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Abstract: In this paper, the robust fault diagnosis problem for non-linear systems considering both
bounded parametric modelling errors and noises is addressed using constraints satisfaction. Combining
available measurements with the model of the monitored system, a set of analytical redundancy relations
(ARR), relating only known variables, can be derived. These relations will be used in the fault diagnosis
procedure to check the consistency between the observed and the predicted system behaviour. When
some inconsistency is detected, the fault isolation mechanism will be activated in order to provide an
explanation of the possible cause. Finally, a fault estimation procedure is used to estimate the fault size.
To illustrate the usefulness of the proposed approach, a case study based on a well-known four tanks
system benchmark is used. Copyright c© IFAC 2009
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1. INTRODUCTION

Model-based fault detection methods rely on the concept of an-
alytical redundancy. The simplest analytical redundancy form
consists in the comparison of measurements of a system output
with corresponding analytically computed values. These latter
values can be obtained from measurements of other variables
and/or from previous measurements of the same variable by
means of a model. In the general case, different estimations
of a same variable, measured or not, can be compared. The
resulting differences are called residuals and are indicative of
faults in the system. Under ideal conditions, residuals are zero
in the absence of faults and non-zero when faults are present.
However, modelling errors, disturbances and noises in complex
engineering systems are inevitable, and hence there is a need
to develop robust fault detection algorithms. The robustness
of a fault detection system indicates its ability to distinguish
between faults and model-reality differences (Chen and Patton,
1999). Classical approaches facing disturbances and modelling
errors use the disturbance decoupling principle trying to obtain
a residual that is sensitive to faults but not to these errors. Tech-
niques like unknown input observers, eigenstructure assign-
ment (Chen and Patton, 1999) or structured parity equations
(Gertler, 1998), among others, can be found in the literature.
On the other hand, process and measurement noises are usually
stochastically modelled (the typical assumption is a zero mean
white noise) and their effect is considered using statistical deci-
sion methods (Basseville and Nikiforov, 1993). However, such
approaches present several drawbacks. First, decoupling from
modelling errors (specially for non-linear models) is difficult to
solve because the distribution matrix is normally unknown and
time varying. Thus, it should be estimated. Moreover, the num-

ber of decoupled disturbances/modelling errors is limited by the
degree of freedom in the residual generation procedure (Gertler,
1998). As an alternative strategy, disturbances/model errors are
assumed to be bounded and their effects are propagated to
the residual using, for example, interval methods (Puig et al.,
2002). Second, in many practical situations it is not realistic to
assume a statistical distribution law for the noise, being more
natural to assume that only bounds on the noise signals are
available. In this case, the so called set-membership approach
(Milanese et al., 1996) can be used in the context of fault
detection as suggested by Witczak et al. (2002). In both cases,
the advantage of the bounded description of uncertainty is that
it does not requires restrictive assumptions (as an small number
of unknown disturbances/parameters, known statistical distri-
bution law). However, a limitation is that faults that produce a
residual deviation smaller than the residual uncertainty due to
model uncertainty will remain undetected (missed alarms).

In this paper, the robust fault diagnosis problem for non-linear
systems considering both bounded parametric modelling errors
and noises is addressed using constraints satisfaction. Combin-
ing the available measurements with the model of the monitored
system, a set analytical redundancy relations (ARR), relating
only known variables, can be derived. These relations will be
used in the fault diagnosis procedure to check the consistency
between the observed and the predicted process behaviour.
When some inconsistency is detected, the fault isolation mech-
anism will be activated in order to provide an explanation of
the possible cause. Finally, a fault estimation procedure is used
to estimate the fault size. To illustrate the usefulness of the
proposed approach, a case study based on a well-known control
benchmark based on a four tanks system is used.
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The remainder of the paper is organized as follows: Section 2
presents the background on constraints satisfaction. In Section
3, robust fault detection is formulated as a constraints satisfac-
tion problem. In Section 4, the constraints satisfaction approach
is applied to fault isolation and estimation tasks. The proposed
fault diagnosis approach is applied to the four-tanks system in
Section 5. Finally, in Section 6, the conclusions are drawn.

2. BACKGROUND ON CONSTRAINTS SATISFACTION

2.1 Introduction

A Constraints Satisfaction Problem (CSP) on sets can be for-
mulated as a 3-tuple H = (V ,D, C) (Jaulin et al., 2001), where

• V = {v1, · · · , vn} is a finite set of variables,
• D = {D1, · · · ,Dn} is the set of their domains represented

by closed sets and
• C = {c1, · · · , cm} is a finite set of constraints relating

variables of V .

A solution point of H is an n-tuple (ṽ1, · · · , ṽn) ∈ D such that
all constraints in C are satisfied. The set of all solution points of
H is denoted by S(H). This set is called the global solution set.
The variable vi ∈ V is consistent in H if and only if ∀ṽi ∈ Di

∃ (ṽ1 ∈ D1, · · · , ṽi−1 ∈ Di−1, ṽi+1 ∈ Di+1, · · · , ṽn ∈ Dn) |

(ṽ1, · · · , ṽn) ∈ S(H),

The solution of a CSP is said to be globally consistent, if
and only if every variable is consistent. A variable is locally
consistent if and only if it is consistent with respect to all
directly connected constraints. Thus, the solution of CSP is said
to be locally consistent if all variables are locally consistent. An
algorithm for finding an approximation of the solution set of a
CSP can be found in Jaulin et al. (2001).

2.2 Implementation using Intervals

It is well known that the solution of CSPs involving sets has a
high complexity (Jaulin et al., 2001). A first relaxation consists
of approximating the variable domains by means of intervals
and finding the solution through solving an Interval Constraints
Satisfaction Problem (ICSP) (Hyvönen, 1992). The determi-
nation of the intervals that approximate in a more fitted form
the sets that define the variable domains requires global con-
sistency, what demands a high computational cost (Hyvönen,
1992). A second relaxation consists in solving the ICSP by
means of local consistency techniques, deriving on conserva-
tive intervals. Interval constraint satisfaction algorithms have
a polynomial-time worst case complexity that implement local
reasonings on constraints to remove inconsistent values from
variable domains (Jaulin et al., 2001). In this paper, the ICSP
is solved using a tool based on interval constraint propagation,
known as Interval Peeler. This tool has been designed and de-
veloped by research team of Professor Luc Jaulin (Baguenard,
2005). The goal of this software is to determine the solution of
ICSP in the case that domains are represented by closed real
intervals, and consists in iterating two main operations: domain
contraction and propagation. The solution provides refined in-
terval domains consistent with the set of ICSP constraints.

A. Contractors. A contractor is an operator which reduces
domains. Applied to the solution of a CSP H, an operator

CH : IR
n → IR

n, where IR
n is the set of all interval vectors

(boxes) in Rn, is a contractor if it satisfies:

∀[v] ∈ D :

{

CH([v]) ⊂ [v]
CH([v]) ∩ S(H) = [v] ∩ S(H). (1)

The purpose of a contractor is to reduce any box [v] without
loosing any solution point in S(H). In Jaulin et al. (2001), a
number of contractors for a variety of sets are given. They are
algorithms of polynomial complexity that reduce the interval
domains of variables that comply with a set of constraints.

B. Propagation. When several constraints are involved, the
contractions are performed sequentially, until no more signif-
icant contraction can be observed. The interval propagation
method converges to a box which contains all solution vectors
of the constraints set. If this box is empty, it means that there
is no solution. It can be shown that the box to which the
method converges does not depend on the order to which the
contractors are applied (Jaulin et al., 2001), but the computing
time is highly sensitive to this order. There is no optimal order
in general, but in practice, one of the most efficient is called
forward-backward propagation.

3. ROBUST FAULT DETECTION AS A CSP

3.1 System Modelling

Let us consider the following discrete-time non-linear system
describing the behavior of the system to be monitored:

xk+1 = g(xk, uk, θk)

yk = h(xk, uk, θk), (2)

where

• x ∈ X ⊆ Rnx is the vector of system states, u ∈ U ⊆
Rnu is the vector of system inputs and y ∈ Y ⊆ Rny is
the vector of system outputs. Moreover, X , U and Y are
the interval boxes

X = {x ∈ R
nx | xi ≤ xi ≤ x̄i, i = 1, · · · , nx} ,

U = {u ∈ R
nu | ui ≤ ui ≤ ūi, i = 1, · · · , nu} ,

Y =
{

y ∈ R
ny | y

i
≤ yi ≤ ȳi, i = 1, · · · , ny

}

.

• g : Rnx → Rnx and h : Rnx → Rny are the state space
and measurement non-linear functions.

• θk ∈ Rnθ is a vector of uncertain time-varying parameters
with their values bounded by a compact set θk ∈ Θ of box
type

Θ =
{

θ ∈ R
nθ | θ ≤ θ ≤ θ̄

}

.

Alternatively, according to Blanke et al. (2006), the model of
the system (2) can be defined by a pair (C,V), where

V = {x} ∪ {u} ∪ {y} ∪ {θ}

is the set of variables that are in the domainsD = {X ,U ,Y, Θ}
and

C = {g} ∪ {h}
is the set of constraints.

The system variables and parameters can be decomposed into
known Vknown and unknown Vunknown ones. When system
inputs and outputs are measured, Vknown = {u} ∪ {y} ∪ {θ}.
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The design of a model-based diagnosis mechanism is based on
utilizing the system model in the construction of the diagnosis
tests. Using the structural analysis tool (Blanke et al., 2006),
a set of ARRs, R, can be derived from the discrete-time non-
linear system (2). ARRs are constraints which only involve the
subset of known variables Vknown. The set of ARRs can be
represented as

R = {ri = Ψi(yk, uk, θk) = 0, i = 1, . . . , nr}, (3)

where Ψi is an ARR function and nr is the number of ARRs
obtained.

3.2 Fault Detection using CSP

To be able to diagnose a system, values of the known variables
and a set ARRs of the system are needed. The known variables
are typically measured sensor and actuator signals. Thus, let us
denote the following sequences of input/output measurements
and parameters in a time window L from the initial time instant
k − L to time a instant k:

ũk = (uj)
k
j=k−L = (uk−L, uk−L+1, ..., uk), (4)

ỹk = (yj)
k
j=k−L = (yk−L, yk−L+1, ..., yk), (5)

θ̃k = (θj)
k
j=k−L = (θk−L, θk−L+1, ..., θk). (6)

Definition 3.1. (Set-membership estimation). Given the set of
ARRs (3) and a sequence of inputs ũk and outputs ỹk of the
system at time k, the set of input/ouputs and parameters that
are consistent at time k using the set-membership approach is

(Uk,Yk, Θk) = {(uk, yk, θk) |

∃ (uj ∈ Uj)
k
k−L , (yj ∈ Yj)

k
k−L , (θj ∈ Θj)

k
k−L

such that Ψ(ỹk, ũk, θ̃k) = 0
}

.

According to this definition, a fault can be detected as follows.

Definition 3.2. (Fault detection). Given a sequence of mea-
sured inputs ũk and outputs ỹk of the system, a fault is detected
at time k if there does not exist a set of sequences ũk, ỹk and

θ̃k which satisfy the set of ARRs (3) with inputs, outputs and
parameters belonging to U , Y and Θ, respectively.

Definition 3.1 and 3.2 suggest a way of implementing the set-
membership estimation and fault detection problem as a CSP
(Blanke et al., 2006). In this case, when a fault occurs, the
solution to the CSP associated to the set-membership estima-
tion problem given in Definition 3.1 will be the empty set,
detecting the presence of an inconsistency. Algorithm 1 resumes
the computation procedure when ICSP approach is used.

4. FAULT ISOLATION AND ESTIMATION AS A CSP

4.1 Fault Isolation as a CSP

Once an inconsistency is detected using Algorithm 1, fault
isolation can be achieved by proving the consistency of the
sequence of inputs (4) and outputs (5) with the different sets
of ARRs that can be generated for the set of considered faults
fj , j = 1, ..., nf using a modified set of system equations (2)
including the model of each fault:

Algorithm 1 Fault detection using ICSP

1: for k = 0 to N do
2: V ⇐ {uk−L, uk−L+1, · · · , uk, yk−L, yk−L+1, · · · , yk,

θk−L, θk−L+1, · · · , θk}
3: D ⇐ {Uk−L,Uk−L+1, · · · ,Uk,Yk−L,Yk−L+1, · · · ,Yk,

Θk−L, Θk−L+1, · · · , Θk}
4: C ⇐ {Ψ(ỹk, ũk, θ̃k) = 0}
5: Hk = (V ,D, C)
6: Sk = solve(Hk)
7: if Sk = ∅ then
8: Exit (Fault detected)
9: end if

10: end for

Rfj = {ri = Ψi(yk, uk, θk, fj) = 0, i = 1, . . . , nr}. (7)

Let Rfj be the set of ARRs that is proved to be consistent
with the sequence of inputs (4) and outputs (5). Then, fj is the
candidate fault. Algorithm 2 shows how the isolation procedure
is implemented using ICSP.

Algorithm 2 Fault isolation using ICSP

1: k ⇐ fault detection time
2: V ⇐ {uk−L, uk−L+1, · · · , uk, yk−L, yk−L+1, · · · , yk,

θk−L, θk−L+1, · · · , θk}
3: D ⇐ {Uk−L,Uk−L+1, · · · ,Uk,Yk−L,Yk−L+1, · · · ,Yk,

Θk−L, Θk−L+1, · · · , Θk}
4: for j = 1 to nf do

5: Cj ⇐ {Ψi(ỹk, ũk, θ̃k, fj) = 0}
6: Hj = (V ,D, Cj)
7: Sj = solve(Hj)
8: if Sj .= ∅ then
9: fj proposed as candidate fault

10: end if
11: end for

4.2 Fault Isolation using Classical FDI Approach

The fault isolation procedure described in the previous sub-
section can be made more efficient according to the structural
analysis approach to FDI (Blanke et al., 2006). In particular,
each individual ARR in (3) is expected or not to be sensitive to
a fault, characterizing the binary Fault Signature Matrix (FSM),
M . In this matrix, columns correspond to fault signatures and
rows represent all possible ARRs R: mij = 1 means that
whenever fault fj occurs, the ARR ri ∈ R is violated.

Given the set of ARRs (3), fault detection and isolation proper-
ties can be stated based on the information stored by matrix M .
This matrix has the following properties (Blanke et al., 2006):

• Detectability: A set of faults are detectable if their effects
on the system can be detected on the available set of ARRs
using Algorithm 1. A fault fk is detectable if at least there
is a “1” present in the kth-column of M .

• Isolability: A set of faults are (fully) isolable if their
effects can be discriminated one of each other considering
the available set of ARRs. Two faults, fh and fl, are
isolable if the hth-column and the lth-column of M are
different.

Taking into account these properties, the fault isolation proce-
dure proceeds as follows. Let

1140



R1 = {r1,i = Ψ1,i(yk, uk, θk) = 0, i = 1, . . . , n1,r}

R0 = {r0,i = Ψ0,i(yk, uk, θk) .= 0, i = 1, . . . , n0,r}

be the set of consistent and inconsistent ARRs, respectively, at
time instant k when some inconsistency in the set R in (3) is
detected using Algorithm 1. The sets R1(k) and R0(k) deter-
mine the observed fault signature. The fault isolation candidates
are given by the faults whose signature in M matches with the
observed fault signature.

4.3 Fault Estimation

Once a fault fj , with j ∈ [1, · · · , nf ], has been isolated, the
fault size can be estimated by modifying the set-membership
approach introduced in Definition 3.1 by including the model
of the fault in the system model (2) assuming that is bounded
by the set Fj defined by the interval box

Fj =
{

fj | fj ≤ fj ≤ f̄j

}

as follows:

(Uk,Yk, Θk,Fj,k) =
{

(uk, yk, θk) | ∃ (ul ∈ Ul)
k
l=k−L ,

(yl ∈ Yl)
k
l=k−L , (θl ∈ Θl)

k
l=k−L , (fj,l ∈ Fj,l)

k
l=k−L

such that Ψfj (ỹk, ũk, θ̃k, f̃j,k) = 0
}

,

where Ψfj are the subsets of ARRs (3) which are affected by
the fault fj

Then, using algorithm Algorithm 3 with these new set of ARRs
instead of the ones generated with non-faulty model, the fault
size can be estimated.

Algorithm 3 Fault estimation using CSP for a given fj

1: for k = 0 to N do
2: V ⇐ {uk−L, · · · , uk, yk−L, · · · , yk,

θk−L, · · · , θk, · · · , fj,k−L, · · · , fj,k}
3: D ⇐ {Uk−L, · · · ,Uk,Yk−L, · · · ,Yk,

Θk−L, · · · , Θk,Fj,k−L, · · · ,Fj,k }

4: C ⇐ {Ψ(ỹk, ũk, θ̃k, f̃j,k) = 0, }
5: Hk = (V ,D, C)
6: Sk = solve(Hk)
7: Estimated fault size Fk

8: end for

5. CASE STUDY

The application example to show the effectiveness of the pro-
posed approach is based on the quadruple-tank process pro-
posed as a control benchmark by Johansson (2000).

5.1 System Description

A schematic diagram of the process is shown in Figure 1.
This continuous-time non-linear process has been implemented
and simulated in MATLAB/SIMULINK using the parameters
described in Johansson (2000). The components of the system
are tanks T1, T2, T3 and T4, by-pass valves V1 and V2, and
pumps P1 and P2. The process inputs variables are u1 and u2

Fig. 1. Quadruple-tank process

(input voltages to the pumps). Finally, the measured variables
are the tanks levels h1, h2, h3 and h4.

From the continuous-time non linear equations presented in
Johansson (2000), the following non-linear discrete model can
be obtained by using the Euler discretization with a sampling
time of 1s:

h1 (k + 1) = h1 (k) −
a1

A1

√

2gh1 (k)

+
a3

A1

√

2gh3 (k) +
γ1k1

A1

u1 (k) ,

h2 (k + 1) = h2 (k) −
a2

A2

√

2gh2 (k)

+
a4

A2

√

2gh4 (k) +
γ2k2

A2

u2 (k) ,

h3 (k + 1) = h3 (k) −
a3

A3

√

2gh3 (k)

+
(1 − γ2)k2

A3

u2 (k) ,

h4 (k + 1) = h4 (k) −
a4

A4

√

2gh4 (k)

+
(1 − γ1)k1

A4

u1 (k) , (8)

where A1 = A3 = 28 cm2, A2 = A4 = 32 cm2,
a1 = a3 = 0.071 cm2, a2 = a4 = 0.057 cm2 and
g = 981 cm/s2. Parameters k1, k2, γ1 and γ2 are assumed
to belong to the intervals k1 ∈ [3.14, 3.33], k2 ∈ [3.25, 3.29],
γ1 ∈ [0.43, 0.70] and γ2 ∈ [0.34, 0.60]. The objective of by-
pass valve, V1, is to derive a proportional part, γ1, of the pump
flow, Qp1, to T1 and the other part, 1−γ1, to T4. Similarly, flow
Qp2 is distributed to T2 and T3 in function of γ2 value.

In the simulation benchmark three different types of faults have
been considered:

• Abrupt faults f1 and f2 in valves V1 and V2, respectively.
These abrupt faults have been simulated considering γ1 =
0 or γ2 = 0.

• Abrupt faults f3 and f4 in pumps P1 and P2, respectively.
In these fault situations, pumps reduce a 40% their flow
capacity.

• Incipient faults f5, f6, f7 and f8 have been considered
in level sensors h1, h2, h3 and h4, respectively. Faults are
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Table 1. Fault signature matrix (FSM)

ARR f1 f2 f3 f4 f5 f6 f7 f8

r1 1 0 1 0 1 0 1 0

r2 0 1 0 1 0 1 0 1

r3 0 1 0 1 0 0 1 0

r4 1 0 1 0 0 0 0 1

implemented by introducing a slow derivation of their real
value.

5.2 ARRs and Faults

From system constraints given by (8), four ARRs R =
{r1, r2, r3, r4} can be derived by using structural analysis
(Blanke et al., 2006)

r1 = Ψ1({ỹ1, ỹ3}, ũ1, {γ̃1, k̃1}),

r2 = Ψ2({ỹ2, ỹ4}, ũ2, {γ̃2, k̃2}),

r3 = Ψ3(ỹ3, ũ2, {γ̃2, k̃2},

r4 = Ψ4(ỹ4, ũ1, {γ̃1, k1}), (9)

considering that the set of known variables is:

• inputs: u = {u1, u2},
• outputs y = {y1, y2, y3, y4} (measured outputs yi corre-

spond to the voltage of level measurement devices),
• and parameters θ = {γ1, γ2, k1, k2}.

The FSM associated to this set of ARR is shown in Table 1,
where in columns appear the different faults according to the set
of fault scenarios considered: faults in valves (f1, f2), pumps
(f3, f4) and level sensors (f5, f6, f7 and f8).

5.3 Non-faulty Scenario

First, consistency checking results obtained using Algorithm 1
in a scenario without faults are presented. The initial variables
domains are given by: yi ∈ [0, 20] for i = 1, 2, 3, 4, θ1 ∈
[0.43, 0.70], θ2 ∈ [0.34, 0.60], θ3 ∈ [3.14, 3.33] and θ4 ∈
[3.29, 3.35].

Figure 2 shows in red the predicted output domain, Yi, of each
level hi using the set of ARR (3) for a given u1 and u2. On
the other hand, in blue, it is plotted the level measured value
yi plus the measurement uncertainty bound. The consistency is
obtained since the intersection is not empty.

5.4 Faulty Scenarios

In the case of a fault scenario, the set of ARRs (9) becomes
inconsistent. Figure 3 shows the results of the Algorithm 1 when
a f1 appears. In this figure, it is plotted in red the predicted value
of each Yi, in black the measured output of hi in blue and the
measured output yi plus its uncertainty. The fault is introduced
at time instant 450 (in samples). Notice that at time instant 451
there is an inconsistency because Algorithm 1 provides Y1 = ∅
and Y4 = ∅, that corresponds to the observed fault signature
{1, 0, 0, 1}. Then, according to the theoretical FSM in Table 1,
the potential faults are: f1 or f3.

These two faults have been implemented in the model as a
parametric fault. Fault f1 changes the domain of the constant
valve γ1 by γ1 ± fV 1. In a similar way, fault f3 changes the

0 100 200 300 400 500 600
0

5
Level (cm)

0 100 200 300 400 500 600
0

5

10

0 100 200 300 400 500 600
0

1

2

0 100 200 300 400 500 600
0

1

2

time (samples)

Y
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Y
2

Y
3

Y
4

Fig. 2. Temporal evolution of Y (blue) and measured output
variable with uncertainty (red)
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time (samples)
400 450 500

1

2

3

4

5

time (samples)

Y
1

Y
3

Y
2

Y
4

Fig. 3. Temporal evolution of Y (blue), measured output (black)
and measured output with uncertainty (red)

constant pump p1 by p1 ± fP1. Taking into account these
potential faults, the following new ARRs

rfV 1,1 = ΨfV 1,1({ỹ1, ỹ3}, ũ1, {γ̃1, k̃1}, f̃V 1),

rfV 1,4 = ΨfV 1,4(ỹ4, ũ1, {γ̃1, k̃1}, f̃V 1),

rfP1,1 = ΨfP1,1({ỹ1, ỹ3}, ũ1, {γ̃1, k̃1}, f̃P1),

rfP1,4 = ΨfP1,4(ỹ4, ũ1, {γ̃1, k̃1}, f̃P1), (10)

have been introduced in the ICSP problem in order to apply
Algorithm 3 1 .

Using these new ARRs in the Algorithm 3, the consistency is
reached when the fault domain of f1 is F1 = [0, 0.7]. Figure
4 shows the Yi time evolution and F1 estimation, respectively.
Figure 5 shows the output variables domain evolution and the
fault estimation, F4, when the fault f4 is considered. In this
scenario, the observed fault signature is {0, 1, 1, 0}, giving as
candidate faults: f2 or f4. The consistency is reached when the
estimated fault domain is F4 = [0, 3].

Finally, a scenario with a fault in level sensor y1 is presented.
As described in Section 5.1, an incipient fault in this sensor

1 In the set of ARRs (10) for simplicity the discrete-time instant has been

omitted
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has been introduced starting at sample 500 and producing a
constant decrement in the measured value. This fault has been
modeled as an additive fault modifying the ARR Ψ1 with a
new parameter fy1. Figure 6a and 6b show, respectively, the
output variables domain evolution and the fault estimation,
fy1, the detection time is at time instant 581, with a delay
of 81 samples. Observed fault signature is {1, 0, 0, 0}, what
according to the theoretical FSM matrix, the fault candidate is:
f5, which corresponds to the fault in level sensor y1.

6. CONCLUSIONS

In this paper, the robust fault diagnosis problem for non-linear
systems considering both bounded parametric modelling errors
and noises has been addressed using constraints satisfaction.
Combining the available measurements with the model of the
monitored system, a set of ARRs, relating only known vari-
ables, were derived. These relations were used in the fault diag-
nosis procedure to check the consistency between the observed
and the predicted process behavior. When some inconsistency is
detected, the fault isolation algorithm will be activated in order
to provide an explanation of the possible cause. Finally, a fault
estimation procedure was used to estimate the fault magnitude.
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The usefulness of the proposed approach has been illustrated
using a case study based on a four-tanks system.
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