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Abstract

This research is focused on the recognition and detection of dynamic objects using lidar data and
image sequences with applications to mobile robotics. Analyzing scene dynamics is a challeng-
ing task because objects not only change appearance, but also become partially or completely
occluded during motion. Moreover moving objects might remain still for large periods of time,
making it difficult to classify them as dynamic or static without scene context. In this work we
will investigate to what extent the use of dense range data, typically coming from lidar sensing
devices, together with image sequences, can be used to improve segmentation, classification,
recognition, and reconstruction tasks of dynamic objects and people in the scene. The fusion
of lidar data and image sequences for recognition and segmentation of dynamic objects will be
demonstrated through improved results for SLAM in highly dynamic scenes, with the added
benefit of accurate 3D reconstruction of the dynamic objects.
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1 Introduction

Scene understanding is fundamental for mobile robotics applications. We mean by scene un-
derstanding, the correct segmentation and recognition of objects classes, people or events in
image and range data sequences. Scene understanding is largely motivated by context, hence
segmentation, recognition and classification of objects, people or events will be largely influ-
enced by the task at hand. In particular, for our cases of interest, mobile robot navigation and
human-robot interaction, scene understanding entails the correct detection and recognition of
dynamic elements in the scene, be these related to the task, or mere peripheral activity that
once detected, can be safely ignored. The ability to remove this peripheral activity from sensor
data will allow us to improve our simultaneous localization and mapping methods [6, 95, 40],
which to a large extent have been devised to work on static data, with few exceptions [5, 32].
Lidar sensing devices provide range measurements to objects in 2d and 3d. If aggregated from
multiple vantage points, these measurements can be used to build rich 3d scene representations.
Lidar scanners are a common sensing alternative for the detection and recognition of objects
and features in three-dimensional scenes [91, 22, 92, 1]. In Figure 1 we show a 3d point cloud,
registered with our custom-built 3d range scanner. The scan has an angular resolution of 0.5
degrees, and shows static as well as dynamic objects in the scene, such as a desk, people, and
mobile robots.
Lidar sensors however, are time-of-flight devices. This is, the range measurements they produce
are computed by measuring the time it takes for an emitted signal to return to the device after
hitting the scene. Typical lidar scanners take 25 millimeters to compute a 2d slice of range
data. The time needed to compute 3d images with this type of sensors may vary from 2 to 20
seconds typically. Computing the scan shown in Figure 1 with such dense resolution, takes 18
seconds. Scene content can vary significantly in that amount of time, and cannot be segmented
or interpreted robustly from one single scan. Our objective is to integrate multiple scans, as
well as image data to correctly recognize and reconstruct the scene.
Camera frame rates on the other hand are much faster, typically at the rate of 25 or 30fps. Us-
ing images to detect motion might improve segmentation and recognition results that otherwise
would be impossible purely from laser data. Cameras however, do not provide range information
directly, but through triangulation from various vantage points. Nonetheless, the accuracy of
distance computation from stereo cannot compete with that of lidar devices. Cameras also pro-
vide richer appearance information on the scene when compared to lidar sensors. This will also
aid in the tasks of identification and recognition [80, 42]. The use of appearance data however,
might also be a problem in dynamic scenes. Illumination changes, cast shadows or reflections
may hinder segmentation and recognition results unless properly addressed. See for instance,
the scene in Figure 2, which shows a typical mobile robotics scenario. Our task is to devise
robust computer vision and data fusion methods that can recognize dynamic objects in these
type of scenarios with unlimited dynamic content.

Thus, our research is focused in the recognition and detection of dynamic objects fusing lidar
data and images. The results of our research will be demonstrated through improved SLAM in
highly dynamic scenes, with the added benefit of accurate 3d reconstruction of dynamic objects.

This document is organized as follows: First, the main objective and methodology are presented.
Then, the state of the art using either lidar data or images is discussed. Thirdly, the proposed
methodology to carry out our research is explained, and our contributions achieved so far are
detailed, together with resources available to run the real experiments. Finally, a detailed work
plan is given, divided in tasks and milestones.
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Figure 1: 3D scan of a typical mobile robotics dynamic indoor scenario.

Figure 2: Indoor dynamic image sequence of a typical mobile robotics scenario.

2 Objective

2.1 Main Objective

The main objective of our research is to contribute with novel object detection and recognition
algorithms for dynamic objects using lidar data and images. Our systems shall work over scenes
with unlimited dynamic content. The detection of dynamic objects will allow improvements in
other tasks such as SLAM, 3d reconstruction of motion, and 3d scene reconstruction.

2.2 Methodology

To achieve our main objective we will solve the following issues:

• Define the classes of objects to be detected. Come up with the right representation (feature
extraction) of dynamic objects such as cars or people, and static objects such as ground,
walls, buildings, etc. for our classifiers.

• Build the right classifiers. Come up with a novel and efficient classification mechanism
that merges appearance and range data, as well as spatial and temporal information for
the recognition of dynamic objects in the scene.

• Compare our method with competing alternatives.
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• Show that the method works both on synthetic and real data with unlimited dynamic
content.

• Use our method to enhance SLAM and scene reconstruction algorithms already devised in
our group of research.

3 State of the art

This section presents a review of the state of the art in methods that can use either or both
lidar data and images. The reviewed topics are: sensor calibration, 3d reconstruction, feature
descriptor in lidar data and images, recognition and detection of dynamic or static objects. We
will focus our research in detection and recognition of dynamic objects. Table 1 presents an
overview of topics that will be seen in this Section.

Topic Application Area

Sensor Calibration - Camera Sensor
- Laser Sensor

Feature Descriptors - Images
- Lidar data

3d Segmentation - Geometric features
- Texture features

3d Recognition/Detection - Places
- People
- Cars

3d Reconstruction - Indoors
- Outdoors
- Objects

Table 1: Review of recent topics using lidar data and images

3.1 Sensor Calibration

We are interested in an accurate registration of laser range data with intensity images. The
registration can be possible using sensor calibration that allows having a mapping between
sensors and the real world. Whereas camera calibration is a mature topic and the intrinsic and
extrinsic parameters can be obtained [35]. These methods need to observe a planar pattern
[105, 93] to calibrate a single camera. Camera calibration can be extended to calibrate a camera
network restrained to share field of view [87, 103]. Instead of using a pattern the map build
from a SLAM session [95] over lidar data can be used to calibrate a non-overlapping camera
network [67, 4], when is fusing the laser data and images to complete the calibration process,
analysis more details in Sec. 5. Register and calibration using lidar data and images are studied
in [56, 66].
Laser calibration obtains the extrinsic parameters regarding the other sensors. Homogeneous
transformation to sensors such as laser-camera to register the 3d points in the image can be
applied. We define the transformation between laser-camera to obtain the extrinsic parameters
as follow; it is defined a pinhole camera system with projection world coordinates P = [X,Y, Z]T

and image coordinates p = [u, v]T . The projection of 3d point in the image is defined as
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Figure 3: Relation between sensors coordinate systems

p ∼ K(RP + t).

Where R and t are orientation matrix and translation known as the extrinsic parameter, and
the matrix K represents the intrinsic camera parameters. Thus R, t and K can be computed
with computed with a classic pattern based camera calibration method [105, 93].

Now it is defined a laser point P f and laser scan plane as Y = 0 then the rigid transformation
from the camera coordinate to laser coordinate system can be described by Equation 1

P f = ΦP +∆, (1)

where Φ is defined such as 3x3 the orientation matrix and translation vector ∆ respect to laser
coordinates system. The goal of laser calibration is to develop ways to solve and find these
extrinsic camera parameters Φ and ∆ which define the position and orientation of the camera
with respect to the laser coordinate system. Figure 3 presents the relation between laser and
camera sensors respect the world coordinate system.

Register the 3d laser range data points in the image is performed applying the transformation
to obtain the same coordinate system (Eq. 1).

Laser calibration has been used for 3d reconstruction projecting 3d point to the image and
assigning RGB (Red, Green, Blue) pixel value to 3d point. There are laser calibration methods
that use a planar pattern and 2d lidar scan [104], this method minimize a function between
image homographies H and 2d laser plane or normal N , the minimization process is non-linear
and solved by

minΦ,∆
∑

i
Ni
|Ni|(Φ

−1(P f −∆)− |Ni|)
2
,

where Ni defines the checkerboard plane in the ith pose. A rotation Φ is parameterized by the
Rodrigues formula as a 3-vector parameter, which it is in the direction of the rotation axis and
has a magnitude equal to the rotation angle. They assume previous camera calibration with
almost 15 planar pattern poses and the images must be unwrapped. This method has been
extended to work with a set of 3d lidar built-based [94]. The method is sensible to laser outliers,
and 3D planes must be selected manually doing a tedious task. Scaramuzza et al. [76] propose
a method that does not need planar pattern, the method only needs to select image and lidar
data points almost 4 correspondence, the re-projection error is minimized given by

minΦ,∆
∑

i(pi −m(Φ,∆, P f
i ))

2,
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where m(.) defines projection of a 3D point P f
i in the image; The method considers different

laser-camera resolution and applies non-linear refinement, both methods need direct interaction
with the user. We propose to analyze an automatic method of semi-automatic calibration using
features extract from image and lidar data such lines, corners, etc; considering the methods that
have been recently applied to laser calibration.

Once laser is calibrated respect to other sensors such as camera sensor, lidar data points can
be registered using the extrinsic parameters. We shall have that 3d lidar data resolution used
to be lower than image spatial resolution then interpolation methods for lidar data and high
resolution images fusion must be considered. Interpolation generates dense data that shares the
same resolution between laser data points and images. Methods such as MRF (Markov Random
Fields) have been used in lidar data and images [100] to interpolate data, Diebel and Thrun [20]
use a MRF to interpolate range images with low resolution and high resolution images, they
obtain range images with resolution of 10x, the minimization function includes pixel information,
laser depth, this method was applied for 3D indoor reconstruction besides subpixel refinement
is not considered. Meanwhile Andreasson et al. [31] compare the Diebel and Thrun approach
generating Voronoi diagrams in the registered 3D points in the image, they consider features
such as the spatial position, color information, position, and the area, the approach is tested in
outdoors improving their results. Moreover Harrison and Newman [34] propose a new method
extending MRF solving the minimization function in closed-form besides includes a second
curvature order improving their results and reducing the computational cost. Yang et al. [102]
improve the interpolation incrementing the spatial resolution of 100x, the method is iterative
and require previous depth estimation. We shall consider a robust interpolation methods that
can improve the results to generate automatic 3d reconstruction.

3.2 Feature Descriptors

In the past computer vision methods have tried to understand dynamic proprieties through
of images or image sequences. Computer vision has development methods such as tracking,
segmentation, detection, and recognition of dynamic objects. These methods consider a set of
features that contain valuable information such as motion, appearance, shape, region moments,
etc. The features used to be combined with machine learning techniques to recognize dynamic
and static objects. A detailed review on computer vision algorithms can be seen in Gonzalez et
al. [29].

Computer vision descriptors most popular in the state of the art are: Scalable Invariant Features
(SIFT’s) descriptor[55] that uses a Difference of Gaussians (DoG), this descriptor stores the
gradient orientation in different scales, it is rotation-scale invariant but is not invariant to affine
transformations. Speed-up Robust Features (SURF’s) [11] descriptor uses the determinant of
the Hessian matrix, the histogram created is smaller than SIFT’s and reason for this it is faster
to train. Shape-Context [12] descriptor is based in gradient orientation around contour point,
the values are saved in an histogram, the descriptor is sensible to the background scenes then it is
needed to segment previously. Harris corner descriptor [33] is quite popular in computer vision,
it has extended to be invariant to scale and widely used in for camera calibration to find the
chessboard pattern corners. Ferns [69] uses template information using probabilistic methods,
the method require any prior training in addition to have different orientations templates. LBP
(Local Binary patterns) [2] features uses texture information, principally have been used in face
recognition. HoGs (Histogram of Orientated Gradients) [18] similar than SIFT’s and SURF’s
storing the gradient orientation in an histogram and HoF (Histogram of Flow) descriptor [19]
saves the orientation of flow fields using optical flow. Curvature Scalable Space(CSS) [15] is
based in image edges or contours , CSS represents object shape in the curvature space. Many
of these descriptors have been extended to recognize actions, gestures, tasks, or activities using
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videos or image sequences [49, 10, 77], for security, or analysis behaviors, etc.

Computer vision descriptors have been extended to work with 3d points or lidar data. In [26]
an extension based in SURF’s to recognize objects over 3d points is proposed, this descriptor is
named Thrift that computes the determinant of a Hessian matrix in 3d, the authors test their
method with a local database and propose to use with a benchmark 3D object dataset, the
authors do not mention if the descriptor is scale-invariant and it is not tested considering noise
levels. Rusu et al. [75] propose a method to label 3d points using a descriptor called FPFH (Fast
Point Feature Histogram), this descriptor encode the local surface geometry around a 3d point, it
is invariant to pose and scale, the method have been used to register 3d clouds combined with the
ICP algorithm, afterwards for object recognition using CRF (Conditional Random Fields) and
SVM (Support Vector Machines). Hetzel et al. [37] propose a descriptor to recognize free-form
objects composed by a set of features such as pixel depth, and surface normal, the descriptor is
robust to occlusion besides the histogram is smaller than the SIFT’s, recognition is performed
using either histogram matching or probabilistic recognition algorithms. The work proposed
by Chen and Bhanu [16] create a descriptor represented by mean histogram, the keypoints are
the surfaces with more variability or significant gradient changes, the descriptor is named LSP
(Local Superficies Patches descriptors), in order to speed-up the authors propose to use a hash
table. In [27] is proposed a 3d descriptor based in Shape Context which is computed by each
point storing its normal orientation, each bin correspond to 3 angles (elevation, azimuth, and
roll), the descriptor depends of the lidar data or the surface resolution, the shape context 3d is
sensible to noise then pre-filtering is essential. The CSS descriptor have extended by Steine et al.
[83] but reducing the dimensionality with PCA named Eigen-CSS, authors only consider range
images to compute contours then used SVM classifier to recognize 3d objects, the method only
works with range images but not directly with 3D points. A descriptor called integral volume
[28] is defined as 3d surface point of maximum variability, the integral volume given the point
with radio r in a sphere centered is computed, the descriptor is robust to noise and used to
register 3d points. The spin images [41] are a free-form descriptor that uses normal surfaces,
the spin images are a set of images in 3d points projected to 2d cylindrical coordinates, the
coordinates are defined with respect to orientated point with radio α and elevation β, to match
two spin images are performed using correlation metric, the spin image dimensionality can be
reduced using PCA, the method have been tested using the ICP algorithm to register the 3d
objects, the spin images have been wide spread used in pattern recognition community using 3d
information, applications can be seen in [47, 52, 92]. The spin images have been used based in
the SIFT’s descriptor[78], they compute SIFT’s in the spin image and the descriptor is named
RIFT (Rotation Invariant Feature Transform), the descriptor is robust and invariant in rotation.
A survey to recognize 3d objects using 3d data points is presented in [14]. Table 2 presents a
survey of the 3d features descriptor listed in this Section.

3.3 3D Segmentation

Segments share similar features such as shape, color, etc, and are used to detect or classify
image content. In computer vision different segmentation methods have been proposed. Typi-
cally, segmentation means identifying a set of pixels clustered in regions with high similarity in
their RGB values, but segmentation can be performed not only over intensity values, but also
using other features such as gradient, motion, etc. The most popular segmentation methods
in computer vision are: the Region-Growing [23], Watershed , Mean-Shift [85], or probabilistic
approaches such as MRF [100], or EM (Expectation Maximization), etc.

Segmentation using computer vision helps also to distinguish between dynamic and static ob-
jects. In [80] a method that uses Gaussian Mixtures (GMs) is proposed, they assume a constant
number of GMs besides the Gaussian parameters such as the mean and variance parameters are
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Feature Descriptor

Silhouettes/Shape - CSS
- Shape Context
- LSP

Free-form - Spin images

Gradient - Thrift
- RIFT
- FPFH
- Integral Volume

Table 2: Descriptors listed in this section

updated in each time t by each image, the approach is robust to different lighting conditions.
In [42], the work is extended and improved. The authors demonstrate that the background
extraction problem can be divided into two densities, a dynamic model, and a model update.
They test their results over outdoor traffic scenes.

In order to work with lidar data, segmentation methods have been extended to handle 3D points.
The 3D segmentation in lidar data is challenging due the sparseness of data, and the large noise
levels [58]. The segmentation using lidar data can help in tasks such as planning to create
traversability maps, obstacle detection to avoiding collisions, navigation [57], and reconstruction
of geometric features (see Sec. 3.5), as well as for segmenting dynamics objects during vehicle
guidance [82].

Lidar data contains geometric information or primitives such as planes, cylinders, spheres, etc.
The planes or normal segmentation is the lowest level primitive in lidar data for reconstruction
or planning. There are methods related to normal computation such as the Plane-SVD (Singular
value decomposition), Plane-PCA (Principal Component analysis), Vector-SVD studied [45, 46].
Normal computation using laser range data requires of robust cluster methods. It is necessary
to fit a plane with 3d points, previously must be grouped in regions a set of 3d points using
clustering methods.

Region growing algorithms cluster a set of planar patches taking criteria as distance, and angle
between planes. Dilatation-based methods are growing adding regions of planar patches [51];
they consider 3 steps: first generating candidates or planar patches, then regions simulated the
dilatation with planes, finally spurious regions or 3D points are eliminated. A method that uses
the criteria of distance and curvature using growing strategies and disjoint tree sets is presented
in [68], this method will be discussed more derailed in the Section 5. Planes can be computed
using graph-based methods to clustered 3D planes, the graph methods used to be computational
expensive and the methods are considered NP problem [61]. Applications using region growing
based-methods can be seen in [88] to segment obstacles using planar surfaces and cones regions
to determinate an object position. The system presented by Poppinga et al., [70] for instance
contains a number of heuristics to obtain incremental plane-fitting with the assumption that
nearest neighbors are taken directly from the indexes in the range image. Moreover, its secondary
polygonalization step is viewpoint dependent, relying also on the neighboring associations given
by the indexes of the range data. If the number of planes to detect is known a priori, EM can be
used to assign points to planes in terms of normal similarity, density of points and curvature [54].
The technique is shown for indoor scenes in which planar patches are usually orthogonal to each
other. For larger, sparser point distributions, such as the ones found in outdoor range data, the
assumption of a priori knowledge of the number of planes is unrealistic. To this end, hierarchical
EM can be used [90], incrementally reducing the number of planes with a Bayesian Information
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Criterion (BIC), at the expense of higher computational cost. Contrary to region growing, one
could search for region boundaries instead. A good exemplar of this technique is presented in
an architectural modeling application [17], in which polyhedral models are generated from range
data by clustering points according to their normal directions plotted on a Gaussian sphere.
This mechanism helps overcome the sparsity of the point distribution. The assumption that the
scene is made of planar regions is exploited to detect plane intersections and corners to compute
plausible segmentations of building structures made of polyhedrons of low complexity.

There are cases in which not only is required to segment planes. Segmenting multiple geometric
objects is presented by Ladonde et al. [48], they use GMs and EM algorithm for clustering
different geometric structures; the segmentation is improved using mathematic approximation
such as sphere for noise, cylinders and wires for trees, planes for roads and walls. Vandepel et
al. [97] propose a method to segment lidar data finding geometric objects as wires, surfaces,
and spheres, their work is extended in [96] segmenting military wires by means of cylinders
computing a symmetry histogram. In addition is proposed a segmentation of multiple geometric
structures that uses GMs with Random Sampling Consensus (RANSAC) to detect new objects
that can appear in the scene [65]; they can distinguish between spheres, cylinders, and planes.

Segmentation of geometric features, shapes, and intensity using 3d data points can use machine
learning strategies. Probabilistic method such as MRF methods applied to vision have been
extended to work with 3d laser data. Munoz et al. [64] classify 3d laser points using an
extension of MRF called AMRF (Associative Markov Random Field) the system works off-line
using 3d points each point is labeled using an anisotropic model.

There exist methods that integrate lidar data and images for segmentation. Today is an active
research in the robotic community as grasping [44], to create traversability maps [21]. Rasmussen
[74] proposes a road segmentation method using color and texture clues, the segmentation is
performed using as primary features a bin histogram in the RGB space, they train a Neuronal
Network (NN) to generate traversability maps in outdoors with vegetation, the output is a 3D
map. Barnea et al. [9] segment data using features as laser intensity, planar surfaces, and color
information from images, Firstly apply image segmentation using Mean-Shift algorithm then in-
tegrate a set of geometric features to segment the 3D data. In [75] is proposed a labeling method
that uses CRF similar to the MRF for segmentation. Posner et al. propose a segmentation and
recognition method for people and geometric structures as walls, and ground [71].

3.4 3D Recognition and Detection

Robots in real world need to recognize, to interpret, and to classify a different class of objects for
manipulation, navigation, interaction, etc. Recognition helps to interpret and understand propri-
eties of dynamic environment. Recognition applications using mobile robots include recognition
of people, places, textures, besides of recognize dynamic and static object also for segmentation
(See Sec. 3.3).

Lidar sensors have been used for object recognition lidar-based 2d. Mozos et al. [63] propose a
method to classify places using 2d information, places as corridors, doors, rooms are recognized,
the Adaboost (Adaptive Boosting) algorithm is used to classify features such as area, perimeter,
and shape of 2d scan, this method is sensible to noise, for dynamic and natural environments.
Dynamic objects recognition have dedicated some efforts to recognize people, Arras et al. [7]
detect people in a 2d scan, the authors use like circle features in clustered data i.e. radio, area,
etc, classification is performed with probabilistic method called Bayesian classifier, the method
has false-positive samples over circular object such as chairs and baskets. To avoid the false-
positive detection Mozos et al. [62] extend their work using multiple 2d lidar sensors or layers,
each sensor is placed at different heights, the advantage over their previous work is robustness
in occlusion, different classes such as chairs or tables but need more 2d lasers, and used to
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be expensive. Static objects have been recognized with laser-based 2d, Wurm et al. [101] use
scans 2d to identify glasses and no glasses for grasping application. Tracking systems have been
development with a lidar-based 2d, Monteiro [60] use the 2d data to track and detect people
using Viola-Jones method in images. Similarly, in [84] tracking and classification of vehicles and
people are proposed for navigation. Applications such as navigation and planning can run over
places with car traffic and people clouded [86] using a single lidar 2d.

When we are using laser-based 2d can lose valuable information because our world is tridimen-
tional, Lidar built-based 3d has been proposed to get 3d information of our world. Besides
applications have been chosen to interpret it, Agrawal et al. [1] propose a method to classify
3d objects, the data are micro-classified using histogram information, each histogram contains
surface information such as normal orientation similar Shape-Context descriptor, the samples
are labeled by an expert and K-Means algorithm is used to cluster data. Triebel et al. [91, 92]
recognize places and objects using the MRF, they use spin images and reduce data dimensional-
ity with LDA (Linear Discriminant Analysis), the data are training using a AMNS (Associative
Markov Networks). In [22] are used spin images to recognize objects such as chairs, boxes,
people, the learning is not supervised, they apply a clustering technique called latent Deritche
allocation.

New trends have been development to recognize and identify dynamic and static objects. Wang
et al. [99, 98] propose a tracking system for people and vehicles, the method only locate the
dynamic object. Probabilistic approaches and unsupervised learning are used to cluster different
classes of dynamic objects [32], they consider object trajectories, object speed, images templates,
and points distribution of lidar data, the method is heuristics.

Incorporating lidar data and images, and other sensors that can help and improve the results
of new applications to recognize objects. Mohottala et al. [59] use 3d information and images
to recognize vehicles, the vehicles are segmented using surfaces and silhouettes, the results
are refined with a vision method called Graph-Cut for segmentation, the image use binary
features. Posner et al. [39, 72, 71] propose an unsupervised method that uses a probabilistic
approach and bag of words, each features are geometric of low-level (planes and elevation maps)
and contextual (pixel information). A multi-sensor approach presented by Douillard et al.
[21] recognize multi-classes objects building an elevation map to detect grass and ground, the
classification is performed CRF and Virtual Evidence Boosting that allows to have a expert
supervision, recognize objects such as cars, people, and segment wall, grass, etc, they consider
distance, angle, laser intensity, and visual features, texture, they perform their results using
Viola-Jones. Indoors application to recognized static objects are presented by Marton et al. [56]
for grasping, they recognize kitchen object and the training is done with a Bayesian method,
The arm-based robot uses a set of sensors as laser, camera, thermal camera, and TOF camera
to obtain a greater number of features to help in segmentation. Lim and Suter [52] use super-
voxels or 3d regions, they applied multi-scale CRF, each super-voxels is clustered and reduced,
the features to train are spin images, normal, color, etc. In [30] intensity, color, depth and
surface is used to classify objects, features from the image are the gradient 3d, normal, centroid.
Steder et al. [81] recognize in range images using Harris corner descriptor and planar patches,
they compare their improvements versus spin images.

3.5 3D Reconstruction

Modern times in advances in compute vision and robotics demand the construction of real
scenarios and objects. SLAM methods have allowed to build 3d maps using mobile robots
[8, 89]. Though progress has been impressive in SLAM, there is still much to do in creating
algorithms that reduce the computational cost, characterization of landmarks, non-linearity and
data association. But not only SLAM methods have used for 3d reconstruction, Computer vision
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methods known as SFM (Structure From Motion) have enabled the creation of 3d scenes. The
scenarios can be constructed thanks to sensors that can perceives the 3d world such as, camera
stereo systems, and TOF cameras, or some other device capable of capturing the depth. 3d
reconstruction has applications in planning to know the free.space, navigation to be aware of
the goal and the start, security where recently the trend is to create 3d environments known
in 3DTV (3D Television) to cover a complete area, quality control for the reconstruction of 3d
objects, and to create 3d models automatically i. e. CAD (Computer Assisted Design).

Actually lasers have become popular for 3d reconstruction since these devices are not sensitive to
illumination such as stereo systems or reflections of TOF cameras. The disadvantage is that laser
devices are expensive. Some methods obtain geometric features from lidar data [73], they fill
gaps regions with the convex hull algorithm, finally are approximated by splines the lines of each
structure. The lidar based-built 3d data have been applied to reconstruct faces [13], application
for security where people need to be recognized, or application to create more realistic graphics
model for games, movies, virtual environments, etc.

it is possible to reconstruct a scenario using a single camera taking and assuming knowledge
of scene structure. Lee et al. [50] recognize and reconstruct 3d structures in indoors using
lines segments, first finding the 3d structure over the image scene segmented by lines then
many geometric hypothesis are generated, they find the best match between a set hypothesis for
finally generating a 3d model projecting on images. A novel method that recover spatial layout
in clutter environments is presented in [36], parametric 3d boxes are used with machine learning
methods to recognize the best hypothesis, the method is designed to work in indoors. Hoeim
et al. [38] propose segmentation method based in classification, the method only uses images of
the scene in different orientations, the method segment the image using Felzenwal’s algorithm
to work with super voxels, features such as color, texture, location, shape, and geometry 3d
are considered, then labeling is done with Adaboost, they authors propose application in 3d
reconstruction and recognition.

3d reconstruction has been performed fusing laser and camera sensors. In the Sec. 3.3 are
reviewed recent methods for extracting low-level features necessary for 3d reconstruction named
geometric segmentation. Geometric segmentation extracts primitives as planes, cylinders, lines
or any geometric feature meanwhile visual segmentation uses images and texture or color infor-
mation to create more realistic scenarios. Stamos et al. [79] construct models using 3d range
data and images matching 3d lines versus 2d lines, first are computed planes then extracting
lines by means plane intersection, on the other hand segmentation lines in the image; they regis-
ter is performed minimizing the lines distances, finally they project image information in the 3d
data. Joung et al. [43] present a reconstruction method using a calibrated lidar-camera sensors,
modified ICP uses color information for register each cloud points by robot pose is used. Stereo
camera system and laser range finder for reconstruction is presented to generate more realistic
indoors/outdoors 3d scenarios [53], they use SIFT’s for matching each image in the sequence,
the ICP algorithm is used to register the cloud points, the results are combined to improve the
3d model. Omnidirectional cameras allows to cover a complete area for reconstruction, in [25]
present a 3d reconstruction system that uses omnidirectional cameras and Graph-Cut algorithm
to obtain the depth in the scene.

4 Approach

An illustration of the proposed approach is shown in Fig. 4. The proposed system is divided in
four modules: sensor calibration, segmentation, recognition, and applications. Sensor calibration
shall allow to have the extrinsic transformation between lidar and camera, the 3d points will be
registered in the image. Also, this module requires to interpolate data to have similar sampling
between image and lidar data. The output of this module will be the extrinsic calibration
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parameters and data interpolation. The segmentation module will help to distinguish between
dynamic and static objects, and also to segment important geometric and visual features useful
for the recognition module. The recognition module will classify object classes using features
extracted in the segmentation module. This module will include machine learning methods
and novel feature selection mechanisms. Once dynamic and static objects are detected and
recognized, we can use this knowledge in applications such as SLAM in dynamics environments
and scene reconstruction.

Figure 4: Our approach using lidar data and images for dynamic and non dynamic object
recognition.

5 Achievements

This section presents the achievements reached in the period that covers until the thesis proposal.
Contributions presented here are as follows: camera network calibration that use a laser range
finder data and images,and segmentation of planar surfaces in 3d data.
The calibration procedure is explained as follows, and illustrated in Fig. 5, consists of two main
steps [67, 4]. In the first step, a nominal calibration of the cameras is generated by registering
the lidar data to an aerial image of the experimental site, showing both in a graphical user
interface, and prompting a user to coarsely specify the camera location, orientation, height and
field of view. These initial parameters allow the cropping of the entire lidar into regions of
interest compatible with the field of view of each camera.
The second stage aims at refining the cameras nominal calibration by matching, in a semi-
automatic manner, 3d features to the corresponding 2d features in the camera’s images. The
lidar data corresponding to each camera’s field of view is segmented into a set of best fitting
planes with large support from the point clouds and then, straight lines are computed from the
intersection of perpendicular planes from the set. The extracted 3d lines are then associated
with 2d image lines and this information is fed to a non-linear optimization procedure that
improves both intrinsic and extrinsic camera calibration parameters. Finally, homographies of
the walking areas are computed by selecting planar regions in the lidar data. The final output
of the whole calibration procedure consists in a) the extrinsic camera parameters (the relative
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Figure 5: Distributed camera network calibration methodology.

position and orientation in the world frame), b) the intrinsic parameters (focal distance, image
center, and aspect ratio) and c) the homographies of the walking areas.
Given the nominal calibration, the 3d straight lines extracted from the lidar data can now be
projected in the image and guide the user to select the corresponding 2d image lines. This 3d-2d
association allows improving the nominal calibration by minimizing a cost function containing
the camera projection matrix P .
Let pi = [ui vi]

T denote points that belong to an image line and Pi = [Xi Yi Zi 1]
T i = 1, .., n

denote the corresponding 3d points on the matching line in the lidar data
The cost function is defined as:

ϑ̂j = argmin
ϑj

∑
i

‖mi − h (Pproj(ϑj) · Pi)‖2 (2)

where h is a de-homogenization function, Pproj(ϑj) = K[R|t] is the projection matrix of the j-th
camera and ϑj are the calibration parameters, namely focal length and principal point, plus
the extrinsic parameters for position and orientation. Calibration results of the camera network
calibration are shown in the Fig. 6.

(a) Segmented range data pro-
jected to a camera image.

(b) Plane boundaries used for
camera calibration.

(c) Calibration results are used to
recover an orthographic view of
the scene.

Figure 6: Application of the segmentation method for the calibration of an outdoor camera
network. Plane boundaries and plane intersections are projected to the image of one of the
cameras in the network. A nonlinear optimization of the projection error is used to refine the

calibration parameters.

Segmentation is an important task in recognition techniques this will allow to work with different
primitives as planar surfaces. Tractability on the other hand is possible by extracting higher
order primitives from the extremely large point sets these mapping algorithms produce and,
relying on these primitives, to pursue higher level tasks.
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To fit normals with 3d data points is defined the error between a fitted planar patch and the
lidar data values for the kNNs (k Nearest Neighbors) defined such as

ε =
∑
i∈K

(P>
i n− d)2. (3)

Where Pi is a set of clustered points, n = (nx, ny, nz)
> is the local surface normal at p, K is

the set of kNNs to p, and d the distance to the origin. This error can be re-expressed in the
following form

ε = n>
(∑
i∈K

p p>
)

︸ ︷︷ ︸
Q

n− 2d

(∑
i∈K

p>
)

︸ ︷︷ ︸
q

n+ |K|2d2. (4)

Using the follows Langrian

l
(
n>, d, λ

)
= ε+ λ(1− n>n),

the local surface normal that best fits the patch K is the one that minimizes the above expres-
sion [3]. Deriving l with respect to n and d, and setting the derivatives to zero, it turns out that
the solution is the eigenvector associated to the smallest eigenvalue of(

Q− q qT

|K|2

)
n = λn. (5)

The algorithm proceeds as follows. First, the entire data set is preprocessed to compute local
normal orientation of fitted planar patches for each point with respect to its kNNs. Then,
distances between nearest neighbors are computed. These distances are then sorted in increasing
order and the resulting list is processed to create a forest of trees by merging neighboring points
according to point distances and to the angle between their normals. The complete process of
our algorithms is visualized in the Fig. 7.

(a) 3D points (b) Search KNN (c) Fitting normal to a
KNN

(d) Sort distance in-
creasingly

(e) Grow forest (f) Merging (g) Criteria for merging re-
gions

Figure 7: Complete process of our algorithm

The segmented planes can then be used to produce traversability maps (see Fig. 8), to aid in the
calibration of a camera network, or to generate VR models of the scene. The proposed algorithm
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is very efficient since its computational complexity is O(n log n) on the number of points in the
map. Our method builds upon Felzenszwalb’s algorithm for 2d image segmentation [24], and
extends it to deal with non-uniformly sampled 3d range data.

(a) Barcelona Robot
Lab

(b) Plane segmentation using our
method

(c) An application to create
traversability maps

Figure 8: Segmentation of planar patches .

6 Work Plan and Calendar

This section presents the work plan and timetable of our research work. Detailed diagram that
explain each task that will be completed in the period from 2007 to 2012 is seen in the Table 3.
The period is divided in 11 tasks that are explained as follows:

• T1 Courses: This time interval were cursed 5 signatures suggested by the doctoral com-
mittee, this period consist of 12 months including the summer period of 2008.
Term: 12 months.

• T2 state of the art review in computer vision methods: this task includes a review in
computer vision method to recognize objects.
Term: 4 months.

• T3 Short stay and programing method to calibrate camera network: Contribution ex-
plained for network camera calibration in the Section 5.
Term: 3 months.

• T4 Programming method to segment planar patches over 3d lidar data: Segmentation of
planar surfaces using 3d lidar data (See Section 5 ).
Term : 3 months.

• T5 Summer school on computer vision, machine learning method, and problem definition.
Term: 3 months.

• T6 Review in the state of the art to recognize dynamic objects using lidar data and images.
Term: 9 months.

• T7 Experiments definitions and sensors calibration.
Term: 3 months.

• T8 Analysis of proposed and recent methods that work using lidar data and images.
Term: 6 months.

• T9 Experiments using the proposed method with simulated dataset.
Term: 3 months.
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• T10 Real experiments using Segway RPM-400 mobile platform.
Term: 6 months.

• T11 Writing, review and thesis defense to obtain the PhD degree.
Term: 6 months.
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