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Abstract— In this work we present a robust detection method
in outdoor scenes under cast shadows using color based
invariant gradients in combination with HoG local features.
The method achieves good detection rates in urban scene
classification and person detection outperforming traditional
methods based on intensity gradient detectors which are sen-
sible to illumination variations but not to cast shadows. The
method uses color based invariant gradients that emphasize
material changes and extract relevant and invariant features
for detection while neglecting shadow contours. This method
allows to train and detect objects and scenes independently of
scene illumination, cast and self shadows. Moreover, it allows
to do training in one shot, that is, when the robot visits the
scene for the first time.

I. INTRODUCTION

This work proposes a robust detection method for robotics

applications, such as people and object detection or scene

classification under cast shadows. In outdoor vision tasks,

illumination conditions constraint the detector performance

due to varying features produced by cast shadows. This

method is focused to object detection in urban settings,

within the European Project URUS [1], where varying shad-

ows are present and illumination conditions are extreme

(Figure 1). In these environments, detection becomes a

challenging task for robots and network robot systems.

Recently, several techniques based on Histograms of

Oriented Gradients [2]–[6] have been developed, which are

robust and reliable for representing image local features.

The key point in using HoG descriptors is to capture or

encode feature appearance layout where each histogram cell

contains an oriented gradient distribution for pixels within

this cell. Although, successful detection results with HoG

based detectors are sensible to cast shadows because they

depend on intensity gradients. In cast shadows scenes, a

lot of false gradients are present making difficult to train

good reliable descriptors and perturbing object gradients

in the detection phase, see Figure 2. Dalal and Triggs [3]

proposed to use HoG descriptors for pedestrian detection

in static images and videos. They use an overlapping

local contrast normalization in order to improve detection
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performance giving certain invariance to illumination and

shadows. In Bosch et al. [2] pyramidal Histograms of

Oriented Gradients are used for object categorization. These

pyramidal descriptors encode features and their spatial

layout at several resolution levels, allowing robustness to

small feature shifts. Finer histogram levels are weighted

more than coarser ones, since finer resolutions have more

detailed feature shape description. This idea is inspired by

image pyramid representation of scenes [5]. The descriptor

matches measure the appearance and spatial correspondences

of features, i.e. oriented gradients. Pyramidal descriptors are

computed on Regions of Interest (ROIs) in order to suppress

background clutter and occlusions. This spatial pyramidal

representation is an extension to the Dalal and Triggs method

where Histograms of Oriented Gradients are restricted to

finer resolutions. In the same way, SIFT features [6] compute

fixed HoG descriptors in a grid of 4×4 cells and 8 gradient

orientations around key points. In Scandaliaris et al. [7], we

proposed to use color based invariant contours and compared

them against simple intensity contours in object detection

domain under shadows. The proposed method outperformed

classical methods and showed that invariant contours can

be extracted. The method is based on a physical model

of the image formation process and strives to remove the

effects of shadows, producing a contour image invariant

to shadows. Instead of calculating the gradient modulus

from the color images, we detect contours that correspond

to material changes using a modification to the approach

proposed by Gevers et al. [8] based on a combination

of photometric invariant contours and automatic local

noise-adaptive thresholding. Using these invariant contours

we compute and select discriminative Haar-like features

to build a simple but fast object detector. However, a

large number of contour Haar features had to be computed

because of the limited discriminative power of these features.

In this paper, we use pyramidal Histograms of Oriented

Gradients in order to have more discriminative and robust de-

scriptors with which to describe objects or scenes, and to face

up the drawback of cast shadows using color based invariant

gradients (referred to as invariant gradients from now on)

[7] that reduce illumination and shadow effects and improve

detection results in robotics applications. The descriptors

extracted during the learning phase (see section IV) encode
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(a) scene 1 at 12 pm (b) scene 1 at 1 pm (c) scene 1 at 3 pm

(d) scene 5 at 12 pm (e) scene 5 at 4 pm (f) scene 5 at 6 pm

Fig. 1. Barcelona Robot Lab. Change of illumination conditions at different
instances of daylight

relevant and invariant features useful for detection. As cast

shadows are reduced, this method uses few sample images to

train the detector. Therefore, it is possible to train the detector

using just one illumination condition, being able to detect

object or scenes with different illumination conditions. Then,

the process of learning (Boosting of HoG features) is limited

to the first time the robots visit the area (this is true when

the illumination conditions do not change dramatically). To

validate our method, we have carried out experiments in

scene classification and person detection under cast shadows

and compare them against using intensity gradient based

HoG descriptors (see section V). Our results outperform

intensity gradient based HoG descriptors and achieve good

detection rates.

II. COLOR BASED INVARIANT GRADIENT DETECTOR

In this work we assume the dichromatic reflection model

[9] for the physical interaction between the light incident

over the scene, the surfaces of the scene and the camera.

Moreover, we assume that the illumination source is white

or spectrally smooth and the interface reflectance is neutral.

Under these assumptions the reflection model is given by:

Vk = Gb(~n,~s)E
∫

λ
B(λ )Fk(λ )dλ +Gi(~n,~s,~v)ESF (1)

where Vk is the kth sensor response, Gb and Gi are geometric

terms denoting the geometric dependencies of the body and

surface reflection component. That is, surface normal, ~n,

illumination direction, ~s, and viewing direction, ~v. B(λ ) is

the surface albedo, E denotes the illumination source, and

S denotes the Fresnel reflectance, both assumed independent

of λ . Fk(λ ) denotes the kth sensor spectral sensitivity and

F =
∫

λ Fk(λ )dλ .

A. Color Models

The invariant gradient detector that we propose is based on

the work of Gevers [8] and the modifications proposed in [7].

This detector uses three color models that have different and

complementary properties regarding their response: RGB,

c1c2c3 and o1o2. In the RGB color model {R,G,B} values

TABLE I

COLOR MODEL SENSITIVITY TO PARAMETERS OF THE IMAGE

FORMATION PROCESS. + DENOTES SENSITIVITY AND - INVARIANCE OF

THE COLOR MODEL TO A PARTICULAR PARAMETER.

shadow geometry material highlights

RGB + + + +
c1c2c3 - - + +
o1o2 + + + -

correspond directly with Vk in (1). The c1c2c3 color model

is defined by

c1(R,G,B) = arctan(R/max(G,B)) (2)

c2(R,G,B) = arctan(G/max(R,B)) (3)

c3(R,G,B) = arctan(B/max(R,G)) (4)

and the o1o2 color model is defined by

o1(R,G,B) = (R−G)/2 (5)

o2(R,G,B) = (R+G)/4−B/2 (6)

It follows from (1) that the RGB color model is sensitive

to all parameters of the dichromatic reflection model, the

c1c2c3 color model depends only on the sensor spectral

sensitivities and the surface albedo or material for dull

objects, being independent of shadows and geometry (E and

Gb in the model) and the o1o2 color model is invariant

to highlights for shiny objects under the same assumptions.

o1o2 is still dependent on geometry (Gb). These results can

be seen in Table I.

B. Color Invariant Gradient

The invariant gradient is computed by calculating the x and

y derivatives for each channel of the three aforementioned

color models using Gaussian derivatives and the gradient

magnitude for each color model is computed using the

Euclidean metric over the various channel derivatives:

∇C =

√

√

√

√

N

∑
i=1

[

(

∂ci

∂x

)2

+

(

∂ci

∂y

)2
]

(7)

with C representing each color model, N being their dimen-

sionality, and ci the particular color channels.

However, the presence of noise in the images can lead

to maxima in the gradient modulus that are not related to

the parameters of the image formation process. One way

to eliminate these maxima is propagating the uncertainties

associated to the color models as well as the different

gradient moduli. In order to do this, we calculate the gradient

magnitude of the RGB, c1c2c3 and o1o2 color models, and

then, we propagate (see [7] for details) the RGB uncertainties,

assumed to be known, through the various color models up

to the gradient magnitudes, using the uncertainties associated

with the gradient magnitude of each color space, σ∇C
. Finally

we define the gradient product

M = ∇RGB ·∇c1c2c3 ·∇o1o2 (8)
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M will have a maximum value when the gradient moduli of

all color models are simultaneously maximum, and will have

low values when the gradient modulus of any of the color

models is low. By looking at Table I it is evident that the

response of M emphasizes material changes in the image, in

contrast to those in shadows, geometry and highlights.

Then, the uncertainty in the function M is also computed

to yield

σM ≤ ∑
j

∂M

∂ (∇C j)
σ∇C j

(9)

where the summation is over the three color models, RGB,

c1c2c3 and o1o2, and with σ∇C, dropping the j subindex,

being calculated for each color model using

σ∇C ≤

∑i

[

∣

∣

∣

∂ci

∂x

∣

∣

∣
·σ ∂ci

∂x

+
∣

∣

∣

∂ci

∂y

∣

∣

∣
·σ ∂ci

∂y

]

√

∑i

[

(

∂ci

∂x

)2

+
(

∂ci

∂y

)2
]

(10)

with C representing each color model and ci the particular

color channels. The uncertainties σ ∂ci
∂x

and σ ∂ci
∂y

are computed

by approximating the derivatives by filtering with a mask,

Gaussian in this case.

Finally, we obtain a local noise-adaptive threshold for

removing noisy measurements from M.

M′ =

{

M M > 3σM

0 otherwise
(11)

The final result emphasizes the contribution of material

changes and at the same time reduces that of shadow-

geometry and highlights on the input images.

III. PYRAMIDAL HOG DESCRIPTOR

Methods based on Histograms of Oriented Gradients

(HoG) have shown successful results in object detection and

classification [2], [4], [5], [10]. Although they have been

tested in outdoor scenes for object detection, such as cars,

these methods have not been tested under extreme illumi-

nation conditions, such as varying shadows. We address

detection under these conditions and compare the results by

using the invariant gradient for detecting the main features

of the scene object contours that do not belong to a cast

shadow. In this work, the pyramidal HoG [2] is used as local

descriptor using its spatial histogram resolution pyramid,

see Figure 3. With this representation, features (oriented

gradients) can be matched at several spatial grid resolu-

tions, which improves the detection of features, unlike other

methods which have a fixed spatial histogram resolution

[3], [6]. This implementation allows a certain invariance

to image transformations, i.e. feature shifts. The pyramidal

HoG descriptor is similar to the well known SIFT descriptor

[6], however the last one has fixed spatial grid resolution

(4× 4) with descriptors located around key points (blobs).

We opt for localizing local descriptors in multiple scales and

locations.

We use the pyramid match kernel similarity measure

between two HoG descriptors Hx,Hy [11]. This measure is

defined as a weighted sum of feature matches that occur

in each resolution level. Feature matching in each level is

carried out using histogram intersection [12] and its level

weight assigned according to histogram resolution. Matches

in coarser levels have lower weight than finer ones. This

technique is robust to clutter since additional features do not

affect the pyramid matching. Additionally, pyramid matching

computation is linear in the number of local features [11].

The matching can be expressed as :

kL(Hx,Hy) =
1

2L
I0(Hx,Hy)+

L

∑
l=1

1

2L−l+1
Il(Hx,Hy) (12)

where Il(Hx,Hy) = ∑
D
i=1 min(H l

x(i),H
l
y(i)) is the intersection

measure between descriptor histograms Hx and Hy, of di-

mension D, at level l.

IV. IMPLEMENTATION DETAILS

In order to compute and select local descriptors a boosting

algorithm is used [13]. This algorithm selects the most

discriminative HoG descriptors to build a robust classifier

by means of a weighted linear combination of them. At each

iteration a weak classifier is selected which better classifies

the training images from positive and negative samples.

Each weak classifier is defined by one pyramidal HoG

descriptor and its location, scale and threshold. The threshold

is calculated automatically inside the boosting algorithm as

the threshold where the classification rate is maximum. In

our experiments 280 weak classifiers are boosted to form a

strong classifier.

The minimum and maximum descriptor scales are 16×
16 pixels and 0.6 of training image size, respectively. The

training image size depends on the target to detect and its

aspect ratio. In our case, for person detection, 120 × 100

images are used and for scene classification 180×240 images

are used. Our experiments show that scene classification can

be efficiently done in low resolution images.

V. EXPERIMENTS

This section describes experiments carried out to show

the proposed detector performance under cast shadows and

diverse illumination conditions, and to compare these re-

sults with the same method but using intensity gradient

descriptors. False gradients resulting from cast shadows

affect the detector performance and make difficult to train

the detector. In the experiments, it is possible to observe

how the proposed method extracts and selects more robust

features to shadows than using traditional intensity gradient

methods. These intensity gradient based descriptors can only

detect objects or scenes under similar illumination conditions

as the training images. The experiments are performed on

scene classification and person detection that are typical

applications in robotic vision systems and are part of the

URUS project [1].
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(a) seq 1 (b) seq 5 (c) seq 15

(d) seq 50 (e) seq 115 (f) seq 200

(g) seq 50 (h) seq 115 (i) seq 200

(j) seq 50 (k) seq 115 (l) seq 200

Fig. 2. Person image sequence. a-c) training samples d-f) test samples g-i)
intensity contours j-l) shadow invariant contours

Fig. 3. Pyramidal HoG descriptor

(a) o = 4, l = 1 (b) o = 8, l = 2 (c) o = 8, l = 3

(d) o = 4, l = 1 (e) o = 8, l = 2 (f) o = 8, l = 3

Fig. 4. Person detection ROC curves. a, b, c) Intensity gradient method.
d, e, f) The proposed invariant gradients method. o: number of gradient
orientations; l: number of levels in the pyramid.

A. Person detection

In this experiment, we have a sequence of images of a

person that moves through a scene with shadows caused

by trees and buildings. The images show the upper body

part of the person. We have used the first 20 images for

training and the rest of the images, about 100, for tests. These

images have cast shadows (see Figure 2 d-f), the upper body

presents some shifts and also some 3D body rotations. The

experiments were carried out as follows: the same sequence

of images has been filtered by an intensity gradient and a

invariant gradient (Figure 2). Then a HoG descriptor has been

used in both sequences of filtered images, and the measure

distance described in section III and boosting classifier have

been used for detection on the scenes. The results are shown

in the detection curves (ROC) shown in Figure 4. The axes

represent true positive ratio and false positive ratio; both

ratios are in the interval [0,1]. As we can see, our proposed

invariant gradient outperforms the traditional gradient filter

method. Moreover, the maximum detection rate of the HoG

descriptor is obtained when we use 8 gradient orientations

and 3 levels in the pyramid representation (16×16 cell grid).

B. Scene Classification

The same method has also been used for urban scenes.

In this case the images were taken by four cameras of the

Barcelona Robot Lab (experimental site for urban robots at

UPC, Barcelona). Figure 5 shows some examples of these

images. The training of each detector was done with the

images captured from one of the four scenes in a short

time interval in the morning. In this case, we used about

10 images for each camera taken within an interval of 5

minutes. The aim is to classify the images from a negative

image dataset and test images from the four scenes in order

to measure scene detector performance and discrimination

among scenes. 500 negative samples were extracted from

images with high contrast. Around 100 test images per

scene were selected from the scene camera sequence to

test the detectors. The results are shown in Figures 6 and

7. These curves were obtained testing each learned scene
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(a) scene 1 (b) scene 5 (c) scene 6 (d) scene 19

(e) scene 1 (f) scene 5 (g) scene 6 (h) scene 19

(i) scene 1 (j) scene 5 (k) scene 6 (l) scene 19

(m) scene 1 (n) scene 5 (o) scene 6 (p) scene 19

Fig. 5. Barcelona Robot Lab scenes. a-d) training images e-h) test images i-l) intensity contours m-p) shadow invariant contours

detector (rows) with negative images and test images from

the four scenes (columns). What we expect is that curves in

the diagonal must have maximum detection with minimum

false positive rate. We can see that this is true for Figure

7 for where the invariant gradient detector was used. This

fact shows that learned scene detectors respond better with

images of their own class. Therefore, it is possible to perform

robust and reliable classification in images with varying

cast shadows, even having similiar scenes patterns. As this

method is based on local descriptors, it can withstand mild

occlusions. In cases with a moderate amount of unknowns

elements (bikes, people, etc.), some descriptors would fail

but other carry on with the supporting decision, thanks to

the boosted classifier (section IV).

Fig. 6. Scene detection ROC curves (intensity gradient detector)
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Fig. 7. Scene detection ROC curves (invariant gradient detector)

VI. CONCLUSIONS

In this paper, we have shown that detection performance in

outdoor scenes under cast shadows improves when combin-

ing invariant gradients with pyramidal HoG descriptors. The

method has been tested in person detection and scene classi-

fication achieving high detection rates and outperforming the

pyramidal HoG descriptors based on intensity gradients. The

descriptors based on the invariant gradients are more robust

to shadows and changes in illumination conditions, and thus

the proposed method allows for training with a small number

of sample images taken at any time of the day.
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