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Abstract 

 

This work presents a controllability analysis of a low temperature ethanol reformer 

based on a cobalt catalyst for fuel cell application. The study is based on a nonlinear 

dynamic model of a reformer which operates in three separate stages: ethanol 

dehydrogenation to acetaldehyde and hydrogen, acetaldehyde steam reforming, and 

water gas shift reaction. The controllability analysis is focused on the rapid dynamics 

due to mass balances and is based on a linearization of the complex non-linear model of 

the reformer. RGA, CN and MRI analysis tools are applied to the linear model 

suggesting that a good performance can be obtained with decentralized control for 

frequencies up to 0.1 rad/s.  

 

 

1. Introduction 

 

 Ethanol is a promising source of hydrogen as it is a renewable raw material when is 

obtained from biomass, and hence, research on catalytic steam reforming of ethanol and 

ethanol reformers is acquiring increasing interest. Ethanol reforming, as illustrated in 

Eq. (1), has been extensively studied over catalysts based on Ni, Ni/Cu, Co, and noble 

metals (Pd, Pt, Rh and Ru) [1, 2]. The reaction is reversible and highly endothermic 

(∆H◦
298 = 208.4 kJ mol−1), which accounts for the requirement of operation temperatures 

usually above 873K. At such high temperatures ethanol is mainly reformed into a 

mixture of H2 and CO, as shown in Eq. (2). As carbon monoxide is a strong poison for 

the anode’s platinum catalyst of the fuel cell it is mandatory to pass the reformate 

through a water gas shift reactor [3-4], see Eq. (3), in order to generate further hydrogen 



and eliminate CO. However, cobalt-based catalysts are particularly suitable for ethanol 

steam reforming at lower temperatures, 623–673K, where the water gas shift reaction is 

very effective. For this reason, increasing attention is being focused on developing low-

temperature catalytic processes with cobalt catalysts, both in packed reactors [5-6] as 

well as in microreactors for portable applications [7-8].  

 

22252  2 6 3 COHOHOHHC +→+     (1) 

COHOHOHHC  2 4 2252 +→+     (2) 

222 HCOOHCO +↔+      (3) 

 

In a previous contribution, the authors reported results addressing the dynamic 

modeling of a three-module reactor for fuel cell hydrogen feeding [9]. Three specific 

catalysts were selected for each of the three modules of the reforming unit. 

Nanocrystalline SnO2 was used for the first step comprising ethanol dehydrogenation, 

while acethaldeyde steam reforming was performed in the second module with a 

Co(Fe)/ZnO catalyst doped with Na+. For the final water-gas shift step a reported 

kinetics for a commercial catalyst based on Fe2O3-Cr2O3 was selected [11]. Detailed 

kinetic experiments over well-defined samples for the first two stages of the process 

were reported, as well as fitted parameters for power-law type kinetic expressions to 

quantify the correspondent reaction rates. A dynamic mathematical model of the three-

stage reformer was presented as a tool for design of control-oriented devices.  

Monoliths were chosen to support the referenced catalysts. Fig. 1 shows a schematic 

representation of the three-staged reforming process. 

 



The present contribution exploits the mathematical model presented in the above-cited 

reference [9] to perform a controllability analysis of the reforming unit. While the 

overall aim of the project is the design of a control strategy of the complete system 

(reformer + fuel cell), this paper focuses on the analysis of the fast response of the 

reformer due to changes in flow/concentrations of the feed. Future work will address the 

design of temperature controllers and the integration of the reformer with the fuel-cell. 

The following sections comprise a description of the mathematical model of the 

reformer and the analysis methodology followed by sensitivity and controllability 

analyses. 

 

2. Non linear Model 

 

A one-dimensional, pseudo-homogeneous, non-steady-state model has been used to 

represent the dynamic behavior of the ethanol reforming reactor in the already 

referenced series of monolithic stages. 1-D pseudo-homogeneous models are usually 

selected for control-oriented applications to reduce the solving time of the equations 

system, [10]. The kinetic expressions for the reactions occurring in stages 1 and 3 are 

taken from [9] and [11], respectively. However, a modification has been introduced in 

the present work regarding the system of reactions over the cobalt-based catalyst in bed 

2. In fact, a parallel-series scheme is proposed to adjust the experimentally-observed 

product distribution, where acetaldehyde is reformed with steam towards carbon 

monoxide or carbon dioxide, which are consecutively balanced by the water-gas shift 

reaction: 

                                  

                           C2H4O + H2O → 3 H2 +2 CO                                    (4) 



        C2H4O + 3 H2O → 5 H2 +2 CO2                                (5) 

                           CO + H2O ↔ CO2 +H2                                              (6) 

 

First-order, power-law type kinetics were used for the three reactions. For reactions (4) 

and (5) a dependency on only acetaldehyde concentration is considered; kinetics for the 

water-gas shift reaction, Eq. (6), is based on the partial pressures of all the components 

involved in the reaction. By using a non-linear multi-parametric fitting routine, we 

obtained values of the reaction constants (at 673K) of 1.38x104 mL gcat
-1 h-1, 1.52x104 

mL gcat
-1 h-1 and 9.70x102 mol m-3 s-1 atm-2, respectively. 

   

The mass balance used to represent the non-steady-state reactor behavior, along with the 

corresponding initial and boundary conditions, is presented below: 

Mass balance (component j) 
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Initial conditions                ...1,0 0 Nj[e,L]x(x)    C,x)(C jj =∈∀=     (8) 

 

Boundary conditions         00 , >∀= t(t)    C)(t,C ejj                             (9)          

 

The major assumptions underlying the model are the following:  

 

• Gas properties are function of temperature and gas concentration. Ideal gas law 

is applicable due to the low operating pressure of ca. 1 bar. 



• The pressure drop in the reactors is assumed negligible due to the high void 

fraction of the monolithic structures. 

• The use of low-diameter monoliths and optimized inlet distributors supports the 

assumption of 1-D model avoiding the occurrence of pronounced radial mass 

profiles. 

 

The numerical solution of the set of partial differential equations, Eq. (7) to (9), is 

accomplished by its transformation into an ODE-system by discretization of the spatial 

derivative. To this end, backward finite differences have been selected (first-order, 38 

equidistant discretization points). The resultant ODE equations (198th order) are solved 

by an algorithm implemented in MATLAB® (ODE45 Normand-Prince). Additional 

details regarding the mathematical model and its solving strategy can be found in [9]. 

 

3. Methodology 

 

We consider the complete nonlinear model of the three-staged reforming process with 

two inputs and 6 outputs: 

• Inputs: FC2H5OH,e, FH2O,e 

• Outputs: FC2H5OH,L , FC2H4O,L, FH2O,L , FH2,L, FCO,L and FCO2,L 

 

In this work, firstly a steady state sensitivity analysis is performed on the complete non 

linear model around a nominal operating point OP1. This operating point has been 

selected from appropriate conditions of the catalysts (which correspond to Ts1= 648K, 

Ts2=673K and Ts3=633K) and the dimension of each monolith to provide the required 



hydrogen flow to feed a 1kW PEM fuel cell. See [9] for more details. The static input-

output non linearity characteristic is verified for different input levels. 

 

One of the main goals of this work is to perform the controllability analysis of the 

reformer system. To this end, an accurate study of linearized versions of the model, at 

different operating points, is considered.  The resulting MIMO linear systems are 

studied using different analysis tools. These tools are mathematic operators applied to 

the squared transfer functions of the linear system that provide relevant information 

such as stability, controllability, sensitivity, robustness, etc. They are applied to the 

process, without control, in order to characterize the controllability of the system as a 

property of the process itself. Preferred control structures to drive the system correctly 

are then deduced. 

 

Three different controllability indexes are used [12]: the Relative Gain Array (RGA), 

the Condition Number (CN) and the Morari Resiliency Index (MRI). The RGA index is 

used to determine the interaction among control loops in a multivariable process. It is 

defined as the ratio of the open-loop gain for a selected output when all the other loops 

of the process are open, to its open-loop gain when all the other loops are closed. RGA 

of a complex non-singular matrix M is calculated as indicated in Eq. (10), where x 

denotes element by element multiplication (Hadamard product). 

 

            RGA (M) = M x (M-1)                                    (10) 

 

Pairings showing RGA close to unity matrix at frequencies around bandwidth are 

preferred. This rule favors minimal interaction between loops, which means 



independence of the loops. Being the loops independent, stability problems caused by 

interaction are prevented. Numbers around 0.5 indicate relevant interaction. The RGA 

indicates other useful control properties. One of the most important is that structures 

with large RGA elements around the bandwidth frequency are difficult to control due to 

sensitivity to input uncertainty [13]. 

 

The second controllability index analyzed is the condition number (CN). It also 

proceeds from the singular value decomposition of the transfer function. The CN of a 

matrix is defined as the ratio between the maximum and minimum singular values and it 

is typically used for the selection of the control structure. It provides a numerical 

indication of the sensitivity balance in a multivariable system. Large condition numbers 

indicate unbalanced sensitivity and also sensitivity to changes in process parameters, 

Therefore, structures with small CNs are preferred. 

 

Finally, the Morari Resillency Index (MRI) is the minimum singular value of the open-

loop transfer function, [12]. The MRI is a useful measure for determining whether 

acceptable control can be achieved. If it is less than one then poor control performances 

are expected. Large MRIs over the frequency range of interest are preferred. Usually, 

only the steady state value of these controllability indexes is regarded. However, their 

analysis in the frequency domain is important.  

 

4. Study of the static behaviour of the system 

 

To test the nonlinearity of the model we obtained steady state values of the reactor 

output flow rates FH2, FCO and FCO2, following changes in ethanol input flow rate 



∆FC2H5OH and in water input flow rate ∆FH2O with respect to a nominal operating point,  

see OP1 in Table 1. In Figs. 2 to 5 the H2 yield, ηH2 as defined in Eq. (11), ethanol 

conversion, xC2H5OH defined as shown in Eq. (12), and acetaldehyde conversion, xC2H4O, 

see Eq. (13), are plotted against the changes performed in FH2, FCO, FCO2 by applying 

successive steps of +10%. The results have been represented according to the following 

input increases: 

 

• ∆FC2H5OH: 10% Ethanol input increase while keeping the nominal water input 

flow rate (FH2O=0.008210 mol/s). 

• ∆FH2O: 10% Water input increase while keeping the nominal ethanol input flow 

rate (FC2H5OH=0.001337 mol/s). 

• ∆FH2O and ∆FC2H5OH: Both water input and ethanol inputs simultaneously 10% 

increases in both. 

 

The hydrogen yield ηH2 is used to measure the effectiveness of the reforming process. It 

is calculated as the ratio between the hydrogen molar flowrate at the outlet of stage 3 

and the theoretical hydrogen production: 

  η
eC2H5OH,

LH2,

F  6

F
H2 =                                                 (11) 

 

Ethanol and Acetaldehyde conversions, in stage 1 (xC2H5OH) and stage 2 (xC2H4O) are 

calculated through the following definitions: 
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Fig. 2 shows that the static gains in FH2 are almost linear positive for FC2H5OH and for 

simultaneous FH2O and FC2H5OH increases. However, the static gain is negative when 

only ∆FH2O is performed. Regarding the hydrogen yield, the slope observed is steeper 

for perturbations in the input water flow rate than in the ethanol input flow rate. This 

behaviour is ascribed to higher drops in residence times (note the feed ratio 

H2O:C2H5OH of 6:1 in OP1)  

   

Fig. 3 shows that the behavior of the FCO is strongly nonlinear with ∆FC2H5OH, while Fco 

is almost constant when FH2O and FC2H5OH increase simultaneously. The negative slope 

of FCO with ∆FH2O is due to a greater extent of the water-gas shift reaction. 

 

Carbon dioxide flow rate behaviour for perturbations in ethanol and water inputs is 

reported in Fig. 4. As also shown for CO, CO2 flow rates increase due to higher partial 

pressure as FC2H5OH,e increases. Conversely, as the residence times decreases for higher 

water inputs, drops of FCO2 are observed. 

 

Fig. 5 reports ethanol and acetaldehyde conversion trends for the same variations in the 

inlet flows as reported above. Minimum ethanol and acetaldehyde conversions of ca. 

90% are required for an appropriate closure of the economical balance of the system, as 

no recycling of unreacted products is planned. As observed in Fig. 5, higher drops in 

conversion are verified following increases in space velocities. In contrast, the 

variations in the ethanol feed fulfil the restriction of minimum conversion requirement.     



 

Table 1 summarizes the performance of the reforming unit at different operating points; 

results were obtained by using the detailed non linear model described in Eq. (7) to (9). 

When the reactor is fed with a higher flow rate of water, OP3 and OP4, the H2 yield 

diminishes. The advantage, however, is a marked decrease of the CO molar fraction 

output, yCO, L. We can also observe that it is possible to improve significantly the 

conversion of stage 1, xC2H5OH, by increasing the operating temperature, OP9. In this 

case a relative good yield is obtained, although the molar fraction yCO, L also increases. 

We observe that in OP5, with a large ∆FC2H5OH from OP1, the hydrogen yield diminishes 

and yCO increases significantly.  The best performance, with respect to the production of 

hydrogen (FH2, L) corresponds to the operation points OP2, OP4, and OP5. Among these, 

OP4 is preferred as less CO is generated, in agreement with PEMFC feed restrictions. 

 

5. Controllability Analysis 

 

5.1 Analysis of Linearized Models 

 

Linear models have been obtained by linearising the complete nonlinear model around 

the different operating points.  To derive the linear models, SIMULINK® has been 

employed because it is integrated in MATLAB which provides an extensive range of 

tools. Unfortunately the accurate linearization tool supplies a state space matrix of the 

system with a very large dimension.  Thus, a model reduction strategy has been applied 

to transform the original model into a simplified form with lower order while preserving 

the dynamic characteristics of the original high-order system [14].   

 



Within the Model Order Reduction (MOR) algorithms for Linear Time-Invariant 

systems, supplied by MATLAB, the following methods can be distinguished: Balanced 

MOR based on Hankel Norm Approximation, Proper Orthogonal Decomposition, and 

MOR algorithms based on Kriol subspace methods. 

 

The Balanced MOR technique was used here to achieve such task directly from the 

198th order model. Balanced truncation of the 198th order model was achieved by using 

the function "balred" of the MATLAB Robust Control System Toolbox. It computes a 

kth order model given by: 

mmmmm DBAIsCG ++= −1)(                          (14) 

of a possibly non-minimal and not necessarily stable nth order system described by 

DBAIsCG ++= −1)(                                     (15) 
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Where k < n, ∞
. denotes the infinity norm of the difference between the full order and 

the truncated models, totbnd is the total error, and svh(i) denotes Hankel Singular 

Values of the full order model. Hankel Singular Values are defined as the square-roots 

of the eigenvalues of the system’s reachability and observability grammians. They are 

considered a measure of the energy of each state in the system and an indication of its 

contribution to system characteristics. Thus, keeping only the states that contribute more 

to the system dynamics will reduce the order of the model while preserving most of its 

characteristics in terms of stability, time response and frequency response. Fig. 6 shows 

Hankel Singular Values of the 198th order model and the detail of the first 20. We have 

kept here 10 states in order to preserve the characteristics of the full order model.  



 

Fig. 7 compares the frequency response gains from the 198th order model and those 

from the reduced 10th order model. The outputs of the two models overlap quite well, 

leading to the conclusion that the 10th order reduced model is a good approximation of 

the linearized 198th order model. 

 

5.2 Input- Output Pairing  

 

One of the most common approaches to control a Multi-Input Multi-Output (MIMO) 

system is to use a diagonal controller, which is often referred to as a decentralized 

controller. The decentralized control works well if the system is close to diagonal, 

which means that the plant can be considered as a collection of individual single-input 

single-output (SISO) sub-plants with no interaction among them. In this case, the 

controller for each sub-plant can be designed independently. If the interaction between 

loops is large, then the performance of the decentralized controller may be poor. 

 

Due to the behavior near the operating points the preferred pairing choices seems to be 

the FC2H5OH,e → FH2,L pair and the FH2O,e → FCO,L pair. This pairing choice is also 

confirmed by the relative gain array (RGA) matrix of Gm. The frequency range of 

interest is given by the bandwidth frequency, normally defined as the frequency up to 

which control is effective [8]. The range of frequencies analysed in this work is 10-3–100 

rad s−1 because it is assumed that the bandwidth will be within this range. In Table 2 we 

show RGA at zero frequency for all operating points. Fig. 8 shows RGA11 values for all 

the different operating points over the frequency range of interest.  

 



The RGA can also be used to assess the loop interactions. Large off-diagonal elements 

of the RGA matrix indicate large loop interactions. A plot of the magnitude difference 

between the diagonal and off-diagonal elements of the RGA matrices is shown in Fig. 9 

for OP1, OP3 and OP9. This figure shows that the interactions increase at high 

frequencies.  

 

From steady state (s=0) to frequencies near ω=0.1 rad/s, the RGA11 element is close to 

1.26 (see table 2 or Fig. 8), indicating that the diagonal pairing suggested before could 

be used. However, at higher frequencies the off-diagonal RGA elements decrease to 

values around 0.6, thus it is better to use a decentralized control for these frequencies. 

These conclusions are reinforced by observing that in Fig. 8 the three operating points 

show a similar positive value in the frequency range 10-3–10-1 [rad s−1], hence we can 

expect a good performance for the decentralized controller only for this frequency 

range. 

 

In Figs. 10 and 11 the CN and the MRI of the properly scaled 2 input x 2 output system 

are plotted, respectively. As mentioned before, the CN can be used as a controllability 

measure: If the CN is small the effects of process model mismatch are not likely to be 

important; conversely, for large CN there may be sensitivity to model mismatches. The 

best controllability is obtained for OP3, although other operating points, as OP4, OP6, 

and OP9, show a reasonable controllability. This suggests that increasing FH2O can help 

to improve the performance of the control. The larger the value of MRI, the more 

controllable the process is. The lower values observed in Fig. 11 may indicate poor 

performance. 



 

From the study of the static behaviour of the system we can derive several 

considerations about the design of a control strategy for the reformer. From the analysis 

of Fig. 2, we could expect that, for the control of the H2 flow based on the manipulation 

of ∆FC2H5OH, a linear controller should have a good performance. However, such a 

controller would give an excessive CO flow rate when the operation is far from the 

nominal operating point, as shown in Fig. 3, and hence leading to an inappropriate 

performance of the reformer. If we desire to control FH2 and FCO at the same time, we 

could expect that a linear decentralized controller based on the manipulation of ∆FH2O 

and ∆FC2H5OH would perform appropriately. To improve the efficiency, or the conversion 

rates (xC2H5OH and xC2H4O), more complex (coupled) controllers could be used. An 

alternative is employing additional control loops based on the temperature as the 

manipulating variable, which we are currently exploring.  

 

6. Conclusions 
 

The high non linear behaviour of the proposed three-staged reformer has been 

confirmed by the steady state analysis and it has been deduced that some operating 

points are more efficient. In particular, those with a larger water input flowrate allow the 

diminution of CO. The same situation occurs for those operating points with 

temperatures slightly higher in the ethanol dehydrogenation stage and the acetaldehyde 

steam reforming stage.  The controllability analysis with the RGA, CN and MRI 

suggests that for frequencies until 0.1 rad/s a decentralized control should present a 

good performance.  Due to the high nonlinearities and the crossed interactions among 

reactions, a centralized controller, although more complex, should perform better if the 



reformer works far from the nominal operating point. This is the case for the envisaged 

application, H2 supply for a varying load fuel cell. Future work will address the design 

of these controllers taking into account both mass and energy balances. 
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Nomenclature 

C     concentration (mol mR
−3) 

F     molar flowrate (mol s−1) 

N     number of components (=6) 

R      reaction rate (mol mR
−3 s−1) 

t      time (s) 

T      temperature (K) 

v      superficial velocity (m s−1) 

x      conversion 

z       axial coordinate (m) 

ηH2    hydrogen yield (%) 

y        mole fraction 

 

Subscripts 

0          initial conditions (t=0) 

e           reactor entrance 

L          reactor outlet 

g          gas 

i    reaction number, i=1,…,3 (ethanol decomposition, acetaldehyde reforming,        

water-gas shift, respectively) 



j           component number, j=1,…, 6 (C2H5OH, H2O, C2H4O, H2, CO, CO2,      

            respectively) 

C2H5OH   relative to ethanol 

H2O         relative to water 

C2H4O     relative to acetaldehyde 

H2          relative to hydrogen 

CO          relative to carbon monoxide  

S1           stage 1  

S2           stage 2  

S3           stage 3 

T           total 

 

Greek letters 

∆H◦298   heat of reaction (J mol−1) 

vji           stoichiometric coefficient of component j in reaction i 
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Figures 

 

Fig. 1  Schematic representation of the three-staged reforming process under study. 

 

Fig. 2 Molar flow (solid lines) and yield of hydrogen (dotted lines) as function of the 

incremental input in FH2O,e and FC2H5OH,e.  Model under OP1 operating conditions: 

isothermal operation at Te=648K, operating pressure of ca. 1 bar, FT,e=0.09547 mol s-1, 

yC2H5OH,e:yH2O,e=1:6. 

 



Fig. 3 Molar flow of carbon monoxide as function of the incremental input in FH2O,e and 

FC2H5OH,e. Operating conditions as indicated in Fig.2. 

 

Fig. 4 Molar flow of carbon dioxide as function of the incremental input in FH2O,e and 

FC2H5OH,e. Operating conditions as indicated in Fig.2. 

 

Fig. 5 Plot of xC2H5OH and xC2H4O as function of the incremental input in FH2O,e and 

FC2H5OH,e. Operating conditions as indicated in Fig.2.  

 

Fig. 6 Hankel Singular Values of the 198th order model and the detail of the first 20 

values. 

 

Fig. 7 Superposition of Bode plots for the reduced 10th order model, in blue, and the 

linearized 198th order model, in red. 

 

Fig. 8 Relative Gain Array of the element (1,1) for the different operating points in the 

frequency range 10-3–10-1 [rad s−1]. 

 

Fig. 9 Difference between diagonal and off-diagonal elements of the Relative Gain 

Array for three operating points in the frequency range 10-3–10-1 [rad s−1]. 

 

Fig. 10 Condition Number behavior at the different operating points in the frequency 

range 10-3–10-1 [rad s−1]. 

 



Fig. 11 Morari Resiliency Index at the different operating points in the frequency range 

10-3–10-1 [rad s−1]. 

 


