branches which depend on the
outcome of previous events. Despite often being viewed intimately related, planning is
somewhat less general than problem solving. In particular, the former usually refers to
cognitive activities within the robot’s internal processes, whereas the later can also occur in the
world. For instance, when a problem to be solved is complex and the available memory is
limited, a robot may search for solutions by executing actions in the environment, rather than
constructing a complete internal plan. As an illustration, a collaborative robot could solve a
problem by mixing the execution of actions such as: asking for the human’s help (external
behavior), and the generation of actions’ sequences (internal planning).
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Reasoning and belief maintenance Reasoning is a cognitive activity which allows a robot to
expand its knowledge state, drawing conclusions from other beliefs or assumptions the robot
already maintains. Thus, it is required the existence of a representation of beliefs and the
relationships among them. A common formalism used to encode such knowledge is FOL.
Ontologies are often written in languages based on less expressive formalisms than FOL (e.g.
OWL DL) in order to reduce the computational cost of inference. These formalisms, allow the
use of different sorts of reasoning such as: deductive or inductive. For the robot of the previous
example, it would be possible to infer whether an event is or not a collaboration when a human
follows a different plan, or, among alternative plans, which is the best according to some
criteria (deductive). Or the opposite, from specific human’s behaviors and preferences,
inferring the norms to follow during a personalized human-robot interaction (inductive). Note
that reasoning is not only relevant to infer new beliefs but also to decide whether to hold
existing ones (belief maintenance). Such belief maintenance is especially important for
dynamic environments in which situations may change in unexpected ways, with implications
for the robot’s behavior.

Execution and action Cognition takes place to support and drive activity in the environment.
To this end, a cognitive architecture must be able to represent and store motor skills that
enable such activity. In the example, a collaborative robotic arm should have skills or policies
for manipulating its surroundings and for collaborating or communicating with other agents
(e.g. humans). A robot should also be able to execute those skills and actions in the
environment, what can happen in a reactive form. Nevertheless, a cognitive architecture
should enable a robot to maintain a continuum loop of execution. Hence, the robot would be
able to interpret how the execution of actions is affecting the state of the environment and
could adapt its behavior. A proper representation of the ongoing actions occurring in the
environment, is essential for aspects related to robot action execution: robot adaptation, new
skills learning, explaining robot behaviors, etc. Furthermore, the representation should allow
to capture the contextual knowledge around executions (e.g. what occurred when the robot
was executing a certain action).

Interaction and communication Sometimes, the most effective way for a robot to obtain
knowledge is from another agent (e.g. humans, robots, etc.), making communication another
important ability that an architecture should support. Going back to the example used before, a
collaborative robot could request for further human collaboration to solve a failure, or which
are the preferences of the specific human between two alternative plans (for shared decision
making). Regardless of the modality or mean of communication, there should be a way to
represent the transferred knowledge so that it is accessible to and understandable for the robot.
Indeed, this should be bi-directional, meaning the robot must be able to transform stored
knowledge into the particular format used for the communication (e.g. knowledge-based
construction of textual explanations).

Remembering, reflection, and learning There are some capabilities which cut across those
described before, whose use could enhance the performance of autonomous robots while not
being strictly necessary for robot autonomy: remembering, reflection and learning.
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Remembering is the ability to encode and store the results (facts) of cognitive tasks so that they
can be retrieved later. Once again, based on the previous example, a collaborative robot could
store the results of an entire day of work (e.g. collaborative and adaptive experiences, decisions
about alternative plans, etc.). Reflection stands for the serious thought or consideration [OED,
2024] about something which usually is represented and stored in memory and can be
retrieved. An example of a reflective process would be the explanation of robot experiences,
inferences and decisions in terms of cognitive steps that led to them. Finally, learning, which
usually involves generalization beyond specific beliefs and experiences. In the example, the
collaborative robot would use the stored memories about successful and failed actions (e.g.
adaptations) to generalize and learn from them. The knowledge used to learn might come
from distinct sources, the observation of another agent, the result of previous experiences, or
through kinesthetic teaching. No matter the source of experience, all of them require the
existence of a memory in which the experiences are represented. On this matter, Chapters 6
and 7 investigate the use of ontology-based memories for robot explanation generation.

B.1.3 Application domain scope

Industrial Robots The term of Industrial Robots includes all those robots which are
automatically controlled, re-programmable, multipurpose manipulator, programmable in three
or more axes, which can be either fixed in place or mobile for use in industrial automation
applications [ISO 8373:2021, 2021]. Typical applications of industrial robots include welding,
painting, assembly, pick and place for printed circuit boards, packaging and labeling,
palletizing, product inspection, testing, and material handling. Industrial robots perform with
high endurance, speed, and precision in all of those tasks.

Service Robots Service Robots are robots in personal use or professional use that perform
useful tasks for humans or equipment [ISO 8373:2021, 2021]. Typical applications of service
robots include those tasks which are dirty, dull, distant or dangerous. Based on the ISO’s
definition, service robots can be classified into service robots for personal use and service robots
for professional use. Personal service robots perform tasks such as handling or serving of items,
transportation, physical support, providing guidance or information, grooming, cooking and
food handling, and cleaning. While professional service robots are meant for inspection,
surveillance, handling of items, person transportation, providing guidance or information,
cooking and food handling, and cleaning.

B.2 Ontologies to support robot autonomy

B.2.1 Literature search and inclusion criteria

One of the goals of this work is to provide a systematic and fair comparison of projects located at
the intersection of the fields autonomous robotics and ontologies. In order to select a potential
list of candidates for discussion, we have followed a systematic examination of the state of the
art, and, in addition, we have filtered the results by a set of inclusion criteria. In this section, we
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discuss the search procedure, and provide a list of criteria that need to be fulfilled by considered
approaches.

Literature search

For the purpose of finding literature focused on using ontologies to enhance robot autonomy,
we started searching on scientific databases utilizing related keywords. Specifically, we used
the literature browser Web of Science2, previously known as Web of Knowledge, which is an
online subscription-based scientific citation indexing service that provides a comprehensive
citation search. It gives access to multiple databases that reference cross-disciplinary research,
which allows for in-depth exploration of specialized sub-fields within an academic or scientific
discipline.

Typing the keywords ontology robot autonomy and ontology autonomous robotics yields just
24 and 63 results, respectively. We considered that the number of papers was not enough for
our purpose so we went on searching. In the interest of finding a larger list of results, we tried a
more general set of keywords: knowledge representation autonomous robotics, which returned a
list of 306 papers. Going through them, we realized the works were too general, indeed several
of them were not even using knowledge representation approaches, therefore, we discarded
this list too. The next step was to include the application domain scope in the search (see
Section 2.3.3). Hence, the set of keywords was: knowledge representation industrial robotics and
knowledge representation service robotics, with 133 and 148 papers respectively.

The two lists found during the previous step, were combined in a single list of 281 articles
in total. In the interest of identifying projects or initiatives that use ontologies to enhance robot
autonomy, we have reduced the list of papers following a specific criteria:

- It is proposed to use knowledge representation techniques (ontologies) in robotics
applications to enhance robot autonomy;

- the work is part of a project or a big initiative, not just a single article; and

- case studies where the knowledge base is used by a robot exist.

After applying this criterion, the list was reduced to 21 articles, which correspond to five
different projects: KnowRob [Tenorth and Beetz, 2009], IEEE-ORA [Schlenoff et al., 2012],
ROSETTA [Stenmark and Malec, 2013], CARESSES [Bruno et al., 2019a], and RehabRobo-
Onto [Dogmus et al., 2019]. This set of works, was enlarged by other four ones extracted from
one of the surveys [Thosar et al., 2018] explained along Section 2.1. In that work, Thosar et al.,
reviewed a list of nine works, which, as in our work, were chosen following a systematic search
and inclusion criteria. We consider that only five of those nine works fit our purpose but one of
them is KnowRob, already included before, thus, we only adopt four: ORO [Lemaignan et al.,
2010], RoboBrain [Saxena et al., 2015], OUR-K [Lim et al., 2011], and OMRKF [Suh et al.,
2007].

It is worth mentioning that the project IEEE-ORA does not actually provide a complete
framework which is available to be used, it consists of just an ontology. Indeed, the ontology
developed in the framework of that project contains general concepts of the domain, so that it

2https://www.webofknowledge.com/

https://www.webofknowledge.com/
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is not really useful in specific application scenarios. However, we understand that it is relevant
enough to be considered in our work, since it aims at standardizing the representation of
knowledge in the robotics domain. Therefore, we have tried to identify possible extensions of
the original work which have been used under the umbrella of available frameworks.
Following a similar approach as before (using the Web of Science’s browser), we searched for
papers that cited the most cited article related to the project [Schlenoff et al., 2012]. In this
case, from the 34 initial works which cite it, only two followed the whole inclusion criteria
presented in this section: OROSU [Gonçalves and Torres, 2015] and PMK [Diab et al., 2019].
In Section 2.4, where the projects are compared, we consider them as two individual
frameworks. Nevertheless, along Section B.2.2, where the approaches are explained, OROSU
and PMK are grouped together.

Inclusion criteria

We have already discussed how we have selected the ten frameworks or projects which are
considered to be object of the analysis performed in this work. However, among them, we want
to focus only on the discussion and the comparison of the most influential approaches. Hence,
this section provides a list of inclusion criteria to refine the list of surveyed projects. In the
Section B.2.3, we briefly introduce the excluded approaches and provide some justification for
our decision. Projects or frameworks are only considered in the scope of this work if they satisfy
all of the following criteria:

1. Ontology scope: The project uses an ontology that defines one of the terms that we have
identified as particularly relevant for autonomous robotics (see Section 2.3.1);

2. Reasoning scope: It uses ontologies to support robots manifesting at least one of the cogni-
tive capabilities that we have discussed earlier (see Section 2.3.2);

3. Transparency: It is transparent. Meaning that some material (e.g., websites, publications)
is openly available that describes the overall goal of the project, what cognitive capabilities
are considered, and how and what ontologies are used;

4. Curation: It is maintained. Meaning that recent developments or future plans are evident
or at least possible; and

5. Accessibility: There exists – at least a prototypical – software that is accessible, and that
demonstrates how ontologies are used to support a cognitive capability.

B.2.2 Discussion of frameworks/projects

In this section, we give an overview of the six frameworks/projects that have been subject of
study in our review. For each of them, their underlying principles and foundations are discussed,
as well as what application domain the system was designed for. We also describe how the
frameworks evolved over time, and what impact they have had so far. The selection of the
presented projects has been done based on the selection criteria presented in Section B.2.1. To
the best of our knowledge, we have included in this section all projects that satisfy these criteria.
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KnowRob

KnowRob (Knowledge processing for Robots)3 is an open source4 knowledge processing system
that is designed for autonomous service robots. It was first introduced in 2009 [Tenorth and
Beetz, 2009]. Tenorth and Beetz argued that autonomous robot control demands a knowledge
representation and reasoning system that addresses several aspects that are commonly not
sufficiently considered in analogous systems in artificial intelligence. One of these aspects is
that robots need a more fine-grained action representation. This was discussed, in more detail,
in another work where Tenorth and Beetz argued that service robots should be able to cope
with (often) shallow and symbolic instructions, and to fill in the gaps to generate detailed,
grounded, and (often) real-valued information needed for execution [Tenorth and Beetz,
2017].

Recently, a second generation of the KnowRob system was introduced where the focus has
shifted towards the integration of simulation and rendering techniques into a hybrid
knowledge processing architecture [Beetz et al., 2018, Haidu et al., 2018]. The rationale is to
re-use components of the control program in virtual environments with physics and almost
photorealistic rendering, and to acquire experiential knowledge from these sources.
Experiential knowledge, called narrative enabled episodic memory in KnowRob, is used to draw
conclusions about what action parameterization is likely to succeed in the real world (e.g.,
through learning methods) – this principle is inspired by the simulation theory of
cognition [Hesslow, 2012].

KnowRob has also been used in several research initiatives including the European projects
RoboHow [Beetz et al., 2016], RoboEarth [Waibel et al., 2011], SAPHARI [Beetz et al., 2015a],
and SHERPA [Marconi et al., 2012]. RoboEarth, for example, was a pioneer work to consider
exchanging knowledge between robots using the World Wide Web, OWL, and Linked Data
principles. It was demonstrated, e.g., how such an infrastructure can be used to execute tasks
that were not explicitly planned at design time. More recently, KnowRob has been used by the
openEASE web knowledge service which is designed for the acquisition, storage, curation,
visualization, and analysis of experiential robot knowledge [Beetz et al., 2015c]. KnowRob
plays further a central role in the ongoing collaborative research center Everyday Activity
Science & Engineering (EASE)5 which has the goal to uncover principles underlying everyday
activities by first acquiring experiential knowledge with different modalities, and second
building models that generalize over these modalities [Bateman et al., 2018].

The main programming language used in KnowRob is (SWI) Prolog which has its roots in
FOL. SWI Prolog comes with a library to manage RDF triples, which is used by KnowRob to
represent explicit knowledge in memory such as facts encoded in OWL ontologies. Initially,
KnowRob was deriving its concept definitions from the Cyc ontology. However, only rather
shallow symbolic representations were used that were tailored to provide useful information for
task execution without enforcing consistency in the knowledge base. In recent years, KnowRob
has shifted towards the use of the DOLCE+DnS Ultralite (DUL) ontology and a more careful
and principled modeling of foundational concepts for autonomous robotics. Another important
principle underlying KnowRob is about how data that already exists in the robot control system

3http://knowrob.org/
4https://github.com/knowrob/knowrob
5https://ease-crc.org/

http://knowrob.org/
https://github.com/knowrob/knowrob
https://ease-crc.org/
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can be made knowledgeable – that is how this data can be integrated into symbolic reasoning.
KnowRob employs the notion of virtual knowledge bases that are computed on demand using
control-level data such as data structures used by the perception and planning component of
the robot control system. The computation is out carried by, so called, computable properties
which are computation methods attached to symbolic relation defined in an ontology.

Without a doubt, KnowRob is one of the most influential knowledge representation and
reasoning systems for autonomous robots nowadays. This is evident through many research
papers and projects that have been using and extending KnowRob since it was initially released.
However, there are a couple of limitations worth mentioning here. First, KnowRob has been
using only a very shallow symbolic representation following the principles of behavior-based
robotics, and in particular the claim that the world itself is its own best model. But having a lot of
information only encoded implicitly in data structures of the control program also creates some
problems such as the computational cost of abstraction when symbolic inference is performed.
Second, despite its long history, no representational standards were proposed by the KnowRob
developers. Finally, even though it is one of the most used systems, and openly available,
KnowRob has not yet succeeded in creating a large user community, but still has a huge potential
to do so in the future.

ROSETTA

ROSETTA6 stands for RObot control for Skilled ExecuTion of Tasks in natural interaction with
humans; based on Autonomy, cumulative knowledge and learning. Its origin can be traced to the
European projects SIARAS [Haage et al., 2011] and RoSta7. During the development of those
projects, a set of ontologies of robot skills was implemented with the goal to create an
intelligent support system for reconfiguration and adaptation of robot-based manufacturing
cells. Those ontologies evolved throughout the scope of other two European projects, ROSETTA
and PRACE [Stenmark and Malec, 2013]. The former gave its name to the current ontology.
The ROSETTA ontology8 has further been employed in the research projects
SMERobotics [Perzylo et al., 2019b] and SARAFun [Riva and Riva, 2019]. In these projects,
the ontology has been used to enhance cognitive abilities of robots that are required to plan
and execute assembly tasks. The core ontology has been reorganized after the initial
release [Jacobsson et al., 2016], and new case studies on skill reusability in industrial
scenarios [Topp et al., 2018] have been developed.

Originally, the ROSETTA ontology did not rely on any upper ontology, however, for more
general terms regarding the robotics domain, it currently uses CORA [Schlenoff et al., 2012].
Since CORA relies on SUMO [Niles and Pease, 2001], one can assume that ROSETTA utilizes
SUMO as its upper ontology. Even though SUMO is written in a SUO-KIF, a variant of the
Knowledge Interchange Format (KIF), a knowledge representation language, ROSETTA is
distributed in OWL. The Knowledge Integration Framework [Persson et al., 2010] connects all
heterogeneous parts of the ROSETTA system: user GUI, simulation, external knowledge
sources, task demonstration and the robot. It is the core of the whole system and its goal is to
represent, store, adapt, and distribute knowledge across engineering platforms. The data,

6http://www.fp7rosetta.org/
7Robot standards and reference architectures Project
8https://github.com/jacekmalec/Rosetta_ontology
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available in the AutomationML data exchange format is abstracted using RDF triples.
AutomationML is an on-going standard initiative that aims at unifying data representation used
by engineering tools.

Along this section, we have provided some links to git repositories which are proof of the
availability of both the ontology and some parts of the proposed software. However, there is no
unique repository containing all different pieces of the complete system as a whole, which
reduces the degree of accessibility. Indeed, some parts of the code (e.g. user GUI to program
the robot) have not been found at all. On the other hand, the OWL file does not contain the
definitions in natural language of the ontological terms, which would help for a better
understanding of the formalization. Regarding the scalability of the system, crucial element of
any industrial environment, it is not possible to say much due to the small size of the
conducted experiments.

IEEE Standard Ontologies for Robotics and Automation

The 1872–2015 IEEE Standard Ontologies for Robotics and Automation [Schlenoff et al.,
2012], was developed in the context of the IEEE ORA WG. This standard defines an overall
ontology9 that allows for the representation of, reasoning about, and communication of
knowledge in the robotics and automation domain. This ontology includes key terms as well as
their definitions, attributes, constraints, and relationships. Sub-parts of this standard include a
linguistic framework, generic concepts (an upper ontology), a methodology to add new
concepts, and sub-domain ontologies.

The purpose of the standard is to provide an overall ontology and an associated
methodology for knowledge representation and reasoning in robotics and automation, together
with the representation of concepts in an initial set of application domains. The standard
provides a unified way of representing knowledge and provides a common set of terms and
definitions, allowing for unambiguous knowledge transfer among any group of human, robots,
and other artificial systems.

The proposed ontology is too general to be useful in advanced applications, indeed creating
a complete framework was out of the scope of the ORA working group initiative. Nevertheless,
the ontology has still been used, for example, Jorge et al., present a scenario where a human
ask for a pen and two robots are meant to cooperate in performing the task of collecting and
delivering it [Jorge et al., 2015]. Specifically, one robot grasps the pen and poses it on a mobile
platform from which the user is supposed to pick the pen up. Further, non-official extensions
of the standard have emerged along the last years. In this section, we give a flavor of some of
those extensions and how their use enhances robots’ autonomy.

OROSU An Ontology for Robotic Orthopedic Surgery (OROSU) [Gonçalves and Torres, 2015]
was developed and then applied for hip resurfacing surgery (e.g., for trimming the femoral
head). In this scope, the main goal of the research, related to ontologies, was to build a
knowledge-based framework for this surgical scenario, along with a formal definition of
components and actions to be performed during the surgery. The developed ontology10 was

9https://github.com/srfiorini/IEEE1872-owl
10https://github.com/pbsgoncalves/OROSU

https://github.com/srfiorini/IEEE1872-owl
https://github.com/pbsgoncalves/OROSU


B.2 Ontologies to support robot autonomy 175

partially based on the 1872–2015 – IEEE Standard Ontologies for Robotics and
Automation [Schlenoff et al., 2012]. The work was developed under the HIPROB and ECHORD
projects, funded by the Portuguese Science Foundation and the EU-FP7, respectively. The
framework is among the first to integrate robotic ontologies in the domain of surgical robotics.

The application ontology OROSU, relies on SNOMED CT [Wang et al., 2002], the CORA
ontology [Schlenoff et al., 2012] and the KnowRob framework [Tenorth and Beetz, 2013], which
were adopted as the upper and reference ontologies. The formal language used to write the
ontology was OWL.

It is partially accessible, but it would be desired to have more available material. Indeed,
the ontology lacks of natural language definitions, what makes more difficult to understand the
specific meaning of the terms. Moreover, the system seems not to have been used by other
researchers apart from the developers.

PMK Perception and Manipulation Knowledge (PMK) [Diab et al., 2019] is a
knowledge-based reasoning framework that includes some reasoning processes for
autonomous robots to enhance Task and Motion Planning (TAMP) capabilities in the
manipulation domain. A perception module can be integrated with the framework to capture a
rich semantic description of the scene, knowledge about the physical behavior of the objects,
and reasoning about the potential manipulation actions. The reasoning scope of PMK is divided
into four parts: reasoning for perception, the reasoning for object features, the reasoning for a
situation, and reasoning for planning.

PMK follows the preliminary structure of modeling of OUR-K, which divide the knowledge
into three gradual layers called, meta-ontology, ontology-schema, and ontology instance [Lim
et al., 2011]. PMK enlarged the OUR-K structure by adding some concepts11 related to the
manipulation domain. Moreover, aiming at being shared and reused, PMK ontology relies on
other upper and reference/domain ontologies: SUMO [Niles and Pease, 2001] and
CORA [Schlenoff et al., 2012].

PMK is meant facilitate the process of manipulation by providing the required components
for task and motion planning such as geometric reasoning, dynamic interactions, manipulation
and action constraints. The use of PMK could become useful in the domain of robotic
manipulation, however, since the system has been recently published, it has not yet been
widely extended among other researchers.

PMK was implemented using ontology web language (OWL). Ontology instances can be
asserted using information processed from low-level sensory data. Queries over the PMK are
based on SWI-Prolog and its Semantic Web library, which serves for loading and accessing
ontologies represented in the OWL using Prolog predicates.

ORO

ORO12 is a project focused on the implementation of a common representation framework for
autonomous robots with special emphasizes on human-robot interaction [Lemaignan et al.,
2010]. The proposed framework was meant to enhance robot’s interaction with complex and

11https://github.com/MohammedDiab1/PMK
12https://www.openrobots.org/wiki/oro-server/

https://github.com/MohammedDiab1/PMK
https://www.openrobots.org/wiki/oro-server/
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human-inhabited environments, were robots are expected to exhibit advanced cognitive skills,
such as: object recognition, natural language interaction, task planning with possible dynamic
re-planning, ability to cooperate with other robots or humans, etc. The authors stated that,
these functions, partially independent from each other, need to share common knowledge of
the environment where the robot operates.

The ORO’s primary component is the OpenRobots Common Sense Ontology13, which precisely
provides an upper set of concepts upon which the robot can add and connect new statements of
the world [Lemaignan et al., 2010]. This ontology is built upon the OpenCyc upper ontology14.
The knowledge core15 ontology is a lightweight version of the ORO ontology, which shares the
same objective and functionality as its predecessor.

ORO is mainly written in Java, while, knowledge core, its lightweight version, is based on
Python. The underlying RDF triples storage is done using the open-source Jena framework,
which is used together with the Pellet [Sirin et al., 2007] reasoner. ORO provides several wiki
pages with detailed explanations of how to use it16 and how to extend it17. In addition, the
OWL file contains some natural language definitions, which facilitates the understanding of the
ontology.

CARESSES

CARESSES18 is an international research project whose goal is to design the first robots that
can assist older people and adapt to the culture of the individual they are taking care of [Bruno
et al., 2019a], [Bruno et al., 2017]. The robots are expected to help the users in many ways
including reminding them to take their medication, encouraging them to keep active, helping
them keep in touch with family and friends. Each action should be performed with attention to
the older person’s customs, cultural practices and individual preferences.

CARESSES’s principle aim is built upon four fundamental backbones: (a) transcultural
robotic nursing, (b) cultural knowledge representation, (c) culturally sensitive planning and
execution and (d) culture-aware human-robot interaction. Cultural knowledge, mainly
represented using ontologies, enhances the robotic nursing integrating that knowledge into
most of the robot processes (e.g. task planning, task execution, human-robot interaction, etc.).
Nevertheless, other methodologies such as fuzzy logic and Bayesian networks, are also
employed.

The knowledge based proposed within CARESSES consists of three layers: TBox, CBox and
PBox. The former is the usual TBox found in any ontology, containing the statements which
describe a conceptualization of the domain by defining different sets of individuals described in
terms of their characteristics. The second and third layer stand for the usual ABox, which include
TBox-compliant statements about individuals belonging to these sets. In this case, in the CBox
the statements are related to cultural knowledge while in the PBox the knowledge is about one
single person. As it is structured, the knowledge base aims at enhancing the robot adaptation to

13https://www.openrobots.org/wiki/oro-ontology
14http://www.opencyc.org/
15https://github.com/severin-lemaignan/knowledge_core
16https://www.openrobots.org/wiki/oro-server-bindings
17https://www.openrobots.org/wiki/oro-server-plugins
18http://caressesrobot.org/en/

https://www.openrobots.org/wiki/oro-ontology
http://www.opencyc.org/
https://github.com/severin-lemaignan/knowledge_core
https://www.openrobots.org/wiki/oro-server-bindings
https://www.openrobots.org/wiki/oro-server-plugins
http://caressesrobot.org/en/
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different cultural elderly people but also to the specific preferences of each individual.
Despite the short life of CARESSES, it has become a prominent application example of how

ontologies could enhance the autonomy of robots. Nonetheless, the project still presents some
drawbacks. For instance, not all of the implemented solutions are publicly available19. On
the other hand, the ontology’s quality is questionable. In the first place, the OWL file lacks of
natural language definitions, which hinders the understanding of it. In the second place, some
of the entities seem not to be properly defined in a taxonomic view (e.g. event and object are
sub-classes of an entity named topic, defined as any topic the robot can talk about). Lastly, we
would like to discuss the scalability of this approach, which opens some controversial issues.
While being a reasonable way of inferring advantageous information of users’ preferences, the
proposed usage of cultural knowledge, at bigger scale, might result in robots with a strong
bias. Depending on the context, users would probably prefer not to feel they are being prejudge
(sometimes unfairly) by a robot.

B.2.3 Excluded frameworks/projects

In this section, we give a flavor of some projects which, while having been considered for our
analysis, were discarded following our inclusion criteria (see Section B.2.1). Table B.1 shows
which of the criteria are met or not by these projects.

Inclusion Criterion RoboBrain OMRKF OUR-K REHABROBO

1 Ontology scope no yes yes -
2 Reasoning scope no yes yes no
3 Transparency yes no no yes
4 Curation no no no yes
5 Accessibility yes no no no

Table B.1: Inclusion criteria applied to some excluded projects. yes indicates that the criterion is
met, no that it is not met, and - is written when it is unknown.

RoboBrain RoboBrain20 releases on the Web a huge robot knowledge base where robots can
share their experiences and learn [Saxena et al., 2015]. RoboBrain is a large-scale
computational system that learns from publicly available Internet resources (e.g., Wikipedia,
WordNet, ImageNet, Freebase, OpenCyc), computer simulations, and real-life robot trials. The
knowledge is represented in a graph with thousand of nodes and edges. This project presents a
relevant effort towards the use of knowledge in robotics and it is continuously maintained.
Nonetheless, the developed framework does not use, nor it seems it is planned to start doing it,
a concrete formalization of the knowledge based on ontologies, which makes it eligible to be
excluded from our analysis.

OMRKF Ontology-based Multi-layered Robot Knowledge Framework (OMRKF) [Suh et al.,
2007], aims at enhancing robots intelligence by integrating low-level data with high-level

19https://github.com/Suman7495/Robot-Navigation-for-Vision-Based-HAR
20http://robobrain.me/index.html

https://github.com/Suman7495/Robot-Navigation-for-Vision-Based-HAR
http://robobrain.me/index.html
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knowledge into the same framework. OMRKF has four levels of knowledge, each of them split
into three levels: (a) model (object feature, object and space); (b) context (spatial, temporal
and high-level); (c) perception (numerical descriptor, visual feature and visual concept); and
(d) activity (behavior, task and service). In this context, knowledge representation helps robots
to execute sequenced behaviors by just specifying the high level service and also how the robot
can recognize objects even when the knowledge is not complete. This system means a good
effort towards cognitive autonomous robots. However, it has not been possible to find any
available material nor enough documentation, hence, the project is excluded.

OUR-K Ontology-based Unified Robot Knowledge (OUR-K) is a framework that integrates
low-level data with high-level knowledge for robot intelligence in service robotics
scenarios [Lim et al., 2011]. It seems to be an extension of OMRKF, because they share some
similarities and authors. The framework consist of three parts: (a) knowledge description, (b)
knowledge association, and (c) application. The former takes care of the representation of
knowledge (low-level data and high-level knowledge) by using five classes of entities: features,
objects, spaces, contexts and actions. Knowledge association specifies the relationships
between different descriptions allowing several inference methods (logics, bayesian inference,
heuristics). Finally, the descriptions and their relationships are used in several applications:
navigation, action selection, object recognition, context awareness, planning and object
manipulation. Lim [Lim, 2019], presents how OUR-K is used in some case studies where the
knowledge the robot holds is incomplete. This framework seems to be beneficial to our domain
and it could have been included in our analysis if it were not for the absence of available
resources. None the ontology nor the framework have been found in public repositories.

REHABROBO REHABROBO-QUERY [Dogmus et al., 2019] is a web based software which
allows robot designers to add, modify and consult information about their rehabilitation robots.
This information is stored using a the formal ontology REHABROBO-ONTO [Dogmus et al.,
2015]. The whole system is available on the cloud, utilizing Amazon EC2. The whole framework
turns into a useful tool when your intention is to store/consult descriptions of rehabilitation
robots (e.g. robot parts, capabilities, etc.). Nevertheless, it remains unclear how this system
could be utilized to equip robots with autonomy, indeed, the system has not been used to solve
any of the reasoning problems proposed in Section 2.3.2. Moreover, there is no simple way of
accessing to the OWL file of the ontology and the Amazon server they use is not fully free. It
was decided then, not to include this work in our analysis.



appendixC
Pilot study questionnaire

In Chapter 6, the quality of information measurement discussed by Lee et al. [Lee et al., 2002]
was used to evaluate the narratives. They presented a model for Information Quality, a
questionnaire to measure it, and analysis techniques to interpret the measures. We used one of
the quadrants of their model and its relative questionnaire: usefulness. It aims to assess
whether or not the information is relevant to the user’s task, in our case, the ‘new operator
training task’. In particular, usefulness was measured through five dimensions: appropriate
amount, relevancy, understandability, interpretability, and objectivity. For each dimension, a set
of questions had to be evaluated using an 11-point Likert scale ranging from completely
disagree (0) to completely agree (10). Note that the points of items labeled with ‘(R)’ shall be
reversed, and that we also added some qualitative measures to the questionnaire in the form of
four open questions.

C.1 Quantitative measures

C.1.1 Appropriate Amount

(4 items, Cronbach’s Alpha = .76)

- This information is of sufficient volume for our needs.

- The amount of information does not match our needs. (R)

- The amount of information is not sufficient for our needs. (R)

- The amount of information is neither too much nor too little.
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C.1.2 Relevancy

(4 items, Cronbach’s Alpha = .94)

- This information is useful to our work.

- This information is relevant to our work.

- This information is appropriate for our work.

- This information is applicable to our work.

C.1.3 Understandability

(4 items, Cronbach’s Alpha = .90)

- This information is easy to understand.

- The meaning of this information is difficult to understand. (R)

- This information is easy to comprehend.

- The meaning of this information is easy to understand.

C.1.4 Interpretability

(5 items, Cronbach’s Alpha = .77)

- It is easy to interpret what this information means.

- This information is difficult to interpret. (R)

- It is difficult to interpret the coded information. (R)

- This information is easily interpretable.

- The measurement units for this information are clear.

C.1.5 Objectivity

(4 items, Cronbach’s Alpha = .72)

- This information was objectively collected.

- This information is based on facts.

- This information is objective.

- This information presents an impartial view.
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C.2 Qualitative measures

1. Imagine that you are asked to collaborate with the real robot. This includes to understand
the robot’s plan adaptations and the collaborative goal and plan. Do you believe that a
video without explanations can be enough to prepare and train you to collaborate with
the robot? (Y/N) Please, explain your answer.

2. Continue imagining that you are asked to collaborate with the real robot. Do you think
that the textual explanations have helped you to be prepared for the different situations
that you can face during the collaboration? (Y/N) Please, explain your answer.

3. Now imagine that when an explanation has something in common with a previous
explanation, you receive a summarized explanation. Would you prefer a summarized
(shorter) explanation or a complete (longer) one that is more informative but repeats
some information? (Summarized/Complete) Please, explain your answer.

4. Think for a moment that you can select the content of the explanations about the plan
adaptations and the collaborations. Which content would you choose so that you could
better learn to collaborate with the robot?





appendixD
Additional explanatory narratives

This appendix includes the automatically generated narrative of each of the robot experiences
used in Chapter 6 for the evaluation with users. The narratives were constructed with specificity
level 3, which also includes the result of levels 1 (red) and 2 (blue).

D.1 Event 28

An example of collaboration, the shared goal was to have a full board with tokens with odd
numbers. The narrative is:

‘Event_28’ is a type of ‘Collaboration’ from 300.0 to 340.0 and is classified by ‘Collaboration Class’ and has
quality ‘Current Risk Of Collision’ and has participant ‘Human and Robot’ and executes plan ‘Place Tokens With
Odd Numbers’ and has location ‘pm Lab’. ‘Current Risk Of Collision’ is a type of ‘Collaboration Risk’ and has
data value ‘Low Risk’ from 300.0 to 312.0 and has data value ‘Low Risk’ from 314.0 to 340.0 and has data value
‘Medium Risk’ from 312.0 to 314.0. ‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal ‘Full
Board With Tokens With Odd Numbers’ and has plan ‘Place Tokens With Odd Numbers’. ‘Robot’ is a type of
‘Physical Agent’ from 1.0 to 1000.0 and has plan ‘Place Tokens With Odd Numbers’ and has goal ‘Full Board
With Tokens With Odd Numbers’. ‘Place Tokens With Odd Numbers’ is a type of ‘Plan’ from 1.0 to 1000.0 and
has component ‘Full Board With Tokens With Odd Numbers’. ‘Collaboration Class’ is a type of ‘Indirectly Physical
Collaboration’. ‘pm Lab’ is a type of ‘Collaboration Place’ from 1.0 to 1000.0.

D.2 Event 30

An example of collaboration, the shared goal was to have a full board with tokens in ascending
order. The narrative is:
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‘Event_30’ is a type of ‘Collaboration’ from 400.0 to 440.0 and is classified by ‘Collaboration Class’ and has
quality ‘Current Risk Of Collision’ and has participant ‘Human and Robot’ and executes plan ‘Place Tokens In
Ascending Order’ and has location ‘pm Lab’. ‘Current Risk Of Collision’ is a type of ‘Collaboration Risk’ and has
data value ‘Low Risk’ from 400.0 to 432.0 and has data value ‘Low Risk’ from 436.0 to 440.0 and has data value
‘Medium Risk’ from 432.0 to 436.0. ‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal ‘Full
Board With Tokens In Ascending Order’ and has plan ‘Place Tokens In Ascending Order’. ‘Robot’ is a type of
‘Physical Agent’ from 1.0 to 1000.0 and has plan ‘Place Tokens In Ascending Order’ and has goal ‘Full Board
With Tokens In Ascending Order’. ‘Place Tokens In Ascending Order’ is a type of ‘Plan’ from 1.0 to 1000.0 and
has component ‘Full Board With Tokens In Ascending Order’. ‘Collaboration Class’ is a type of ‘Indirectly Physical
Collaboration’. ‘pm Lab’ is a type of ‘Collaboration Place’ from 1.0 to 1000.0.

D.3 Event 33

An example of collaboration, the shared goal was to have a full board with tokens by color in
columns. The narrative is:

‘Event_33’ is a type of ‘Collaboration’ from 500.0 to 542.0 and is classified by ‘Collaboration Class’ and has
quality ‘Current Risk Of Collision’ and has participant ‘Human and Robot’ and executes plan ‘Place Tokens In
Columns By Color’ and has location ‘pm Lab’. ‘Current Risk Of Collision’ is a type of ‘Collaboration Risk’ and has
data value ‘Low Risk’ from 500.0 to 508.0 and has data value ‘Low Risk’ from 510.0 to 542.0 and has data value
‘Medium Risk’ from 508.0 to 510.0. ‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal ‘Full
Board With Tokens In Columns By Color’ and has plan ‘Place Tokens In Columns By Color’. ‘Robot’ is a type of
‘Physical Agent’ from 1.0 to 1000.0 and has plan ‘Place Tokens In Columns By Color’ and has goal ‘Full Board
With Tokens In Columns By Color’. ‘Place Tokens In Columns By Color’ is a type of ‘Plan’ from 1.0 to 1000.0
and has component ‘Full Board With Tokens In Columns By Color’. ‘Collaboration Class’ is a type of ‘Indirectly
Physical Collaboration’. ‘pm Lab’ is a type of ‘Collaboration Place’ from 1.0 to 1000.0.

D.4 Event 9

An example of non-collaboration, the human stopped participating in the event to start taking
notes. The narrative is:

‘Event_9’ (not) is a type of ‘Collaboration’ and is a type of ‘Event’ from 1.0 to 41.0 and executes plan ‘Place
Tokens In Columns By Color’ and has participant ‘Robot’ and (not) has participant ‘Human’. ‘Place Tokens In
Columns By Color’ is a type of ‘Plan’ from 1.0 to 1000.0 and has component ‘Full Board With Tokens In Columns
By Color’ and is plan of ‘Human and Robot’. ‘Robot’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal
‘Full Board With Tokens In Columns By Color’. ‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has
goal ‘Full Board With Tokens In Columns By Color’.
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D.5 Event 15

An example of non-collaboration, the human stopped participating in the event to leave the
workspace. The narrative is:

‘Event_15’ (not) is a type of ‘Collaboration’ and is a type of ‘Event’ from 100.0 to 142.0 and executes plan ‘Place
Tokens In Columns By Color’ and has participant ‘Robot’ and (not) has participant ‘Human’. ‘Place Tokens In
Columns By Color’ is a type of ‘Plan’ from 1.0 to 1000.0 and has component ‘Full Board With Tokens In Columns
By Color’ and is plan of ‘Robot and Human’. ‘Robot’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal
‘Full Board With Tokens In Columns By Color’. ‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has
goal ‘Full Board With Tokens In Columns By Color’.

D.6 Event 27

An example of non-collaboration, the human stopped executing the shared plan (filling in
ascending order) to start executing a different plan (filling by colors in columns). The narrative
is:

‘Event_27’ (not) is a type of ‘Collaboration’ and is a type of ‘Event’ from 200.0 to 240.0 and has participant
‘Human and Robot’ and executes plan ‘Place Tokens In Ascending Order and Place Tokens In Columns By Color’.
‘Human’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal ‘Full Board With Tokens In Columns By
Color’ and has plan ‘Place Tokens In Columns By Color’ and (not) has plan ‘Place Tokens In Ascending Order’
and (not) has goal ‘Full Board With Tokens In Ascending Order’. ‘Robot’ is a type of ‘Physical Agent’ from 1.0
to 1000.0 and has plan ‘Place Tokens In Ascending Order’ and has goal ‘Full Board With Tokens In Ascending
Order’. ‘Place Tokens In Ascending Order’ is a type of ‘Plan’ from 1.0 to 1000.0 and has component ‘Full Board
With Tokens In Ascending Order’. ‘Place Tokens In Columns By Color’ is a type of ‘Plan’ from 1.0 to 1000.0 and
has component ‘Full Board With Tokens In Columns By Color’.

D.7 Event 39

An example of plan adaptation, the robot issued a safety stop due to a high risk of collision. The
narrative is:



186 Additional explanatory narratives

‘Event_39’ is a type of ‘Plan Adaptation’ from 600.0 to 613.0 and has part ‘Execution Of Place Token On
Compartment19’ from 600.0 to 607.0 and has part ‘Execution Of Stop Until Human Command’ from 607.5
to 613.0 and has participant ‘Robot’. ‘Execution Of Stop Until Human Command’ is a type of ‘Event’ from 607.5
to 613.0 and is postcondition of ‘High Collision Risk’ from 607.5 to 613.0 and has participant ‘Robot’ from
607.5 to 613.0 and executes plan ‘Stop Until Human Command’ from 607.5 to 613.0 and (not) executes plan
‘Place Token On Compartment19’ from 607.5 to 613.0. ‘Robot’ is a type of ‘Physical Agent’ from 1.0 to 1000.0
and has goal ‘Full Board With Tokens In Columns By Color’ from 600.0 to 649.0 and has plan ‘Place Token On
Compartment19’ from 600.0 to 607.0 and has plan ‘Place Tokens In Columns By Color’ from 600.0 to 649.0 and
has plan ‘Stop Until Human Command’ from 607.5 to 613.0. ‘Execution Of Place Token On Compartment19’ is a
type of ‘Event’ from 600.0 to 607.0 and is precondition of ‘High Collision Risk’ from 607.0 to 613.0 and executes
plan ‘Place Token On Compartment19’ from 600.0 to 607.0 and has participant ‘Robot’ from 600.0 to 607.0.
‘Event_38’ has participant ‘Robot’ from 600.0 to 649.0.

D.8 Event 43

An example of plan adaptation, the robot discarded the token to the trash because the number
on the token was too small according to the current tokens on the board. The human has placed
a token on the board that triggered the adaptation. The narrative is:

‘Event_43’ is a type of ‘Plan Adaptation’ from 650.0 to 665.0 and has part ‘Execution Of Place Token On
Compartment20’ from 650.0 to 658.0 and has part ‘Execution Of Place Token On Trash’ from 658.5 to 665.0
and has participant ‘Robot’. ‘Execution Of Place Token On Trash’ is a type of ‘Event’ from 658.5 to 665.0 and
executes plan ‘Place Token On Trash’ from 658.5 to 665.0 and has participant ‘Robot’ from 658.5 to 665.0 and
is postcondition of ‘Token Number Is Too Small’ from 658.5 to 665.0 and (not) executes plan ‘Place Token On
Compartment20’ from 658.5 to 665.0. ‘Robot’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal ‘Full
Board With Tokens In Descending Order’ from 650.0 to 699.0 and has plan ‘Place Token On Compartment20’
from 650.0 to 658.0 and has plan ‘Place Token On Trash’ from 658.5 to 665.0 and has plan ‘Place Tokens In
Descending Order’ from 650.0 to 699.0. ‘Execution Of Place Token On Compartment20’ is a type of ‘Event’ from
650.0 to 658.0 and executes plan ‘Place Token On Compartment20’ from 650.0 to 658.0 and has participant
‘Robot’ from 650.0 to 658.0 and is precondition of ‘Token Number Is Too Small’ from 658.0 to 665.0. ‘Event_42’
has participant ‘Robot’ from 650.0 to 699.0.

D.9 Event 49

An example of plan adaptation, the robot changed its target compartment because the human
filled it. The narrative is:
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‘Event_49’ is a type of ‘Plan Adaptation’ from 700.0 to 715.0 and has part ‘Execution Of Place Token On
Compartment15’ from 707.5 to 715.0 and has part ‘Execution Of Place Token On Compartment19’ from 700.0
to 707.0 and has participant ‘Robot’. ‘Execution Of Place Token On Compartment15’ is a type of ‘Event’ from
707.5 to 715.0 and executes plan ‘Place Token On Compartment15’ from 707.5 to 715.0 and has participant
‘Robot’ from 707.5 to 715.0 and is postcondition of ‘Target Compartment Is Full’ from 707.5 to 715.0 and (not)
executes plan ‘Place Token On Compartment19’ from 707.5 to 715.0. ‘Robot’ is a type of ‘Physical Agent’ from 1.0
to 1000.0 and has goal ‘Full Board With Tokens In Quadrants By Color’ from 700.0 to 749.0 and has plan ‘Place
Token On Compartment15’ from 707.5 to 715.0 and has plan ‘Place Token On Compartment19’ from 700.0 to
707.0 and has plan ‘Place Tokens In Quadrants By Color’ from 700.0 to 749.0. ‘Execution Of Place Token On
Compartment19’ is a type of ‘Event’ from 700.0 to 707.0 and executes plan ‘Place Token On Compartment19’
from 700.0 to 707.0 and has participant ‘Robot’ from 700.0 to 707.0 and is precondition of ‘Target Compartment
Is Full’ from 707.0 to 715.0. ‘Event_48’ has participant ‘Robot’ from 700.0 to 749.0.

D.10 Event 51

An example of plan adaptation, the robot placed the token on the auxiliary pile for later use
because the target compartment is busy with an incorrect token. Note that the human is
expected to pick and place the incorrectly placed token (freeing the compartment) because the
robot cannot reach the pose where it should go. The narrative is:

‘Event_51’ is a type of ‘Plan Adaptation’ from 750.0 to 763.5 and has part ‘Execution Of Place Token On Auxiliar
Pile’ from 757.5 to 763.5 and has part ‘Execution Of Place Token On Compartment19’ from 750.0 to 757.0 and
has participant ‘Robot’. ‘Execution Of Place Token On Auxiliar Pile’ is a type of ‘Event’ from 757.5 to 763.5 and
executes plan ‘Place Token On Auxiliar Pile’ from 757.5 to 763.5 and has participant ‘Robot’ from 757.5 to 763.5
and is postcondition of ‘Target Color Is Full With Wrong Token’ from 757.5 to 763.5 and (not) executes plan
‘Place Token On Compartment19’ from 757.5 to 763.5. ‘Robot’ is a type of ‘Physical Agent’ from 1.0 to 1000.0
and has goal ‘Full Board With Tokens In Quadrants By Color’ from 750.0 to 799.0 and has plan ‘Place Token On
Auxiliar Pile’ from 757.5 to 763.5 and has plan ‘Place Token On Compartment19’ from 750.0 to 757.0 and has
plan ‘Place Tokens In Quadrants By Color’ from 750.0 to 799.0. ‘Execution Of Place Token On Compartment19’
is a type of ‘Event’ from 750.0 to 757.0 and executes plan ‘Place Token On Compartment19’ from 750.0 to 757.0
and has participant ‘Robot’ from 750.0 to 757.0 and is precondition of ‘Target Color Is Full With Wrong Token’
from 757.0 to 763.5. ‘Event_50’ has participant ‘Robot’ from 750.0 to 799.0.

D.11 Event 59

An example of plan adaptation, the robot discarded the held token to the trash because the
number on the token was too large according to the current tokens on the board. The narrative
is:
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‘Event_59’ is a type of ‘Plan Adaptation’ from 800.0 to 820.0 and has part ‘Execution Of Place Token On
Compartment20’ from 800.0 to 812.0 and has part ‘Execution Of Place Token On Trash’ from 812.5 to 820.0
and has participant ’Robot’. ‘Execution Of Place Token On Trash’ is a type of ‘Event’ from 812.5 to 820.0 and
executes plan ‘Place Token On Trash’ from 812.5 to 820.0 and has participant ‘Robot’ from 812.5 to 820.0 and
is postcondition of ‘Token Number Is Too High’ from 812.5 to 820.0 and (not) executes plan ‘Place Token On
Compartment20’ from 812.5 to 820.0. ‘Robot’ is a type of ‘Physical Agent’ from 1.0 to 1000.0 and has goal ‘Full
Board With Tokens In Descending Order’ from 800.0 to 849.0 and has plan ‘Place Token On Compartment20’
from 800.0 to 812.0 and has plan ‘Place Token On Trash’ from 812.5 to 820.0 and has plan ‘Place Tokens In
Descending Order’ from 800.0 to 849.0. ‘Execution Of Place Token On Compartment20’ is a type of ‘Event’ from
800.0 to 812.0 and executes plan ‘Place Token On Compartment20’ from 800.0 to 812.0 and has participant
‘Robot’ from 800.0 to 812.0 and is precondition of ‘Token Number Is Too High’ from 812.0 to 820.0. ‘Event_58’
has participant ‘Robot’ from 800.0 to 849.0.

D.12 Event 63

An example of plan adaptation, the robot changed its target compartment because the human
filled it. The narrative is:
‘Event_63’ is a type of ‘Plan Adaptation’ from 850.0 to 868.0 and has part ‘Execution Of Place Token On
Compartment18’ from 850.0 to 858.0 and has part ‘Execution Of Place Token On Compartment19’ from 858.5
to 868.0 and has participant ‘Robot’. ‘Execution Of Place Token On Compartment19’ is a type of ‘Event’ from
858.5 to 868.0 and executes plan ‘Place Token On Compartment19’ from 858.5 to 868.0 and has participant
‘Robot’ from 858.5 to 868.0 and is postcondition of ‘Target Compartment Is Full’ from 858.5 to 868.0 and (not)
executes plan ‘Place Token On Compartment18’ from 858.5 to 868.0. ‘Robot’ is a type of ‘Physical Agent’ from
1.0 to 1000.0 and has goal ‘Full Board With Tokens In Descending Order’ from 850.0 to 899.0 and has plan
‘Place Token On Compartment18’ from 850.0 to 858.0 and has plan ‘Place Token On Compartment19’ from
858.5 to 868.0 and has plan ‘Place Tokens In Descending Order’ from 850.0 to 899.0. ‘Execution Of Place Token
On Compartment18’ is a type of ‘Event’ from 850.0 to 858.0 and executes plan ‘Place Token On Compartment18’
from 850.0 to 858.0 and has participant ‘Robot’ from 850.0 to 858.0 and is precondition of ‘Target Compartment
Is Full’ from 858.0 to 868.0. ‘Event_62’ has participant ‘Robot’ from 850.0 to 899.0.



Bibliography

[2021/0106(COD), 2024] 2021/0106(COD) (2024). Proposal for a Regulation of the European
Parliament and of the Council laying down harmonised rules on artificial intelligence
(Artificial Intelligence Act) and amending certain Union legislative acts - Analysis of the
final compromise text with a view to agreement. Technical report, European Commission.
(Cited on p. 4)

[Ajoudani et al., 2018] Ajoudani, A., Zanchettin, A. M., Ivaldi, S., Albu-Schäffer, A., Kosuge,
K., and Khatib, O. (2018). Progress and prospects of the human–robot collaboration.
Autonomous Robots, 42(5):957–975. (Cited on p. 89, 90)

[Alenyà et al., 2009] Alenyà, G., Nègre, A., and Crowley, J. L. (2009). A comparison of three
methods for measure of time to contact. In 2009 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 4565–4570. (Cited on p. 67)

[Androutsopoulos et al., 2013] Androutsopoulos, I., Lampouras, G., and Galanis, D. (2013).
Generating natural language descriptions from owl ontologies: the naturalowl system.
Journal of Artificial Intelligence Research, 48:671–715. (Cited on p. 112)

[Anjomshoae et al., 2019] Anjomshoae, S., Najjar, A., Calvaresi, D., and Främling, K. (2019).
Explainable agents and robots: Results from a systematic literature review. In Proceedings
of the 18th International Conference on Autonomous Agents and MultiAgent Systems, page
1078–1088. International Foundation for Autonomous Agents and Multiagent Systems.
(Cited on p. 5, 110)

[Arp et al., 2015] Arp, R., Smith, B., and Spear, A. D. (2015). Building Ontologies with Basic
Formal Ontology. MIT Press. (Cited on p. 19)

[Bagnall et al., 2017] Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017).
The great time series classification bake off: a review and experimental evaluation of
recent algorithmic advances. Data Mining and Knowledge Discovery, 31(3):606–660.
(Cited on p. 48)

[Balakirsky, 2015] Balakirsky, S. (2015). Ontology based action planning and verification
for agile manufacturing. Robotics and Computer-Integrated Manufacturing, 33:21 – 28.
(Cited on p. 86, 112)

[Balakirsky et al., 2017] Balakirsky, S., Schlenoff, C., Rama Fiorini, S., Redfield, S., Barreto, M.,
Nakawala, H., Carbonera, J. L., Soldatova, L., Bermejo-Alonso, J., Maikore, F., Goncalves, P.



190 BIBLIOGRAPHY

J. S., De Momi, E., Sampath Kumar, V. R., and Haidegger, T. (2017). Towards a Robot Task
Ontology Standard. In Proceedings of the ASME 2017 12th International Manufacturing Science
and Engineering Conference, volume Volume 3: Manufacturing Equipment and Systems, page
V003T04A049. (Cited on p. 163)

[Barandiaran and Moreno, 2008] Barandiaran, X. and Moreno, A. (2008). Adaptivity: From
metabolism to behavior. Adaptive Behavior, 16(5):325–344. (Cited on p. 93)

[Barandiaran et al., 2009] Barandiaran, X. E., Paolo, E. D., and Rohde, M. (2009). Defining
agency: Individuality, normativity, asymmetry, and spatio-temporality in action. Adaptive
Behavior, 17(5):367–386. (Cited on p. 93)

[Barreiro et al., 2009] Barreiro, J., Jones, G., and Schaffer, S. (2009). Peer-to-peer planning for
space mission control. In 2009 IEEE Aerospace conference, pages 1–9. (Cited on p. 147)

[Bartels et al., 2019] Bartels, G., Beßler, D., and Beetz, M. (2019). Episodic memories for safety-
aware robots. KI - Künstliche Intelligenz, 33(2):123–130. (Cited on p. 112)

[Bastianelli et al., 2014] Bastianelli, E., Castellucci, G., Croce, D., Iocchi, L., Basili, R., and
Nardi, D. (2014). HuRIC: a human robot interaction corpus. In Calzolari, N., Choukri, K.,
Declerck, T., Loftsson, H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J., and Piperidis,
S., editors, Proceedings of the 9th International Conference on Language Resources and
Evaluation (LREC), pages 4519–4526. European Language Resources Association (ELRA).
(Cited on p. 41)

[Bateman et al., 2018] Bateman, J., Beetz, M., Beßler, D., Bozcuoğlu, A. K., and Pomarlan,
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A. K., and Bartels, G. (2018). Know rob 2.0 — a 2nd generation knowledge
processing framework for cognition-enabled robotic agents. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 512–519.
(Cited on p. 29, 34, 86, 87, 98, 110, 112, 113, 124, 137, 140, 172)

[Beetz et al., 2020] Beetz, M., Beßler, D., Koralewski, S., Pomarlan, M., Vyas, A.,
Hawkin, A., Dhanabalachandran, K., and Jongebloed, S. (2020). Neem handbook.
[online], Institute for Artificial Intelligence (IAI), University of Bremen. https://ease-
crc.github.io/soma/owl/current/NEEM-Handbook.pdf. (Cited on p. 114)

[Beetz et al., 2016] Beetz, M., Beßler, D., Winkler, J., Worch, J.-H., Bálint-Benczédi, F., Bartels,
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[Bozcuoğlu et al., 2019] Bozcuoğlu, A. K., Furuta, Y., Okada, K., Beetz, M., and Inaba, M.
(2019). Continuous modeling of affordances in a symbolic knowledge base. In 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 5452–
5458. (Cited on p. 112)

[Brooks, 1991] Brooks, R. A. (1991). Intelligence without representation. Artificial Intelligence,
47(1):139–159. (Cited on p. 163)

[Bruno et al., 2017] Bruno, B., Chong, N. Y., Kamide, H., Kanoria, S., Lee, J., Lim, Y., Pandey,
A. K., Papadopoulos, C., Papadopoulos, I., Pecora, F., Saffiotti, A., and Sgorbissa, A. (2017).
Paving the way for culturally competent robots: A position paper. In 26th IEEE International
Symposium on Robot and Human Interactive Communication (RO-MAN), pages 553–560.
(Cited on p. 176)

[Bruno et al., 2019a] Bruno, B., Chong, N. Y., Kamide, H., Kanoria, S., Lee, J., Lim, Y., Pandey,
A. K., Papadopoulos, C., Papadopoulos, I., Pecora, F., Saffiotti, A., and Sgorbissa, A. (2019a).



BIBLIOGRAPHY 193

The caresses eu-japan project: Making assistive robots culturally competent. In Casiddu, N.,
Porfirione, C., Monteriù, A., and Cavallo, F., editors, 2017 Italian Forum of Ambient Assisted
Living, pages 151–169. Springer International Publishing. (Cited on p. 86, 112, 170, 176)

[Bruno et al., 2018] Bruno, B., Menicatti, R., Recchiuto, C. T., Lagrue, E., Pandey, A. K.,
and Sgorbissa, A. (2018). Culturally-competent human-robot verbal interaction. In 15th
International Conference on Ubiquitous Robots (UR), pages 388–395. (Cited on p. 29, 33)

[Bruno et al., 2019b] Bruno, B., Recchiuto, C. T., Papadopoulos, I., Saffiotti, A., Koulouglioti,
C., Menicatti, R., Mastrogiovanni, F., Zaccaria, R., and Sgorbissa, A. (2019b). Knowledge
representation for culturally competent personal robots: Requirements, design principles,
implementation, and assessment. International Journal of Social Robotics, 11(3):515–538.
(Cited on p. 29, 30, 32, 33)

[Buehler and Pagnucco, 2014] Buehler, J. and Pagnucco, M. (2014). A framework for task
planning in heterogeneous multi robot systems based on robot capabilities. Proceedings of
the AAAI Conference on Artificial Intelligence, 28(1). (Cited on p. 164)

[Burkart and Huber, 2021] Burkart, N. and Huber, M. F. (2021). A survey on the explainability
of supervised machine learning. Journal of Artificial Intelligence Research, 70:245–317.
(Cited on p. 5)

[Byner et al., 2019] Byner, C., Matthias, B., and Ding, H. (2019). Dynamic speed and separation
monitoring for collaborative robot applications – concepts and performance. Robotics and
Computer-Integrated Manufacturing, 58:239 – 252. (Cited on p. 66)

[Campomaggiore et al., 2019] Campomaggiore, A., Costanzo, M., Lettera, G., and Natale,
C. (2019). A fuzzy inference approach to control robot speed in human-robot shared
workspaces. In 16th International Conference on Informatics in Control, Automation and
Robotics, ICINCO 2019, volume 2, pages 78–87. SciTePress. (Cited on p. 64, 66, 69)
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” ..no soy nada,
nunca seré nada,
no puedo querer ser nada,
aparte de esto, tengo en mí todos los sueños del mundo..

..(y entre sueños me pregunto) ¿qué puedo saber de lo que
seré, yo que no sé lo que soy? ¿ser lo que pienso?..¡pienso
ser tantas cosas! ¡y hay tantos que piensan ser esas mismas
cosas que no podemos ser tantos!

(aun así)..hoy estoy convencido como si supiese la verdad,
lúcido como si estuviese por morir, y no tuviese más
hermandad con las cosas que la de una despedida..

..¿genio? en este momento cien mil cerebros se creen en
sueños genios como yo y la historia no recordará, ¿quién
sabe?, ni uno..y sólo habrá un muladar para tantas
futuras conquistas..

..no, no creo en mí..¡en tantos manicomios hay tantos locos
con tantas certezas! yo, que no tengo ninguna..¿puedo
estar en lo cierto?..no, en mí no creo..

..ni en mí ni en nada..derrame la naturaleza su sol y su
lluvia sobre mi ardiente cabeza y que su viento me
despeine..¿y después? que venga lo que viniere, o tiene que
venir o no ha de venir..

— Fernando Pessoa
(Fragmentos de «La Tabaquería» y nexos añadidos)
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