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tracking task are due to wrong detection. We show this by experimenting
with a multi object tracking algorithm based on a Bayesian framework
and a particle filter. This algorithm, which we have named iTrack, is
specifically designed to work in practical applications by defining a sta-
tistical model of the object appearance to build a robust likelihood func-
tion. Likewise, we present an extension of a background subtraction al-
gorithm to deal with active cameras. This algorithm is used in the
detection task to initialize the tracker by means of a prior density. By
defining appropriate performance metrics, the overall system is evalu-
ated to elucidate the importance of detection for video surveillance
applications.
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1 Introduction

Monitoring public and private sites by means of human
operators presents several problems, such as the need to
monitor a great number of cameras at the same time and to
minimize the operator’s distractions. Therefore, a computer
vision system has to be able to assist humans. The main
difficulties of an automatic video surveillance system are
due to the variety of scenes and acquisition conditions. It is
possible to design systems with one or more cameras,
which can be static or mobile, with different sensors such
as color or infrared cameras. In this paper, we deal with
large outdoor scenes using an active color camera.

Typically, an automatic video surveillance system in-
volves the following tasks: detection, tracking, and event
recognition. The detection task locates objects in the im-
ages. Then, the objects’ positions are robustly estimated
over time by the tracking task. Lastly, the goal of the event
recognition module is to describe what is happening in the
scene.

There are two main approaches for object detection in
automatic video surveillance applications: temporal differ-
ences and background subtraction. Frame differencing per-
forms well in real time, but fails when a tracked object
ceases its motion. Background subtraction is based on sta-
tistical models in order to build the appearance model of a
static scene.” Both methods usually require the use of a
static camera. Recently, advances in algorithms for robust
real-time object detection allow their use in video surveil-
lance applications. These algorithms perform a search in
the image to find previously learned objects such as
pedestrians.’ ’ An important advantage of these algorlthrns is
that they are not restricted to a static camera. In view of
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this, we present an algorithm that can be used with active
cameras. This algorithm allows the application of back-
ground subtraction techniques to panoramic scenes typical
of video surveillance applications.

Referring to the tracking module, there are works based
on a combination of different computer vrsron algorithms
that perform properly in real environments.”” The main dif-
ficulty of these tracking algorithms is representing objects’
trajectories when new objects appear, when they are oc-
cluded, or when they disappear. To manage these cases one
needs a process of data association, usually based on heu-
ristics. Another possibility is to use a particle filter.® Particle
filters are a possible implementation of optimal Bayesian
estimation. They can manage multimodal densities to rep-
resent the state of multiple objects. However, it is necessary
to use an adequate state representation to apply these filters
to multiobject tracklng It is possible to 1nc1ude all objects
and the background in the state estimation.® But this ap-
proach may require an extremely large number of samples.

Instead, we present a tracking algorithm for the manage-
ment of multiobject tracking by augmenting the state of
each tracked object with a label to identify the object. This
scheme is completed with a likelihood function whose defi-
nition is directly based on the image values of the objects to
be tracked. This model can be updated to allow for changes
in the object’s appearance. Therefore, the algorithm does
not depend on environmental conditions, and it can be used
in different application scenarios because it does not re-
quire any a priori knowledge about either the scene or the
appearance and number of agents. It is only necessary to
define an appropriate prior density that relates detection and
tracking to adapt the application to several scenarios. By
means of a proper evaluation of the video surveillance sys-
tem, we are able to show the relationships between detec-
tion and tracking tasks. Specifically, we prove by experi-
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Fig. 1 State components.

menting how the performance of the tracking algorithm is
affected by the presence of detection errors.

In this paper, we first define a visual tracking method
suitable for video surveillance applications. This method is
based on a Bayesian framework and a particle filter. Sub-
sequently, we present a background subtraction algorithm
for active cameras that is used by the detection task to
locate the objects of interest in the scene. In addition, we
present a proper definition of a prior density, which relates
to both detection and tracking. Finally, performance metrics
are defined to evaluate the behavior of the complete system.
The obtained results are discussed in the last section to
demonstrate the importance of detection for obtaining good
results in the tracking task.

2 Image-Based Tracking: iTrack

In this section, we define an estimation algorithm to track
people in video surveillance applications, which we have
named iTrack. This algorithm is based on the Bayesian
probabilistic framework and implemented by using a par-
ticle filter. The algorithm’s basic idea is to estimate the state
of the object to be tracked by using a likelihood function
that is based only on image data. This idea is formalized by
defining an appearance model that is continuously updated
to take into account the objects’ appearance changes. In
addition, by using a particle filter, the detection results are
easily included in the estimation algorithm by introducing
new particles from a prior density. Then, the algorithm can
be used in different application environments without sig-
nificant changes.

Let s,=(x,,u,,w,,M,) be the state vector for an object,
where x,=(x,,y,) is the position, u,=(,,v,) the velocity,
w,=(w,,h,) the size, and M, the appearance of the object
(see Fig. 1).

Given a sequence of images, I,.,=(I,...,I,), the poste-
rior probability density of the object’s state at time ¢ is
expressed as

p(st|Il:r)pr(sl:t|ll:z)dsl:z—l’ (1)

where s, is the object state history, s;.,=(s;,...,S,). Apply-
ing the Bayes rule and the Markov condition, we obtain

p(sz|Il:r) o p(Iz|St) J P(Sz|5r—1)P(Sz—1 |Il 4—1)ds, 1, (2)

where p(I,|s,) is the likelihood function.
The integral in Eq. (2) is referred to as the temporal

prior or the prediction, and p(s,|s,_,) is the motion model.
In order to define the motion model we assume the follow-
ing independent relations between the state parameters:
p(xt’ut’WI?MI|Xt—1’ut—l’wt—l’Mt—l)

= p(X,|X,_1,llt_1)p(ll, llt_1)p(W,|Wt_1)p(M,|M,_1) .

We use the smooth motion model for the position, velocity,
and size parameters, i.e.,

p(Xz|Xr—1’uz—l) = (X, — (X, +u,y),0%),
P(ut|ut—1) = 9w, —u,_;,0"),

p(wt|wt—]) = 77(wz_ Wt—lyo'w)9

where 7(u, o) denotes a Gaussian density with mean u and
standard deviation o. The deviations o* ¢“, and oV are
defined empirically. To complete the motion model, it is
necessary to define the appearance evolution, p(M,|M,_;).
Using probabilistic terms, the density of the appearance
model is defined as

p(Mt|Mt—1) =0M,-M,_)), (3)

where &(-) is a Dirac delta function. This model was also
used for 3-D people-tracking.9

2.1 Appearance Model for the Likelihood Function

To compute the recursive expression (2) we also need a
likelihood function, i.e., p(I,|x,,u,,w,,M,). This function is
the probability of observing the image I, given the object
parameters. First, we observe that the likelihood function is
independent of the velocity parameter. The parameters X,
and w, define an image region denoted as I”. In order to
compare this image region with the object appearance
model M,, we apply an affine transformation to the image
region:

R=AY, (4)

where A is an affine matrix transform containing transla-
tion and scale parameters. Finally, the complete likelihood
function is expressed as

p(It|X,,W,,Mt) :p(R|Mt)’ (5)
1
p(RIM) = ]—V”ER Pij(Ry{M;;)., (6)
L,JE

where N is the number of the region’s pixels, and p;; is the
probability that the value of the pixel (i,;) belongs to the
distribution of the pixel’s appearance model and is defined
as

pii(RIM ;) = p(R;;— M; . ™), (7)

where 7(-) is a Gaussian density whose standard deviation
oM allows for small changes in object appearance and ac-
quisition noise. A similar appearance model for dynamic
layers is presented in Ref. 10. The main difference is that
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model is based on a generalized EM algorithm instead of a
particle filter to continuously estimate objects over time.
This definition of the likelihood function is robust to outli-
ers, because their presence (due to clutter and occlusions)
does not penalize the overall probability measurement.

The expression (3) means that the object appearance
does not change over time. Thus, it is necessary to adjust
the model after each estimation step for a correct appear-
ance model. Once the new state has been estimated,
p(s,|1,.,), the appearance model is updated using an adap-
tive rule for each pixel of the model,

Mij = Mijr—1+ a(Rij,t - :u‘ij,t—l)v (8)

where R;;, is the appearance value of pixel (i,/) of the
region obtained with the new state parameters. To learn the
coefficient «, we use the temporal adjustment

a=c. )

We have chosen this approximation because the best es-
timations are computed during the first frames.

The results on the expected positions and the marginal
density for the x position of different test sequences are
shown in Fig. 2. In the marginal density for the x position it
can be seen the multimodality of the posterior density in the
multiple-object tracking case.

2.2 Algorithm

In order to make multiple-object tracking possible, it is
necessary to represent a multimodal density. Using the
Condensation algorithm, we can 1mplement the probabilis-
tic model by means of a particle filter.® Therefore, the con-
ditional state density, p(s,|I;.,), is represented by a sample

set {sﬁ")}, n=1,...,N. In order to represent a multimodal
density and to identify each object, we use an augmented
state adding a label /. The label / associates one specific
appearance model to the corresponding samples, allowing
the computation of the likelihood function of Eq. (6). Thus,
the sample vector is given by

s'=(xlulwhl) =s" = (x,ul,w)).

From the propagated samples {Si}, that represent the pos-

terior at time ¢, the state estimation for the object labeled L
is computed as the mean of their samples, i.e.,

8= Ly s (10)

LllL

where N; is the number of samples for the object L. How-
ever, as the estimation progresses over many frames this
representation may increasingly bias the posterior densny
estimates towards objects with dominant likelihood."" This
occurs because the probability of propagating a mode is
proportional to the cumulative weights of the samples that
constitute it. In order to avoid single target modes absorb-
ing other target samples, weights are normalized according
to

Fig. 2 Multiple-object tracking results using iTrack. At the bottom of
each frame is displayed the horizontal position marginal density.

y
i ™1

1 TSN NIV
Zis1 =17 No

(11)

where N, is the number of objects being tracked. Each
weight is normalized according to the total weight of the
target’s samples. Thus all targets have the same probability
of being propagated * The complete algorithm is described
in Table 1.
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Table 1 iTrack algorithm.

The posterior density at time t-1 is represented by the sample
set, {s_{}, where i={1, ..., N}.

In addition, the prior density p(s, for time t is assumed to be
known at this stage.

Generate the /'th sample of N that represents the posterior at time
t as follows:

1. Predict: Generate a random number a €[0,1)
uniformly distributed:

(a) If @<r, use the prior p(s;) to generate sf".

_ ) (b) If a=r, apply the motion model to the sample
S, i ;7 =p(s|s.1=5}_,) using the smooth motion model

[ i i

X{T=Xp g+ U+ &y
i i i

Uy =up+ &,
T i

Wi =Wy +§,.

2. Correct: Measure and weight the new sample, s’;‘,
in terms of image data I, using the likelihood function of Eq. (6):

mi'=p(l X=X, Wi=wim M),

Once the N samples have been generated, normalize the weights
applying Eq. (11), and
build the cumulative probabilities:

9=0,

c=c+al i=1,...,N.
Use the values of the cumulative probabilities to generate by
sampling the new samples {s}} that

represent the posterior at time t.

For each object, estimate the new state by computing the mean of
its samples:

R 1 i
S.= ﬁzi,/:Ls;,
L

where N, is the number of samples for object L

Finally, use the new state to actualize the appearance model.

3 Detection

The iTrack algorithm requires a prior density, p(s,), for the
tracking process to be initialized. Subsequently, this prior
density is used to initialize new objects appearing in the
scene. In this section, we define the prior density by using
the results obtained in the detection task. First, we present a
background subtraction algorithm for active cameras that is
used for locating the objects of interest in the scene. This
method is an extension of a robust background subtraction
algorithm for active cameras."? It uses a Gaussian-mixture-
based adaptive background modeling. In this way, it is ro-
bust to changes in the scene that are not due to the objects
of interest. The problem of this algorithm is that it requires

Fig. 3 Panorama for parking monitoring.

a static scene. To solve this problem it is possible to make
a scene set with one image for each acquisition parameter
of the active camera. However, that is impractical due to
the great number of active parameters of the camera. To
address this problem, one could find the minimum set of
the camera’s parameters for seeing the entire surveillance
perimeter and constraint the camera motions to these
parameters.14 A less exgensive method is to model the
scene like a panorama.l*’16 Therefore, our objective is to
use the Mixture-of-Gaussians scene model for active cam-
eras by means of a panoramic representation of the scene.

3.1 Panoramic Scene Model

In video surveillance applications, for monitoring a wide
area with enough image resolution, active cameras are usu-
ally used. These cameras scan the entire surveillance perim-
eter to detect events of interest. Another possibility is to use
a static camera with a wide field of view to locate objects
and an active camera to track them. However, this approxi-
mation needs geometric and kinematic coupling between
the two cameras.'’ Therefore, we focus on using an active
camera with pan and tilt degrees of freedom.

First, we explain how to build the panorama by assum-
ing that the camera rotates about its optical center. In order
to build the panorama, it is necessary to transform each
image into a sphere corresponding to the camera field of
view. Next, we convert the spherical panorama into a pla-
nar surface to represent the scene model. In addition, we
assume that it is possible to know the camera’s parameters
to make our scene model—in our case, the pan degree of
freedom 6, the tilt degree ¢, and the camera’s field of view
in both directions, 8 and 7y (we assume a fixed focal length;
therefore we do not consider the zoom parameter). First, in
order to project each point (x,y) of the camera into the
sphere, we apply

0x=0+x~§, (12)
z/fx=¢f+y-sl, (13)

y

where S, and S, are the horizontal and vertical image sizes,
respectively, and x,y are the pixel coordinates with respect
to the image center, that is, xe[-S,/2,5,/2] and y
e[-S,/2,8,/2]. Next, the image axes are matched with the
angular values of the transformed pixels by the previous
expressions. For example, in Fig. 3 we show a panorama
that corresponds to 100 deg for pan values and 20 deg for
tilt values. To avoid lens distortions, we only take into ac-
count the central region of each image.

This process to create panoramas has two main prob-
lems: brightness changes and the appearance of parts of
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Fig. 4 Indexation of a panoramic scene model.

objects in motion. The first problem is due to the nonuse of
brightness correction functions. The second problem occurs
if there are objects in motion when the images are taken to
build the panorama. In our approach, we use the scene
model based on the mixture-of-Gaussians parameterization
for each pixel. As a result, both problems are solved. The
process consists in creating the panorama following the
previously explained steps and using the mean value of the
most probable Gaussian as panorama pixel value.

Once the panoramic scene is modeled, in order to make
object detection, the known values of the pan and tilt cam-
era parameters are used to obtain the desired piece of the
panoramic scene model. This process is carried out by in-
dexing the scene when it is created. To speed up computa-
tion, we use a lookup table with the correspondence be-
tween the position of each pixel within the image and its
position in the panorama for the different camera’s param-
eters (see Fig. 4).

In Fig. 4 it can be seen that both problems in building
panoramas—brightness uniformity and objects in motion—
are solved by using the panoramic scene model based on
mixtures of Gaussians. For each registered piece of the
scene, it is possible to detect the objects in motion. There-
fore, they can be deleted for building the panorama, and
they do not appear in the final scene model. In addition, by
creating the panorama using the mean values of the most
probable Gaussian density, the problem of change of
brightness between consecutive pieces is eliminated. For
these two reasons, our method provides a robust way of
creating panoramas in the presence of objects in motion
and smooth changes of illumination. This is an improve-
ment over the methods that create panoramas assuming
static scenes. However, we want to point out that a similar
algorithm, presented in Ref. 18 can be viewed as a gener-
alization of this idea for nonvideo surveillance applications.
This background subtraction algorithm has been applied to
scene modeling using sequences from hand-held cameras.

In order to evaluate our panoramic scene model, two
classes of objects have been defined: pedestrians and other.
The “other” class includes cars and algorithm errors like
reflections or small movements of the objects in the scene.
In order to classify objects, we have modeled the size’s
characteristics of the bounding box of the detected object,
as well as its temporal continuity. Objects detected during k
consecutive frames have been associated by proximity.
During the k images, the object is classified separately, and
later, a voting process is made to give its final class.

As we measure the performance of algorithms, our in-
terest lies in knowing the number of false positives, or in-
dex of false alarms, and the number of false negatives, or

Table 2 Evaluation of the panoramic scene model.

Detected False positives Index of false
Class objects A; Ai-B; alarms m;
Pedestrians 82 22 0.27
Other 993 70 0.07

index of losses. To know the index of losses, it is necessary
to monitor all the experiments. However, our objective is to
define one evaluation method that does not need human
monitoring, i.e., an automatic evaluation. Therefore, we
only measure false positives, by storing the images of all
objects detected by the algorithm. In this way, at the end of
the experiment, it is possible to determine the total number
of objects and the number of false alarms for each type of
object. Formally, we define the index of false alarms, m;,
for each type of object i as

m,:(l—%), (14)

l
where A; is the number of objects detected of class i, and B;
the number of objects classified correctly. A good classifi-
cation gives a value of m; next to 0.

The results obtained after running the algorithm for sev-
eral hours in real environments are in Table 2. The algo-
rithm has been implemented on a platform PC and runs at
25 frames/s using a Sony EVI-D31 pan-tilt video camera.
Using this active camera, we build the panoramic scene
model by setting the appropriate pan and tilt values to cover
the entire scene.

It is necessary to point out that although there are errors,
the majority of them are not critical. For example, although
a pedestrian is not classified correctly in the first k£ frames,
in the following ones this can be remedied. Figure 5 shows
some of the objects classified as pedestrians.

Fig. 5 Detected pedestrians.
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3.2 The Prior Density

As it has been explained, the prior density p(s,) is used to
initialize the tracking process at the first frame and to ini-
tialize new objects as they appear in the scene. We define
the prior density by expressing in a probabilistic way the
foreground regions segmented according to the previously
explained panoramic scene model.

The sample vector at time  is given by si’];(xi,ui,wﬁ),
where X; is the position, u; the velocity, and w; the size of
the object. Then, in order to define p(s,) it is necessary to
define a prior density for the position p(x), the velocity
p(u), and the size p(w), components of the object’s state
vector.

By means of the detection algorithm, pixels are classi-
fied into two categories: foreground and background. By
grouping foreground pixels into blobs it is possible to de-
fine the prior density of the position component, X, by
means of a mixture-of-Gaussians density

B
p(x) =2 P(j)p(xlj), (15)
j=1

where B is the number of blobs detected [so P(j)=1/B] and
p(x|j)=7(b;,%p). Here b; is the blob mean position, and
3. is a constant for all blobs, which is fixed a priori. Simi-
larly, the size component w is formulated in terms of the
blob’s size. This prior density formulation was used in Ref.
19 as an importance function in the combination of low-
level and high-level approaches for hand tracking.

In connection with the velocity component, there are
three different initialization possibilities. The first possibil-
ity is to set the velocity to zero, but then the problem is that
the object usually appears in the scene in motion. In that
case, this would cause an important difference between the
velocity estimation and the real velocity; hence the algo-
rithm would take time in becoming stabilized. The conse-
quence is that the appearance model could be corrupted and
the tracking algorithm would not work correctly. The sec-
ond possibility is, by using an optical flow estimation algo-
rithm, to make an initial estimation of the object’s velocity
by considering the mean displacement of the blob’s pixels.
The problem of this approach is that optical flow computa-
tion would slow down the whole process. In addition, in the
case of the object’s occlusion, this estimation would be
wrong. The third possibility is to assume the object’s tem-
poral continuity, that is, to detect the object in several con-
secutive frames to ensure that it is not a detection error. In
these consecutive frames, detections are associated using
only distances between the position components. Once the
object is considered as stable, it is possible to make the
initial estimation of its velocity.

All these possibilities have been tested, and the last gave
the best results. Temporal continuity ensures a good initial-
ization for the object. The problem is that the object takes
more time to start being tracked. The main conclusion is
that one frame is not enough to initialize correctly the ob-
jects to track. Hence, it is necessary to make a more accu-
rate initialization, to detect the object in several consecutive
frames to ensure the algorithm’s correct performance.

Fig. 6 In Group objects.

4 Performance Evaluation

Nowadays, the evaluation of visual tracking algorithms still
constitutes an open problem. This fact was shown at the
International Workshops of Performance Evaluation of
Tracking and Surveillance (PETS).” Two main objectives
of PETS are the development of a common evaluation
framework and the establishment of a reference set of se-
quences to allow true comparison between different ap-
proaches. From this reference set, a 20-s test sequence has
been selected, where four different pedestrians appear. We
use this sequence to present the results of our proposed
performance evaluation procedure and to show the results
of the iTrack algorithm using the target detection algorithm
described in the previous section.

In essence, metrics that allow evaluating the perfor-
mance of a visual tracking algorithm require generating the
ground-truth trajectory for each object. However, it is very
hard to obtain ground-truth data in video surveillance ap-
plications. Another possibility is defining a set of heuristic
measures that can be related to the visual tracking
application.21 These heuristic measures are divided into two
groups: cardinality and event-based measures. Cardinality
measures are used to check whether the number of tracked
objects corresponds with the true number of objects within
the scene. In this way, it does not assess the maintenance
over time of the identification of each object. For example,
if the numbers of wrong appearances and disappearances
were equal at a particular time instant, the tracker would
misbehave without detection by cardinality measures.

Event-based measures allow checking for the consis-
tency of the identification of tracked objects over time.
Thus, the continuity of a set of predefined events is anno-
tated. Which events are chosen depends on the application
scenario, but they should be generic enough to be easily
obtained. An event consists of a label e and the time instant
t at which the event has been observed. These events will
be the ground-truth data used to compute performance mea-
sures, and the basis for comparison with the tracking sys-
tem results.

It is expected that labels for detected events will usually
coincide over time, but not the exact time instant at which
they will occur. The following events are considered: Enter,
Exit, Occluded, In Group, and Reenter. A group is defined
as a set of objects that appear in the image; it may be just
one object (see Fig. 6). All events and their causes are
described in Table 3.

To report these events, the iTrack algorithm does not
require a new definition; it only uses the prior density and
the likelihood values as follows:

e Enter: The prior density detects the object’s first oc-
currence, and it is maintained during k consecutive
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Table 3 Considered events and their causes.

Event Cause

Enter The object appears in the image

Exit The object disappears from the image
Occluded The scene occludes the object

In Group Another object occludes the object
Reenter End of occlusion or rejoining of an

object that was tracked singly

frames to properly initialize the object’s appearance
model and its velocity.

 Exit: The position components of a sample are propa-

gated out of the image limits, and its weight is set to 0.

Therefore, this sample does not appear into the poste-

rior density.

Occluded: An occlusion occurs; then the likelihood

value decreases significantly, and that can be detected

by the system.

* In Group: The numerical behavior is identical to that
in the Occluded event. The difference is that it is pos-
sible to maintain the object’s location by tracking the
object that occludes it.

* Reenter: For short occlusions it is possible to easily
identify this event, because several samples survive
the occlusion. For large occlusions, it is necessary to
use the appearance model to recognize the object
again and to distinguish this event from Enter.

To complete the description, we add another event:
Tracked. Usually, this event is not included in the event
table. Alternatively, it is assumed that the Tracked event
starts after the Enter or Reenter events and ends when a
new event from Table 3 occurs. Finally, to prevent model
degeneracy, the appearance model is not updated during the
Occluded and In Group events.

Next, we define two event-based measures that can be
used for the evaluation of visual tracking algorithms in
complex image sequences, where many agents can appear.
The main idea is to build up a table of events versus time,
which is compared with the table of results obtained by the
visual tracking algorithm. The first measure, C,, is based
only on the coincidence of observed events. The second
measure, C,, is based on computing similarities in the re-
ported object’s labels. Both measures reflect the percentage
of images where a correct correspondence of events exists.
Thus, the tracking can be properly evaluated because the
trajectory of each detected object is embedded between
events. According to the first measure, C,, one object in a
particular event has a valid correspondence when the vision
system has also found the same event. In the second mea-
sure, C;, a valid correspondence is found only when the
label also coincides. In order to verify this second measure,
the object is manually labeled L; at its initial detection,
where the index i refers to the object’s label. As a result, in
the cases that the tracker loses one object during several

Table 4 Annotated and algorithm-computed events for the test
sequence.

t Event w4 iTrack

105 Enter, O, Enter, L;=0; Enter, L1=0;
115 Enter, O, Enter, L,=0, Enter, L,=0,
188 Enter, O; Enter, L3=03 Enter, L3=03
208 Exit, L,

239 Exit, L,

244 L3=0,

244 Enter, L;=0;

279 Exit, L,

296 Enter, Ls=0;

322 Enter, O, Enter, Lg=0, Enter, L,=0O,
410 Exit, O, Exit, L Exit, L,

416 In Group, (Lg,Ly4)

445 Exit, O, Exit, (Lg, L)

450 Exit, O Exit, Lg

frames and recovers it afterwards, but fails to identify the
recovered object, its corresponding label will be changed
and the C; measurement will be wrong.

Both measures have been used to compare the iTrack
algorithm with the W* algorithm.5 In W*, Collins et al. also
use a scene model and an estimation procedure for object
tracking. However, W* has a previous process of data as-
sociation in order to compute the correspondence between
each object and its estimation filter. Both the annotated and
computed events for the test sequence of the PETS data-
base are shown in Table 4. Also, the system’s results for
several frames of this sequence are shown in Fig. 7.

Interpretation can be carried out by applying the defined
measures, C,, and C;, to the computed events of Table 4.
Next, we detail the procedure for the first object that ap-
pears in the scene, object O;. The W* algorithm found a
correct correspondence for both measures from =105 to
t=279, i.e., until the algorithm loses the object. This object
appears again at =296, and it is tracked until =410 with a
different label, Ls. Therefore, C,,=174+114=288 and C,
=174 for the W* algorithm. On the other hand, the iTrack
algorithm does not lose this object; therefore C,=305 and
C;=305. The results for all objects within the scene are
shown in Table 5.

It should be noted that the image sequence is noisy and
complex due to the similarity in appearance of both the
agents and the background. It can be seen in Table 5 that
W+* is an algorithm that relies on the detection task rather
than tracking. As a result, it obtains good measurements for
C,, but fails to identify objects correctly and therefore gives
poor results in the C; measurements. Errors reflected in C;


cetto
Rectangle

cetto
Rectangle
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Fig. 7 Visual tracking results of the iTrack algorithm for the test
sequence.

are mainly due to shadows [see Fig. 8(a)] and to the prox-
imity between two objects in the image due to the scene
perspective [see Fig. 8(b)].

Best results on C; are obtained using the iTrack algo-
rithm, since it is more robust because of the use of particle
filters and adaptive appearance models. The main drawback

Table 5 Performance measurements for the events of Table 4.

w4 iTrack
Number

Object of frames C, C C, C
O, 305 288 174 305 305
0, 330 265 093 124 124
O3 277 228 056 277 277
O, 178 178 178 178 178
Total 1090 959 501 884 884

100% 88% 46% 81% 81%

of our approach is that the temporal continuity of the prior
density can cause a too noisy object not to reappear. For
example, this fact occurs for object 2 in the test sequence.
Another important problem that remains open is that if the
objects’ appearance model is not correctly initialized, or it
suddenly changes, the object can be lost. Anyway, the re-
sults in Table 5 show that in real environments, and for
normal conditions, the algorithm’s performance is good
enough.

5 Discussion and Conclusion

From the results obtained in Sec. 4, it can be stated that
wrong detections cause an important decrease in the perfor-
mance of the tracking task. It is important to provide accu-
rate results in the detection task to ensure the correct per-
formance of the overall video surveillance system. Indeed,
another possibility is the integration of detection and track-
ing. For example, in Ref. 22 is presented an online selec-
tion of discriminative features to improve the tracking task
by maximizing the contrast between the object and its sur-
roundings. However, multiple-object tracking is not consid-
ered. Other approaches propagate detections over time™ or
use detection algorithms on the likelihood function.” This
fact can be easily included when using particle filters by
introducing new particles from a prior density based on the
detection results at each time instant in a similar fashion to
our algorithm iTrack.

Fig. 8 Wrong detections. Left: due to shadows. Right: due to the
scene perspective.
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In this regard, we consider that the most important con-
tribution of our algorithm is the use of an adaptive appear-
ance model that is automatically updated to improve the
tracking. Thus, the algorithm can be used in different ap-
plication environments without significant changes. Never-
theless, if more visual cues are considered, the algorithm
can be made more robust.” For example, color is the most
currently used cue in image-based tracking algorithms. 2

Another contribution of this work is the definition of two
performance measures for the evaluation of a video surveil-
lance system. These measures are computed automatically
by the system, and they only require an easy manual anno-
tation to describe the real events of the sequence. We have
used these measures to compute the performance of our
tracking and object detection algorithms in a complex out-
door scene. Our future work will include the evaluation of
our tracklng algorithm for indoor scenes using the CAVIAR
database.”” But we consider that our system’s evaluation is
already sufficient for the paper’s main objective, that is, to
emphasize the importance of detection in video surveil-
lance applications.
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