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Abstract—This paper presents an efficient graph-based algo-
rithm for the segmentation of planar regions out of 3D range
maps of urban areas. Segmentation of planar surfaces in urban
scenarios is challenging because the data acquired is typically
sparsely sampled, incomplete, and noisy. The algorithm is moti-
vated by Felzenszwalb’s algorithm to 2D image segmentation
[8], and is extended to deal with non-uniformly sampled 3D
range data using an approximate nearest neighbor search. Inter-
point distances are sorted in increasing order and this list
of distances is traversed growing planar regions that satisfy
both local and global variation of distance and curvature. The
algorithm runs in O(n log n) and compares favorably with other
region growing mechanisms based on Expectation Maximization.
Experiments carried out with real data acquired in an outdoor
urban environment demonstrate that our approach is well-suited
to segment planar surfaces from noisy 3D range data. A pair
of applications of the segmented results are shown, a) to derive
traversability maps, and b) to calibrate a camera network.

Index Terms—3D Segmentation, Urban Robot Mapping, Plane
Extraction, Camera Network Calibration.

I. INTRODUCTION

Mobile service robots are increasingly being used for urban

tasks such as guidance or search and rescue [14]. The 3D

models these robots build must allow not only navigation, but

should also help in path and task planning [18], or even camera

network calibration [12]. Hence, these models should not only

be accurate, but also tractable. Accuracy of these models is

accounted for by state of the art simultaneous localization and

mapping, a mature field in its own right [15, 10, 6, 7, 3, 11].

Tractability on the other hand is possible by extracting higher

order primitives from the extremely large point sets these

mapping algorithms produce and, relying on these primitives,

to pursue higher level tasks.

We present in this paper a technique to segment planar sur-

faces out of 3D maps of outdoor urban areas. The segmented

planes can then be used to produce traversability maps, to

aid in the calibration of a camera network, or to generate

VR models of the scene. The proposed algorithm is very

efficient since its computational complexity is O(n log n) on

the number of points in the map. The method is motivated

by a graph-based image segmentation algorithm [8], that has

been modified to deal with non-uniformly distributed 3D range

data.

This work is associated with the European Project URUS

(Ubiquitous Networked Robotics in Urban Settings), that puts

together camera networks and mobile robots in urban pedes-

trian areas for people assistance tasks. Figure 1 shows an aerial

view of a section of our application scenario, the Barcelona

(a) Unsegmented map (top view)

(b) Segmented planes

Fig. 1. Partial view of the Barcelona Robot Lab. The segmentation results
shown correspond to a search for 30 nearest neighbors per point, 0.5m
distance threshold, and 0.5 curvature threshold.

Robot Lab, together with a plot of the segmented planes

extracted with our algorithm. This map was produced with the

method reported by Valencia et al., [17]. The segmentation

algorithm we present is capable of segmenting maps with over

8 million points and with accuracies that range from 5 to

20 cm, and is very flexible with only three parameters to tune: a

nearest-neighbor bound, and thresholds for maximum distance

between points and maximum curvature for a region.

The paper is organized as follows. First, an overview of

related work in 3D segmentation is presented. Then, the

proposed method is described in detail and compared with a
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state of the art approach that uses Expectation Maximization

(EM) to fit a probabilistic model of flat surfaces to the range

data acquired with a mobile robot [9]. The comparison takes

into account both quality of results and execution time. Finally

experiments on simulated and real data are presented, followed

by some concluding remarks.

II. RELATED WORK

The segmentation of 3D range maps into planar surfaces is

usually addressed by region growing algorithms. The system

presented by Poppinga et al., [13] for instance, contains a

number of heuristics to obtain incremental plane fitting with

the assumption that nearest neighbors are taken directly from

the indexes in the range image. Moreover, its secondary

polygonalization step is viewpoint dependent, relying also on

the neighboring associations given by the indexes of the range

data. In contrast, in our method, nearest neighbors are obtained

using an efficient approximate nearest neighbor search over the

entire 3d point map.

If the number of planes to detect is known a priori, EM

can be used to assign points to planes in terms of normal

similarity, density of points and curvature [9]. The technique

is shown for indoor scenes in which planar patches are usually

orthogonal to each other. For larger, sparser point distributions,

such as the ones found in outdoor range data, the assumption

of a priori knowledge of the number of planes is unrealistic.

To this end, hierarchical EM can be used [16], incrementally

reducing the number of planes with a Bayesian information

criterion, at the expense of higher computational cost.

Contrary to region growing, one could search for region

boundaries instead. A good exemplar of this technique is

presented in an architectural modeling application [4], in

which polyhedral models are generated from range data by

clustering points according to their normal directions plotted

on a Gaussian sphere. This mechanism helps overcome the

sparsity of the point distribution. The assumption that the

scene is made of planar regions is exploited to detect plane

intersections and corners to compute plausible segmentations

of building structures made of polyhedrons of low complexity.

The method presented in this paper is motivated on a graph-

based image segmentation algorithm that grows regions ac-

cording to local and global region similarity in linear time [8].

Our similarity measures rely on closeness of points and normal

curvature. Moreover, neighbors candidates for region growing

are searched for with an Approximate Nearest Neighbor(ANN)

technique [2] that runs in logarithmic time.

III. GRAPH-BASED 3D SEGMENTATION

Our method builds upon Felzenszwalb’s algorithm for 2D

image segmentation [8], and extends it to deal with non-

uniformly sampled 3D range data. The algorithm proceeds as

follows. First, the entire data set is preprocessed to compute

local normal orientation of fitted planar patches for each

point with respect to its k-Nearest Neighbors (kNNs). Then,

distances between nearest neighbors are computed. These dis-

tances are then sorted in increasing order and the resulting list

is processed to create a forest of trees by merging neighboring

Fig. 2. Projections d1 and d2 of two points onto neighboring planar patches.

points according to point distances and to the angle between

their normals.

These two measures, the distance between neighboring

points and the angle between their normals, account for local

segment variation. Global segment variation is also considered

by computing the angle between a point normal and the

aggregated normal for the current segment, i.e., the current

tree in the forest. Local and global variation are both taken

into account during tree merging hypotheses.

A. Fitting Normals to Local Planar Patches

Consider each 3D point in the dataset with coordinates p =
(x, y, z)⊤. The error between a fitted planar patch and the

range map values for the kNNs to p is given by

ǫ =
∑

i∈K

(p⊤i n− d)2 , (1)

where n = (nx, ny, nz)⊤ is the local surface normal at p, K
is the set of kNNs to p, and d the distance from p to the plane.

This error can be re-expressed in the following form

ǫ = n⊤
(∑

i∈K

pip
⊤
i

)

︸ ︷︷ ︸
Q

n− 2d

(∑

i∈K

p⊤i

)

︸ ︷︷ ︸
q

n + |K|2d2 .

Combining the above error metric with the orthonormality

property for each local surface normal into a Lagrangian of

the form

l
(
n⊤, d, λ

)
= ǫ + λ(1− n⊤n) ,

the local surface normal that best fits the patch K is the

one that minimizes the above expression [1]. Deriving l with
respect to n and d, and setting the derivatives to zero, it

turns out that the solution is the eigenvector associated to the

smallest eigenvalue of
(
Q− q qT

|K|2
)

n = λn .

B. Segmentation Criteria

Once local surface normals and planar patches are computed

for each point in the 3D data, segments are merged in a forest

of trees based on curvature and mean distance. The curvature

is defined as the angle between two normals for two matching

segments, and it must be below a user-defined threshold tc,
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(a) before union by rank (b) after union by rank (c) path compression

Fig. 3. Operations used to maintain the height of trees minimal during the merge of planar patches.

|cos−1(n⊤1n2)| < tc .

To account for global variation, two segments passing the

curvature criteria are joined if their weighted distance is below

a user selected threshold td,

k1d1+k2d2
k1+k2

< td ,

with

d1 = (p1 − p2)⊤n2 ,
d2 = (p2 − p1)⊤n1 ,

where k1 and k2 are the total number of points each segment

holds, and d1 and d2, the distances between points p1 and p2

and the planes (see Fig. 2).

C. Implementation Details

Input parameters to the segmentation algorithm are |K| the
number of local neighbors to consider for the fitting of planar

patches, a distance threshold td, and a curvature threshold tc.
Each planar patch is stored in a tree structure. The tree contains

in each node a 3D point belonging to the segment. The parent

node contains also the surface normal. The entire scene is

thus represented as a forest of disjoint trees. At each iteration

over the list of ordered distances, the merging of neighboring

planar patches is hypothesized. If the local and global variation

criteria are satisfied, both in terms of neighboring distance and

curvature, the segments are joined using union by rank and

path compression. Union by rank means choosing as tree root

the one with larger cardinality when merging two trees, thus

minimizing the depth of the tree. Path compression makes all

nodes on a tree point to its parent, thus effectively reducing

the tree depth to 1 [5] (see Fig. 3).

D. Computational Complexity Analysis

The ANN library we use to search for approximate nearest

neighbors has expected computational complexity O(log n)
[2], and worst case complexity O(n). Moreover, the com-

plexity of union by rank and path compression is worst case

O(α(n)) where α(n) is the very slowly growing inverse of

Ackermann’s function [5], which for any conceivable appli-

cation is α(n) < 4. Therefore, our region growing algorithm

takes linear time in the number of points in the dataset, and

the bottleneck of the algorithm is nearest neighbor search.

The overall expected computational complexity of our range

data segmentation algorithm is O(n log n), with worst case

computational complexity O(n2) for ill posed distributions of

the 3d points. This complexity is in contrast to the much more

expensive iterative algorithms that relay on EM.

IV. EXPERIMENTS

The proposed algorithm was tested using synthetic and

real data. In the first experiment we built a synthetic model

of an open 3D box consisting of five equally sized faces

with varying noise parameters and also with various levels of

outliers to account for unstructuredness in the scene. For each

plane, N 2D points are drawn from a uniform distribution in

3D. Then, each point is corrupted with zero mean Gaussian

noise with independent variance σ2 on each axis. Finally, a

small percentage of these points is further normally corrupted

with three times variance σ2 to simulate the presence of

outliers. We used the following values in the simulation:

σ2 = {0.0001, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5}, percentage
of outliers equal to 5%, 10%, and N = 1000 points per plane,

i.e., 5000 points per open cube.

The proposed algorithm was compared with Liu’s EM

algorithm [9]. In our implementation of Liu’s method, the

following parameters were used: J = 5 planes; points are

considered outliers when xmax > 2; and the density of

each plane is smaller than 70% of the simulated points. The

terminating condition in the standard EM algorithm is reached

when J = 5 planes are found and the E and M steps have

iterated over 25 cycles. Figure 4 shows cubes generated with

5% and 10% of outliers and noise parameters σ2 = 0.0001
and σ2 = 0.001. A comparison of Liu’s method to ours is

shown in Fig. 4.

Figure 5 shows the mean square reprojection error for each

plane ǫ/N , computed from Eq. 1, and averaged for all planes

in the open cube. For the selected operating parameters, both

methods have comparable segmentation results.

The clear advantage of the proposed algorithm is its com-

putational cost. To compare algorithm speed, the open cube is

sampled with N = {100, 500, 1000, 5000}, a fixed 1% amount

of outliers, variance σ2 = 0.01, and maximum iteration to

25 cycles for the EM algorithm. Fig. 6 reports execution
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(a) Synthetic data with σ2 = 0.0001 and 5% of
outliers

(b) EM-based segmentation results (c) Graph-based segmentation results

(d) Synthetic data with σ2 = 0.001 and 10% of
outliers

(e) EM-based segmentation results (f) Graph-based segmentation results

Fig. 4. Synthetically generated data for an open cube with five faces. Expectation-maximization-based segmentation is computed with our implementation
of the method reported in [9]. The last column shows segmentation results over the same data with the proposed graph-based segmentation algorithm.
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(a) Reprojection error with 5% of outliers
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(b) Reprojection error with 10% of outliers

Fig. 5. Mean square reprojection error with varying noise parameters and percentage of outliers for the two segmentation algorithms.
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(a) Execution time for both algorithms
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(b) Execution time for the proposed approach

Fig. 6. Time comparison between EM-based segmentation and the proposed graph-based approach.

4th European Conference on Mobile Robots – ECMR’09, September 23–25, 2009, Mlini/Dubrovnik, Croatia

196



Fig. 7. Aerial view of the Barcelona Robot Lab, and its 3D point map.

times for both the EM-based and our graph-based segmen-

tation approaches. In spite that the expected computational

complexity of our algorithm is O(n log n), its constant factor is
significantly smaller than that of the EM-method. At 5000 data

points, our method takes only about 3 seconds, whereas the

EM-based approach is over 150 times slower, taking more than

7 minutes to compute the segmentation, in our implementation.

All reported times are for experiments performed in a Pentium

4 PC with 2GB RAM running Matlab under Linux.

The method is applied to our real data set of the Barcelona

Robot Lab, acquired during an outdoor 3D laser-based SLAM

session [17]. The set contains over 8 million points and maps

the environment with accuracies that vary from 5 cm to 20 cm

approximately. The input parameters for our segmentation

algorithm applied to this set are K = 30 nearest neighbors,

td = 0.5 for distance threshold, and tc = 0.5 for curvature

threshold. Segmentation results are shown in Fig. 8. The

proposed algorithm takes approximately 20 minutes to com-

plete the plane segmentation. To show the applicability of the

algorithm to robotics tasks, segments are labeled according to

their normal orientation to indicate traversable regions versus

walls and obstacles.

Another example of the use of our segmentation method

is camera network calibration. In this case, the segmented

planes are further intersected to find lines which correspond to

architectural features on the scene. Lines lying orthogonally,

i.e., with orientations within ±0.03 of 0 and pi
2 along the three

axes, were further projected onto camera images and matched

with image features. Feature matching is refined through a

minimization process over both extrinsic and intrinsic camera

parameters as detailed in [12]. The result is a camera cal-

ibration for the entire camera network. Figure 9 shows the

segmented data set reprojected onto the image on one of the

cameras, line feature matches, and the results of the calibration

routine in the form of a computed homography to the ground

plane.

(a) Planes extracted from the map of the Barcelona Robot Lab with the
proposed graph-based segmentation approach

(b) A possible application of the algorithm is to label segments according to
traversability conditions

Fig. 8. Barcelona Robot Lab. The segmentation results help differentiate
horizontal planes for traversability (in red) from walls and obstacles (in blue).

V. CONCLUSIONS AND FUTURE WORK

The presented technique to range data segmentation into

planar segments has several advantages when compared to

region merging EM-based algorithms. On the one hand, the

computational cost of the presented approach is very appealing

to large point clouds. Moreover, no a priori knowledge on the

number of planes in the scene is needed.

Experiments carried out with real datasets acquired in an

outdoor urban environment demonstrate its applicability to

various robotics applications, including the computation of

traversability maps and camera network calibration.

Further refinements to our approach include the extraction

of texture from the calibrated images and some polygonaliza-

tion strategy with the aim of producing realistic VR models

of large scenes.
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(a) Segmented range data projected to a camera image.

(b) Plane boundaries used for camera calibration.

(c) Calibration results are used to recover an orthographic view of the
scene.

Fig. 9. Application of the segmentation method for the calibration of
an outdoor camera network. Plane boundaries and plane intersections are
projected to the image of one of the cameras in the network. A nonlinear
optimization of the projection error is used to refine the calibration parameters.
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