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a b s t r a c t

The integration of cognitive capabilities in computer vision systems requires both to
enable high semantic expressiveness and to deal with high computational costs as large
amounts of data are involved in the analysis. This contribution describes a cognitive
vision system conceived to automatically provide high-level interpretations of complex
real-time situations in outdoor and indoor scenarios, and to eventually maintain
communication with casual end users in multiple languages. The main contributions
are: (i) the design of an integrative multilevel architecture for cognitive surveillance
purposes; (ii) the proposal of a coherent taxonomy of knowledge to guide the process of
interpretation, which leads to the conception of a situation-based ontology; (iii) the use of
situational analysis for content detection and a progressive interpretation of semantically
rich scenes, by managing incomplete or uncertain knowledge, and (iv) the use of such an
ontological background to enable multilingual capabilities and advanced end-user
interfaces. Experimental results are provided to show the feasibility of the proposed
approach.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

A notable evolution has occurred in the fields of
artificial intelligence and cognitive science during the last
years [26]. Symbolic and connectionist approaches, tradi-
tionally antagonistic views of intelligence, are currently
sharing common ground and seen as complementary for
the development of hybrid intelligent systems. Especially
in modern cognitive science, interdisciplinarity plays a
fundamental role in the design of cognitive models,
capable of reasoning and adapting under strong con-
straints of uncertainty.

Cognitive systems, unlike traditional intelligent ma-
chines, do not pursuit reasoning as an end in itself, nor try
to design generalized models or absolute truth. Instead,

they highlight the need to use situated frameworks to
enable actions which are desirable in concrete, natural
contexts and toward specific goals. These systems in-
corporate plausible computational mechanisms which
approximate human-like cognitive operations of percep-
tion, reasoning, decision, learning, reaction, or commu-
nication, in order to enhance the human capacity to
recognize and interpret meaningful content in large
collections of information acquired from diverse sources.

We aim to design the integrative architecture of a
cognitive vision system (CVS), which extracts descriptions
of interpreted human behaviors and complex situations
from recorded video sequences. We focus on controlled
scenarios of a restricted discourse domain, such as
pedestrians interacting with vehicles and static objects
in inner-city scenarios, see Fig. 1. The CVS is thought to
have multilingual capabilities and an interface with
several modalities of communication with external users,
especially involving natural language (NL) interaction.
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Such characteristics demand a series of considerations
to fulfill regarding the integration of different types of
knowledge: symbolic and non-symbolic representations;
episodic and semantic content; metric-temporal and
linguistic-oriented predicates. This article discusses the
different modules implied in the semantic levels of the
considered system, describing the alternatives which have
been chosen to clarify the structure of the domain
knowledge, and to devise effective cooperation between
the representation formalisms appearing.

This contribution enhances current research on se-
mantics in multimedia services by proposing a model of
high-level architecture, which enables the integration
of semantic information, its interpretation in situated
domains, and the interaction with external end-users.
This has been particularly applied to the analysis of
information received from multiple cameras (active and
passive) placed in the considered scenarios. Such an
architecture is open to the addition of new sources, e.g.
audio information.

The paper is organized as follows: next section reviews
some work related to the field of this project. Section 3
structures the CVS by proposing a comprehensive
multimodal architecture. Following chapters are struc-
tured according to the semantic expressivity reached
by the modules described in them: first, Section 4
introduces the basic terminology of concepts selected for
the system and compiled into an ontology, which is
presented as a convenient tool for semantic integration.
Different representational formalisms are chosen as
suitable for the different types of knowledge implied in
the classification. Section 5 discusses the processes
implied at the conceptual level, which carry out tasks
for conceptualization, reasoning, and inference over the
quantitative knowledge obtained from the visual sub-
system. Section 6 describes how higher interpretations
are obtained, as a result of a situational analysis at the
behavioral level using contextual and intentional
models. After that, Section 7 gives a general description
of the user interaction level, which is designed to pro-
vide a complete interface of communication with a

final user of the system. Section 8 shows experi-
mental results for the main stages discussed, and
Section 9 concludes the article by highlighting some
important considerations and pointing out future lines of
work.

2. Related work

The system conceived in this article especially
builds upon the work done by Nagel, who has actively
investigated for decades the field of CVS applied to
vehicular traffic surveillance [17,2]. He tackles the
high-level analysis of visual occurrences by means of
fuzzy logic inference engines, and derives the results to
the generation of NL textual descriptions. An enhance-
ment of this original scheme has been developed by
Gonzàlez, which enables to enlarge the domain of a
CVS towards the analysis of general human behaviors
in image sequences, in what has been called human
sequence evaluation (HSE) [9]. Our system builds upon this
framework.

The evaluation of human behaviors in image sequences
is a commonly required task for applications such as
surveillance, content-based retrieval of documents, or
advanced interfaces related to cognitive fields. Never-
theless, while low-level visual techniques have been
actively investigated for decades, high-level processing
has acquired significant attention in the field of vision
especially in the last years, as stated in [20]. The
automatic analysis and description of temporal events
was tackled many years ago by Marburger et al. [16], who
proposed a NL dialogue in German to retrieve information
about traffic scenes. More recent methods to identify
human activities in video sequences have been reported
by Kojima et al. [13], which are based in concept
hierarchies of actions to recognize interesting elements
and developments in a scene, particularly interactions
between people and objects. In [6], Buxton reviews
progress in generative models for advanced CVS to explain
activities in dynamic scenes, observing applications such
as education, smart rooms, and also surveillance systems.
The study of interactions among moving people and
objects is undertaken under statistical approaches for
high-level attention and control. Most approaches do not
emphasize the episodic properties of analyzed behaviors;
instead, we define an independent stage to analyze the
evolution of situations and their contextualization. The
integration of asserted facts to interpret a certain situation
is made using a fuzzy metric-temporal engine, which
takes both geometric and temporal considerations into
account.

There have also been intense discussions about how to
interrelate the semantic information extracted from video
sequences. The aceMedia integrated project intends to
unify multimedia representations by applying ontology-
based discourse structure and analysis to multimedia
resources [14]. Crowley proposes some conceptual frame-
works towards the understanding of observed human
activity, including interactions [7]. He suggests a model
consisting of a set of roles to be accomplished by entities;
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Fig. 1. Snapshot from the recordings on one scenario covered by the
system. In this scene, a pedestrian (Agent 22) is stealing an object
(Object 23) from another pedestrian (Agent 2).
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specific configurations of interrelated entities playing
roles conform the so-called situations. The EU Project
ActIPret uses semantic-driven techniques to automatically
describe and record activities of people handling tools in
NL, by exploiting contextual information towards sym-
bolic interpretation of spatiotemporal data [25]. Its
reasoning engine focuses on the coordination of visual
processes to obtain generic primitives from contextual
control. The intelligent multimedia storytelling system
CONFUCIUS interprets NL inputs and automatically gen-
erates 3D animation and speech [15]. Several methods for
categorizing eventive verbs are discussed, and the notion
of visual valency is introduced as a semantic modeling
tool. In [20], Park and Aggarwal discuss a method to
represent two-person interactions at a semantic level, also
involving user-friendly NL descriptions. Human interac-
tions are represented in terms of cause–effect (event)
semantics between syntactical agent–motion–target tri-
plets. The final mapping into verb phrases is based on
simultaneous and sequential recognitions of predefined
interactions. Concerning the semantic mappings of NL
sentences, it is also interesting to mention Project
FrameNet [5], which has built a lexical resource for
several specific languages such as English, Spanish, Ger-
man, or Korean, aiming to list the acceptable semantic and
syntactic valences of each word in each of its contexts.
However, our requirement for multilingual capabilities
demands a neutral semantic stage which holds language
independency; this has been solved by defining a concept
hierarchy which is not based on eventive verbs, but on the
generality of situations, that allows structuring the
domain knowledge from a more comprehensive point of
view.

Current CVSs build on both purposive and reactive data
flows, which incorporate techniques from several vision
and reasoning levels. Most authors agree that mechanisms
for the evaluation, gathering, integration and active
selection of these techniques are fundamental to attain
robust interpretation of dynamic information [25,10].
These needs for coordination of contextual knowledge
suggests to single out specific stages for semantic
manipulation. Although many advanced surveillance
systems have adopted semantic-based approaches to face
high-level issues related to abstraction and reasoning, the
use of ontologies at high levels of such systems is only
now beginning to be adopted. Following these premises,
the structure of the proposed system is based on a
modular architecture, which allows both top-down and
bottom-up flows of information, and has been designed to
integrate ontological resources for cooperation with the
reasoning stage.

3. An architecture for CVS

The cognitive system presented in this article performs
HSE and is built upon three disciplines, namely computer
vision, knowledge representation, and computational
linguistics. It follows the multilevel architecture for
human-oriented evaluation of video sequences proposed
in [9], known as HSE. Its modular scheme suggests a

bidirectional flow of communication between consecutive
layers, in order to:

(1) Evaluate the information at a certain cognitive stage,
and generate new descriptions oriented to modules at
higher levels (bottom-up data flow). The produced
results come after the analysis of knowledge validated
by lower levels, in combination with predefined goal-
oriented models and the history of asserted facts up to
the moment.

(2) Send high-level productions and inferences back in a
reactive manner, to support low-level processing and
guide mechanisms for evaluation (top-down data
flow).

This composed configuration results in an active chain of
cooperative interactions among the different modules for
visual, conceptual, and linguistic processing, see Fig. 2.
Following the HSE scheme, we define several levels of
sensors and actuators: in the first place, the active sensor
level (ASL) consists of a distributed layout of static and
active Pan–Tilt–Zoom cameras which constantly provide
the vision system with image sequences from distinct
viewpoints. At the image signal level (ISL), a segmentation
process is performed, which allows to detect significant
information within the image data. Three levels of
granularity are considered for the detection of agent
trajectories, body postures, and facial expressions. Next,
image features resulting from the segmentation process
are manipulated by means of tracking procedures at the
picture domain level (PDL), which maintains the identifica-
tion of targets. The information about detected features is
forwarded at each time-step to the scene domain level
(SDL), in which a supervisor process takes control over the
trackers and integrates data into a unique database of
quantitative information. At this point, the geometric data
for each detected agent over time are available within a
ground-plane representation of the controlled scenario.

The syntactical interoperability among the modules is
accomplished by using XML for data exchange purposes.
In addition, XML schemas have been selected to provide
content control over the communication, yet granting the
scalability and flexibility of this process. On the other
hand, the capabilities for semantic interoperability have
been introduced into the system architecture by means of
an ontology, which restricts the validity and relationships
of the involved semantic terms to the specific working
domain. Next section describes this idea in more detail.

We proceed on the basis that visual and structural
information consisting of geometrical values are available
over time. Details about the extraction of visual informa-
tion that we use can be found in [12,22]. Next sections will
deal in more detail with the high-level stages of the
system, namely conceptual predicates (CPL), behavior
interpretation (BIL), and user interaction (UIL) levels.

4. Knowledge representation

The main motivation for the use of ontologies is to
capture the knowledge involved in a certain domain of
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interest, by specifying some conventions about the content
implied by this domain. Ontologies are especially used in
environments requiring to share, reuse, or interchange
specific knowledge among entities involved in different
levels of manipulation of the information.

There exist many approaches for the ontological
categorization of visually perceived events. An extensive
review is done in [15], from which we remark Case
Grammar, Lexical Conceptual Structures, Thematic Proto-
Roles, WordNet, Aspectual Classes, and Verb Classes,
which focus on the use of eventive verbs as main
representative elements for classifying types of occur-
rences. As an extension, our approach relates each
situation from an ontology with a set of required entities,
which are classified depending on the thematic role they
develop. The main advantage of this approach is an
independency of the particularities of verbs from a
concrete NL, thus facilitating addition of multiple lan-
guages.

The design of the ontology for the described CVS has
been done putting especial effort on the definition of the
knowledge base. Description logic allows us to structure the
domain of interest by means of concepts, designing sets of
objects, and roles, denoting binary relations between
concept instances [3]. Specifically, our domain of interest is
represented by a knowledge base K ¼ hT;Ai, which
contains two different types of knowledge:

" A TBox T storing intensional knowledge, i.e. a set of
concept definitions which classify the terminological
information of the considered domain. In practice, we
split the terminology into several TBoxes (i.e. taxo-
nomies), according to the semantic nature of the
participants for each set. Some of the main important
sets are Event/Situation-TBox (see Table 1), Entity-
TBox, and Descriptor-TBox (see Table 2).

" An ABox A storing assertional knowledge, i.e. factual
information concerning the world state and the set of
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Fig. 2. General architecture for the considered system. The knowledge representation formalism used by each module is enclosed in parenthesis. A deeper
analysis over these formalisms is done throughout the following sections.
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individuals which can be found in it. This extensional
knowledge will be first instantiated by reasoning and
inference stages dealing with First-Order Logic,
and then introduced into the relational database
by means of concept assertions, e.g. pedestrian

(Agent1) and role assertions, e.g. enter
(Agent2, Crosswalk).

The ontology language we use has been restricted to the
SHIF family (a.k.a. DL-Lite), which offers concept
satisfiability and ABox consistency to be log-space

computable, thus allowing the relational database to
handle in practice large amounts of data [1].

Talmy organizes conceptual material in a cognitive
manner by analyzing what he considers most crucial
parameters in conception: space and time, motion and
location, causation and force interaction, and attention
and viewpoint [24]. For him, semantic understanding
involves the combination of these domains into an
integrated whole. Our classification of situations (i.e. the
Event/Situation-TBox, the central element in our ontology)
agrees with these structuring domains: we organize
semantics in a linear fashion, ranging from structural
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Table 1
Taxonomy containing some concepts from the Event/Situation-TBox

owl:Thing

Event/Situation

ContextualizedEvent

ObjectInteraction
       ceLeaveObj
       cePickUpObj

LocationInteraction
         ceAppear
         ceCross
         ceEnter
         ceExit
         ceGo
         ceOnLocation

GroupInteraction
       ceGrouped
       ceGrouping
       ceSplitting

 AgentInteraction
        ceGoAfter
        ceFight

BehaviorInterpretation

bAbandonedObj
bDangerOfRunover
bTheft
bWaitForSomebody
bWaitToCross
bYield
bChase
bEscape
bSearchFor
bUseMachine

Status

   Action

aBend
aHeadTurn
aHit
       aKick
       aPunch
       aShove
aRun
aSit
aSquat
aStand
aWalk

         Activity

       ActivityPedestrian
              ypAccelerate
              ypMove
              ypStop
              ypTurn
       ActivityVehicle
              yvAccelerate
              yyBrake
              yvSteer
              yvStop

  Expression

  eAngry
   eCurious
   eDisgusted
   eFrightened
   eHappy
   eImpatient
   eNormal
   eSad
   eSurprised

Table 2
Taxonomies showing highlighted concepts from the Entity-Tbox (left) and the Descriptor-TBox (right)

Agent

     Vehicle

NonStandardVehicle
       AnimalVehicle
       EmergencyVehicle
              Ambulance
              FireEngine
              PoliceCar
StandardVehicle
       Bicycle
       Bus
       Motorbike
       RegularCar
       Tramway
       Truck
       Van

  Pedestrian

Crowd
PedestrianGroup
SinglePedestrian
       Face
       Limbs
       Torso

Object

owl:Thing

Entity

       GenericLocation
              Source
              Destination
              Locus
              Area
       ParticularLocation
              PedestrianCrosswalk
              Road
              Sidewalk
              WaitingArea
              Table
              VendingMachine

Location

PickableObject
ScenarioObject

MovableObject

SpatialDescriptor QuantityDescriptor TemporalDescriptor

Descriptor
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knowledge in vision processes (quantitative pose vectors)
to uncertain, intentional knowledge based on attentional
factors (high-level interpretations). It is structured as
follows, see Table 3:

" First, Pose Vectors are collections of detected static
configurations for the tracked elements, such as
positions or orientations at a given time-step. No class
is created for them, since semantics is only present in
form of structural information by means of quantita-
tive values.

" The Status class contains metric-temporal knowledge,
based on the information provided by the considered
trackers: body, agent, and face. Its elements represent
dynamic interpretations of the spatial configurations
and trajectories of the agents. Some examples include
to detect that a pedestrian is turning left, or that a car
is accelerating.

" The ContextualizedEvent class involves semantics at a
higher level, now considering interactions among
semantic entities. This knowledge emerges after con-
textualizing different sources of information, e.g. ‘sit
down’—‘bus stop’, or ‘wave hand’—‘open mouth’, that
allows for anticipation of events and reasoning of
causation.

" Finally, the BehaviorInterpretation class specifies event
interpretations with the greatest level of uncertainty
and the larger number of assumptions. Intentional and
attentional factors are considered, here the detection of
remarkable behaviors in urban outdoor scenarios for
surveillance purposes.

This classification of knowledge will guide the process of
interpretation. It can be seen that this proposal takes into

account all levels of extraction of visual information
which have been thought for the CVS—i.e. agent, body,
face, and relation with other detected objects, agents, and
events—and also suggests a proper way of managing the
different stages of knowledge. This categorization con-
siders the relevance of the retrieved information, some
hierarchical degrees of perspective, and also the level of
subjectiveness required for a scene interpretation, as will
be explained in the following sections.

5. Conceptual reasoning

The acquisition of visual information produces an
extensive amount of geometric data, considering that
computer vision algorithms are applied continuously over
the recordings. Such a large collection of results turns out
to be increasingly difficult to handle. Thus, a process of
abstraction is needed in order to extract and manage the
relevant knowledge derived from the tracking processes.
The question arises how these spatiotemporal develop-
ments should be represented in terms of significance,
also allowing further semantic interpretations. Several
requirements have to be accomplished towards this
end [11]:

(1) Generally, the detected scene developments are only
valid for a certain time interval: the produced
statements must be updated and time-delimited.

(2) There is an intrinsic uncertainty derived from the
estimation of quantities in image sequences (i.e.
the sensory gap), due to the stochastic properties of
the input signal, artifacts during the acquisition
processes, undetected events from the scene, or false
detections.

ARTICLE IN PRESS

Table 3
A knowledge-based classification of human motion representations

Dynamic 
interpretaton of
static elements

Disambiguation 
using information 
from other levels

Array of Static
Configurations
over time( Pose Vectors )

Status

Contextualized Event

standing, 
moving head 
up and down

sequence of 
expressions

serious expr.:
worry? / 

concentration?

trajectory of
locations

stopped:
sitting? /

standing?

standing in
front of a

scene object

staring at
scene object

nod? /
search for

something?

sequence of
postures, 
gestures

     Description
                                 Examples for:
       Agent                     Body                     Face   

Interpreted Behavior
Hypothesis of
interpretation 
using complete
scene knowledge

"A person is searching for information on 
the timetables of the subway station"

This terminology, which structures the Event/Situation-TBox, will guide the process of interpretation.
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(3) An abstraction step is necessary to obtain a formal
representation of the visual information retrieved
from the scene.

(4) This representation has to allow different domains of
human knowledge, e.g. analysis of human or vehicular
agents, posture recognition, or expression analysis, for
an eventual semantic interpretation.

Fuzzy metric temporal horn logic (FMTHL) has been
conceived as a suitable mechanism to solve each of the
aforementioned demands [23]. It is a rule-based inference
engine in which conventional logic formalisms are
extended by a temporal and a fuzzy component. This last
one enables to cope with uncertain or partial information,
by allowing variables to have degrees of truth or
falsehood. The temporal component permits to represent
and reason about propositions qualified in terms of
time. These propositions are represented by means of
conceptual predicates, whose validity is evaluated at each
time-step.

Fig. 4 shows a diagram of the different tasks managed
by the inference engine. All sources of knowledge are
translated into this logic predicate formalism for the
subsequent reasoning and inference stages. One of these
sources is given by the motion trackers in form of agent
status vectors, which are converted into has_status
conceptual predicates [4]:

t ! has_status (Agent, X, Y, Theta, V) (1)

These predicates hold information for a global identifica-
tion (instance id) of the agent ðAgentÞ, his spatial location
in a ground-plane representation of the scenario ðX;YÞ,
and his instantaneous orientation ðThetaÞ and velocity ðVÞ.
A has_status predicate is generated at each time-step for
each detected agent. In addition, certain atomic predicates
are generated for identifying the category of the agent, e.g.
pedestrian(Agent) or vehicle(Agent). The resulting
categories are selected from primitives found in the
Entity-TBox. Similarly, the segmented regions from the

scenario are also converted into logic descriptors holding
spatial characteristics, and semantic categories from the
Location-TBox are assigned to them:

point (14, 5, p42)

line (p42, p43, l42)

segment (l31, l42, lseg_31)

crosswalk_segment (lseg_31) (2)

As detected entities are automatically classified by the
motion trackers, also assigning concepts from the Loca-
tion-TBox to regions of the scenario can be well accom-
plished in an automatic manner. Each instance holds
series of semantic properties, being these elements from
the ABox, which can relate the instance to a particular
concept after a classification process. Therefore, only
methods for the obtention of semantic features are
required, which can be based upon the analysis of
trajectories.

The abstraction process is thus applied over the
information obtained both from the scenario and from
the agents, i.e. the categorized segments from the
considered location and the agent status vectors gener-
ated. Quantitative values are converted into qualitative
descriptions in form of conceptual predicates, by adding
fuzzy semantic parameters from the Descriptor-TBox such
as close, far, high, small, left, or right. The addition of fuzzy
degrees allows to deal with the uncertainty associated to
visual acquisition processes, also stating the goodness of
the conceptualization. Fig. 3 gives an example for the
evaluation of a has_speed predicate from an asserted
has_status fact. The conversion from quantitative to
qualitative knowledge is accomplished by incorporating
domain-related models to the reasoning system [18].
Hence, new inferences can be performed over an instan-
taneous collection of conceptual facts, enabling the deri-
vation of logical conclusions from the assumed evidence.
Higher-level inferences progressively incorporate more
contextual information, i.e. relations with other detected
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always( has_speed(Agent,Value) :-
     has_status(Agent,X,Y,Theta,V) ,
     associate_speed(V,Value)).

always( associate_speed(V,Value) :-            
     degreeOfValidity(V,-0.83,-0.27,0.28,0.83), Value = zero ; 
     degreeOfValidity(V,0.28,0.83,2.78,5.56), Value = small ;              
      (...)          
     degreeOfValidity(V,-16.67,-12.5,-5.56,-2.78), Value = normal ;        
     degreeOfValidity(V,12.5,13.89,100.0,100.0), Value = high ;         
     (...)          

PREDEFINED LOGIC MODELS

has_speed(Pedestrian1, high).
has_speed(Pedestrian3, zero) .

QUALITATIVE RESULT

QUANTITATIVE KNOWLEDGE
has_status(Pedestrian1, 0.320, 5.423, 0.344, 15.432). 
has_status(Pedestrian3, 6.655, 2.650, 1.971, 0.305) .

V=15.432
   100%  ’high’  
     16% ’normal’ 

V=0.305
85% ’zero’ 
15% ’small’ 

0.280 0.83 12.5 16.713.9

V

Degree of Validity 

zero normal highsmall

Fig. 3. Conversion from quantitative to qualitative values. (a) The input status vectors contain information for the agents. As a result, qualitative
descriptions are represented logically. (b) FMTHL includes fuzzy mechanisms accepting more than one single interpretation, since it confers degrees of
validity to values on uncertain ranges.
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entities in the scenario. This spatiotemporal universe of
basic conceptual relations supplies the dynamic inter-
pretations which are necessary for detecting events within
the scene, as described in the taxonomy.

We refer to those predicates expressing uniquely
spatiotemporal developments as spatiotemporal predicates
(STP). More specifically, STP facilitate a schematic repre-
sentation of knowledge which is time-indexed and
incorporates uncertainty. Hence, all those concepts in
the Event/Situation-TBox which can be inferred only using
these constraints are enclosed under this category. STP do
not consist only of atomic predicates, but they can be
produced after an interpretation based on temporal-
geometric considerations. Next example shows FMTHL
inference rules for the STP similar_direction
(Agent,Agent2):

always(similar_direction(Agent, Agent2):-

has_status(Agent,_,_,_,Or1,_),
has_status(Agent2,_,_,_,Or2,_),
Dif1 is Or1 - Or2,

Dif2 is Or2 - Or1,

maximum(Dif1, Dif2, MaxDif),

MaxDif o 30 ).

6. Behavior interpretation

An independent stage is implemented for achieving
effective modeling of behaviors and complex situations.
The concurrence of hundreds of conceptual predicates
makes necessary to think of a separate module to deal
with new semantic properties at a higher level: some
guidelines are needed to establish relations of cause,
effect, precedence, grouping, interaction, and in general
any reasoning performed with time-constrained informa-
tion at multiple levels of analysis, i.e. the contextualiza-
tion and interpretation proposed in Section 4.

We introduce the concept of high-level semantic
predicates (HLSP) as those which express semantic rela-
tions among entities, at a higher level than metric-
temporal relations. They result from applying situational
models over STP. These new constraints embed restric-
tions based upon contextualization, integration, and inter-
pretation tasks. Hence, the set of HLSP reaches the highest

account of semantics, in the cognitive sense that each one
of them implies a perceived situation or behavior which is
meaningful and remarkable by itself in the selected
domain. HLSP have been chosen as central elements in
the semantic environment of the CVS, for them being
language-independent and suitable for a neutral frame-
work between vision and linguistics.

The tool which has been chosen to enable behavior
modeling of the HLSP is the situation graph tree (SGT), see
[2,9]. The SGT is a hierarchical classification tool used to
describe behavior of agents in terms of situations they can
be in. These trees contain a priori knowledge about the
admissible sequences of occurrences in a defined domain.
Basing on deterministic models built upon elements of the
ontology, they explicitly represent and combine the
specialization, temporal, and semantic relationships of
the conceptual facts which have been asserted.

The semantic knowledge related to any agent at a given
point of time is contained in a situation scheme, which
constitutes the basic component of a SGT, see Fig. 5. A
situation scheme can be seen as a semantic function that
evaluates an input consisting of the conjunction of a set of
conditions—the so-called state predicates—and generates
logic outputs at a higher level—the action predicates—
once all the conditions are asserted. Here, the action
predicate is a note method which generates a semantic
annotation in a language-oriented form, containing fields
related to thematic roles such as Agent, Object or Location,
which refer to participants of the Entities-TBox in the
ontology.
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Fig. 4. The FMTHL inference engine manages (i) the conceptualization step for the motion data, (ii) the assertion of new facts given a series of atomic
predicates, and (iii) the application of situational models from the BIL.

similar_direction(Agent,Agent2)
has_speed(Agent, high)
has_speed(Agent2, high)

note (chase(Agent, Agent2))

SITUATION_ID

FMTL predicates

High-Level Semantic Predicate

1

Fig. 5. Situation scheme from a SGT. In this example, a set of conditions
in form of STP enable the generation of a HLSP, encoded in form of
reaction predicates.
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On the other hand, the temporal dimension of the
situation analysis problem is also tackled by the SGT. As
seen in Fig. 6, the situation schemes are distributed along
the tree-like structure by means of three possible
directional connections, the particularization, prediction,
and self-prediction edges. Particularization edges allow to
instantiate more specific situations once the conditions of
a general situation have been accomplished. On the other
hand, prediction edges inform about the following
admissible states within a situation graph from a given
state, including the maintenance of the current state by
means of self-prediction edges. Thus, the conjunction of
these edges allow defining a map of admissible paths
through the set of considered situations. A part of a basic

SGT is shown in Fig. 7, which illustrates a model to
identify situations such as an abandoned object or a theft.

As previously shown in Fig. 4, the behavioral model
encoded into a SGT is traversed and converted into logical
predicates, for automatic exploitation of its situation
schemes. Once the asserted spatiotemporal results are
logically classified by the SGT, the most specialized
application-oriented predicates are generated as a result.
These resulting HLSP predicates are indexed with the
temporal interval in which they have been the persistent
output of the situational analysis stage. As a result, the
whole sequence is split in time-intervals defined by these
semantic tags. These intervals are individually cohesive
regarding their content.
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Specialization edge

Prediction edge

Self-prediction edge

Situation graph

Situation scheme

2
has_speed (Agent, zero)

note( stopped (Agent))

AgentStopped

1

is_active (Agent)

NO_ACTION_PREDICATES

AgentInScene

1

has_speed (Agent, Vel)

NO_ACTION_PREDICATES

AgentMoving

1

has_speed (Agent, high)

note( moving_fast (Agent))

AgentMovingHighVel

1

is_turning (Agent, Direction)

note( turning (Agent, Direction))

AgentTurning

1

2

2

2

Fig. 6. A naive example of a SGT, depicting its main components. Specialization edges allow particularizing a general situation scheme with one of the
situations within its child situation graph, in the case that more information is available. Prediction edges indicate the situations available from the
current state for the following time-step; in particular, self-prediction edges hold a persistent state.

Fig. 7. This situation graph is evaluated when the system detects that an object has been left by the pedestrian who owns it. The set of conditions are
FMTHL predicates, the reaction predicate is a note command which generates a high-level semantic tag.
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By describing situations as a conjunction of low-level
conditions, and interrelating those situations among them
using prediction and specialization edges, the contextua-
lization stage described in the taxonomy of situations is
accomplished. On the other hand, since the HLSP action
predicates are modeled depending on the application, a
particular attentional factor is established over the
universe of occurrences, which can be understood as the
interpretation of a line of behaviors, for a concrete domain
and towards a specific goal.

The results obtained from the behavioral level, i.e. the
annotations generated by the situational analysis of an
agent, are actually outputs of a process for content
detection. From this point of view, a SGT would contain
the classified collection of all possible domain-related
semantic tags to be assigned to a video sequence. In
addition, the temporal segmentation of video is also
achieved: since each HLSP is associated with the temporal
interval during which it has been generated, a video
sequence can be split into the time-intervals which hold a
permanent semantic tag. Some experimental results
regarding situational analysis are presented in Section 8.

7. User interaction

A fundamental objective of cognitive systems is to
achieve effective human–machine interaction, in order to
enhance human capability and productivity across a large
collection of endeavors related to a definite domain.
Toward this end, several interfaces of communication
are required, which make knowledge accessible to
external users and permit them to take control over the
implicit operations at each level. Ontologies play a
fundamental role, especially regarding NL understanding
tasks, since they restrict the domain of validity of the
linguistic queries and organize the knowledge to achieve
an effective process of information retrieval.

In the case of the CVS discussed here, the multilingual
interface of communication with a final user has been
conceived to support two types of human–machine
interactions:

(1) Generation of textual descriptions in NL, in a multi-
lingual environment.

(2) Understanding of user queries written in NL, also for
multiple languages.

NL generation has been seen as a process of choice,
whereas NL understanding is best qualified as one of
management of hypothesis towards reaching the most
probable interpretation of a linguistic input [21]. A
detailed description of the multilingual NL generation
module for the system is presented in [8].

Regarding the NL understanding module, it has been
considered convenient for it to enable communication
with an external user at different levels of interaction:

" Answering questions about previous or current devel-
opments detected in a scene, such as ‘‘How many
pedestrians are there in the crosswalk at the moment?’’,

or ‘‘Please tell me about any potentially dangerous
behaviors occurred within the last 3 h’’.

" Carrying out specific commands to control and guide
the system. A primary interest for the CVS is to act over
its set of active cameras, so that the regions of interest
can be focused and best exploited. Accepting sentences
like ‘‘Zoom in on the last pedestrian’’ is interesting for
this purpose. However, more general directives should
be possible, such as ‘‘Concentrate only on the people
appearing by the right side’’.

" The user also has the possibility to enhance or modify
the employed knowledge base, e.g. by including new
information about the scenario or renaming identifiers.

The use of ontological semantics, and in particular the
application of DL reasoning tasks over the relational
database, has been proven to be an efficient solution
when dealing with large amounts of data. Specifically,
instance checking capabilities permit to perform tasks such
as checking out whether all defined concepts admit
individuals (consistency), finding the most specific con-
cept an individual is instance of (realization), or retrieving
the list of all individuals which instantiate a particular
concept (retrieval), among others [3].

The ontology reduces the domain of validity under-
taken by the universe of user queries, and makes it
possible to restrict them to a reduced space of situations.
By asserting concepts from the knowledge base, the
instantiated elements from the ontology are related to
particular knowledge sources, such as the factual database
and the onomasticon [19], see Fig. 8. The factual database
makes the information asserted at the ABox permanently
available, so that an awareness of the occurred facts over
time can be accessed as needed. The onomasticon consists
of a repository of names, used to relate the instances of
concepts from the ontology to the most suitable identi-
fiers or referring expressions, keeping in mind to maintain
the coherence of the semantic discourse. The onomasticon
directly points to elements of the factual database, for
instance stating that Agent4 was the individual from the
Agent class (defined in the ontology) which participated
in a chase occurrence, instantiated in the factual
database from frames 1241 to 1250 of an outdoor scene
video sequence.

Fig. 9 shows a directed scheme of the process designed
for the conversion from NL user queries to specific actions
to carry out. First, the NL understanding module parses
the NL query basing uniquely on linguistic models. The a
priori information from the scene, i.e. elements of the
scenario and types of events or situations expected, is
particularly provided by a multilingual lexicon. After that,
the Dialog Manager module selects a suitable goal query
by means of a pattern matching operation over the
disambiguated tree structure resulting from parsing. The
list of currently admissible goal queries for the system is
presented in Table 4. The resulting goal query is forwarded
to a Conceptual Reasoner, which performs a search over
the factual database, aligns the information, and decides
the action to perform according to the plan associated to
each goal. The possible final actions include presenting
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Fig. 8. When identifying a situation, the links among the different participants of the ontology, fundamentally entities, occurrences, and descriptors are
inspected. Entries from the onomasticon and the lexicons are identified as afore known entities (such as names for particular locations or for agent
categories). Instantiated situations are collected into the factual database for episodic awareness and remembering.
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Fig. 9. Scheme of the process designed to transform NL user queries in goal-oriented actions.
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Fig. 10. Set of semantic annotations produced for the outdoor scene, which have been automatically generated for the fragment of recording comprised
between frames 450 and 1301.

Table 4
List of admissible goal queries

QUERIES

COMMANDS

KNOWLEDGE BASE
MODIFICATION

add { T, S, A, L }
remove { (T), (S), (A), (L) }
rename { A }

list { (T), A }
list { (T), S, (A), (L) }
assert { (T), S, (A), (L) }
query { T?, (S), (A), (L) }
query { (T), S?, (A), (L) }
query { (T), (S), A?, (L) }
query { (T), (S), (A), L? }

restrict { A }
restrict { L }
restrict { (T), S, (A), (L) }
show { (T), (S) }

"How many thefts have been seen?"
list { S=bTheft }

"Has there been any abandoned object?"
assert { S=bAbandonedObject }

"What is the last person doing in the table?"
query { S=?, A=Agent8, L=tables }

"When was the machine kicked?"
query { T=?, S=aKick, L=VendingMachine }

"Concentrate on pedestrians appearing from the right part"
restrict { S=ceAppear, A=SinglePedestrian, L=right }

"Show me persons appearing in the last 500 frames"
show { T=(668,1168), S=ceAppear, A=SinglePedestrian }

"An object was abandoned on frame 1300"
add { T=(1300,1300), S=bAbandonedObject }

Type of query          Admissible syntax

In the current implementation, a goal query reduces the candidates in a semantic frame to a four-tuple consistent of Time (T), Situation (S), Agent/Object
(A), and Location (L). Some examples for goal interpretations of NL input queries are shown, too.
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information to the user by means of the NL generator
module, forwarding specific actions to the active vision
system, or modifying current information in the system
databases.

8. Experimental results

Figs. 10 and 11 show current experimental results, in
which a collection of HLSP have been successfully
generated for sequences recorded in outdoor and indoor
surveilled scenarios, respectively.1 The collection of HLSP
describes interactions among the involved entities, viz.
agents, objects, and locations, and also interpretations of
behaviors in the case of complex occurrences. Some
captures showing the results after tracking processes have
been provided, too, for illustration purposes. The number
of frame appears in front of each produced annotation,
and also in the upper-right corner of each capture.

Detections of new agents within the scene have been
marked in blue, annotations for activating predefined
alerts have been emphasized in red.

The outdoor scene was recorded with four static
cameras and one active camera. The video sequence
contains 1611 frames (107 s) of 720% 576 pixels, in which
pedestrians, pickable objects, and vehicular traffic are
involved and interrelated in a pedestrian crossing scenar-
io. A total of three persons, two bags, and two cars appear
on it. The events detected within the scene range from
simple agents entering and leaving the scenario to
interpretations of behaviors, such as objects being
abandoned in the scene, a danger of runover between a
vehicle and two pedestrians, or a chasing scene between
two pedestrians.

The indoor scene was also recorded with four static
cameras and one active camera. The scene contains 2005
frames (134 s) of 1392% 1040 pixels, in which three
pedestrians and two objects are shown interrelating
among them and with the elements of a cafeteria, e.g. a
vending machine, chairs, and tables. The events instan-
tiated in this case include again agents appearing and
leaving, changes of position among the different regions of
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Fig. 11. Set of semantic annotations produced for the indoor scene, which have been automatically generated for the fragment of recording comprised
between frames 150 and 1839.

1 The sequences presented are part of the data set recorded for the
HERMES Project (IST 027110, http://www.hermes-project.eu), which will
be made available to the scientific community.
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the scenario, sit-down and stand-up actions, and behavior
interpretations such as abandoned objects (in this case
this is deduced once the owner leaves the surveilled area),
the interaction with a vending machine, and violent
behaviors such as kicking or punching elements of the
scenario.

The proposed approach for situation analysis is capable
of carrying and managing confidence levels, obtained at
the conceptual stage in form of degrees of validity for the
FMTHL predicates. Nevertheless, the current implementa-
tion relies on the assertion of those predicates associated
with the highest confidence values, in order to avoid a
combinatorial explosion of solutions. As a consequence,
only one HLSP is produced by the SGT at each frame,
which permits to associate each predicate with an interval
of validity.

Part of the evaluation has been accomplished by means
of NL input queries over the two presented scenes. At this
regard, a list of 75 possibly interesting NL questions or
commands to formulate have been proposed by a group of
15 persons. The current capabilities have been restricted
to those user inputs representable by the set of goal
queries described in the previous section. Complex
input queries such as those related to pragmatic content,
e.g. ‘‘Why has the second person come back?’’ or ‘‘How is
the last pedestrian crossing the road?’’, cannot be answered
by the system at present and will be tackled in further
steps.

Other evaluation results for the current implementa-
tion have highlighted that an increment of complexity
especially affects two tasks in the high-level architecture:
the evaluation of FMTHL predicates by the inference
engine and the access to the ontology. An increment of
length for the recorded sequences results in an exponen-
tial growing of the instantiated elements in the concep-
tual database, and as a consequence a higher increment in
the computational time for the SGT traversal. These
results encourage the use of heuristic methods to solve
these difficulties.

When an alarm is missed from the vision levels, the
hierarchical structure of the SGT simply does not in-
stantiate a situation, since one of its required state
conditions is not accomplished. If the rest of information
does not allow to reach a certain level of specialization for
a situation, then its parent situation will be asserted.
Otherwise, a general situation will be asserted due to the
lack of information. Thus, the more exhaustively we
define the hierarchy of a SGT, the more robust will be
the system in front of missing information, but the more
expensive it will be the cost in terms of computation.

A similar consideration has to be done regarding false
alarms: the SGT will instantiate a wrong situation only
when the false information agrees with the sequence of
admissible states defined in the tree by means of the
prediction edges. This way, the robustness of the situa-
tional analysis is given by the SGT based on both the
temporal and specialization criteria. The generation of
incorrect information depends of both the sensory gap
(bad information provided by the vision acquisition
systems) and the semantic gap (incorrectness or incom-
pleteness of the models at high level).

These experimental results for the situational analysis
have been obtained using the F-Limette2 inference engine
for FMTHL and the SGTEditor3 graphical editor for SGTs.
On the other hand, the implementation of the ontology
and the query system have been developed using the
Protégé4 ontology editor and the Jena5 Semantic Web
Framework.

9. Conclusions

We have presented the high-level architecture of a
cognitive vision system (CVS) for surveillance purposes,
which intends to extract plausible interpretations of
occurrences appearing in video sequences from a definite
domain. The CVS presented is designed in structured
levels of reasoning that allows extracting interpretations
at different semantic levels. In addition, a relational
database management system has been described in a
first step, which has been considered from an ontological
semantics perspective, in order to offer broad practical
coverage for complex situations requiring to process large
amounts of data.

The proposed taxonomical building of the events in a
domain implies different levels of interpretation, ranging
from basic actions and events (e.g. walk, run, turn) to
contextualized events and a more scenario-specific inter-
pretation of behaviors (e.g. meeting, giving way, chasing).
The basic levels for the status of agents are defined using
human motion models, thus being applicable in a general
way. The compilation of new behaviors for a new scene is
especially focused on increasing or modifying the other
levels, which are more dependant on the particular
working scenario.

Modeling an ontology permits to reduce the complex-
ity associated to the multilingual dimension of the system.
It also allows to clarify and simplify the design and
implementation of components to bridge the semantic
gap. Ontologies are particularly useful in the application
field of NL understanding, since they make easier the
categorization of a discourse and play a great role in
disambiguation. Another important benefit is to restrict
the domain of acceptance for the different forms of
semantic representation, since the constraints applied to
the terminology fix the validity of the situations to detect.
This way, mechanisms for prediction based on restrained
behavioral models can be developed.

As stated in [19], changes in the topology of the
ontological hierarchy and in the distribution of knowledge
do not hold special significance. What has been realized as
much more crucial has been to focus on coverage, in order
to find the most suitable grain size of the possible
semantic representations with relation to the needs of
the concrete application, e.g. how particular have to be the
interpretations in order to detect a given set of occur-
rences. The main idea is to model those behaviors
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requiring a more subjective interpretation in a way such
as they are not wrongly extended to general situations,
and also making easy deducible situations not require
excessively detailed information. That is why the de-
scribed approach has been designed to work at different
levels of representation regarding the generality of
situations, and the reason for the general architecture to
have been conceived in terms of collaborative modules.

By increasing the complexity of the scenes in terms of
number of cameras and number of agents, we actually
increase the difficulties to the tracking systems. If the vision
levels concerning tracking and calibration tasks are robust
enough, the upper levels of the system should be able to
deal with this kind of complexity, only by paying a higher
computational time. Nevertheless, the behavior of crowds
or large groups of agents has not been analyzed yet, and it
has to be included as future work: the exponential growing
of complexity for certain situations could easily complicate
real-time performance at the semantic levels. In order to
solve such difficulties, new approaches need to be investi-
gated, firstly involving the exploitation of confidence levels
resulting from the conceptual reasoning stage.

The addition of alternative domains, such as soccer,
will be tackled in the future. In this regard, one of the most
time consuming tasks will be deciding upon a final
taxonomy of accepted situations, which is both based on
the available tracking capabilities and the complex design
of the situational models. Managing large group interac-
tions and prioritizing the situations of interest are issues
that will probably represent a great cost, too, once the
functionality of the tracking system is granted. The rest of
tasks follow the described approach.

One immediate application is related to the field of
semantic indexation. The ontology of situations provides
the space and validity of possible annotations for video
sequences related to the domain. In the specific imple-
mentation, a SGT acts as an actual content classifier, which
characterizes the temporal structure of video sequences
from a semantic perspective. Thus, the resulting predi-
cates can be identified as high-level semantic indexes,
which can facilitate further applications such as search
engines and query-based retrieval of content.

The approach suggests enhancements for the automa-
tization of many tasks, such as the automatic categoriza-
tion of semantic regions in the scenario, or regarding
discourse goal recognition at a pragmatic level, for
example. Experimental results show that the bidirectional
collaboration between ontological resources and reasoning
stages at different representation levels provides expres-
sive results. Nevertheless, one fundamental requirement is
to establish a pondered trade-off between the use of
reasoning capabilities, which enable powerful but rigid
interpretations, and the flexibility of the relational data-
bases, in which an increase of complexity notably
diminishes the effectiveness of the cognitive system.
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descriptions of human behavior from video sequences, in:
30th Annual German Conference on AI (KI 2007), Osnabrück,
Germany, Lecture Notes in Computer Science, Springer, Berlin,
2007.
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