
IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009 225

A Linear Relaxation Technique for the
Position Analysis of Multiloop Linkages

Josep M. Porta, Lluı́s Ros, and Federico Thomas, Member, IEEE

Abstract—This paper presents a new method to isolate all con-
figurations that a multiloop linkage can adopt. The problem is
tackled by means of formulation and resolution techniques that fit
particularly well together. The adopted formulation yields a system
of simple equations (only containing linear, bilinear, and quadratic
monomials, and trivial trigonometric terms for the helical pair
only) whose structure is later exploited by a branch-and-prune
method based on linear relaxations. The method is general, as it
can be applied to linkages with single or multiple loops with ar-
bitrary topology, involving lower pairs of any kind, and complete,
as all possible solutions get accurately bounded, irrespective of
whether the linkage is rigid or mobile.

Index Terms—Closed chain, forward and inverse kinematics,
geometric constraint, loop closure, multibody system, multiloop
linkage, position analysis.

I. INTRODUCTION

A LINKAGE is an articulated mechanism of rigid links con-
nected through lower pair joints [1]. We are interested

in linkages forming one or more kinematic loops, i.e., closed
sequences of pairwise articulated links. This paper presents a
new method for the position analysis of such linkages, i.e., for
the computation of all possible configurations they can adopt,
within given ranges for their degrees of freedom. A configura-
tion is understood here in a kinematic sense: as an assignment of
positions and orientations to all links that respects the kinematic
constraints imposed by all joints, with no regard to possible
link–link collisions.

Several problems in robotics translate into the aforesaid one,
or require an efficient module that is able to solve it. The problem
arises, for instance, when solving the inverse/forward kinemat-
ics of serial/parallel manipulators [2], when planning the coor-
dinated manipulation of an object or the locomotion of a recon-
figurable robot [3], in constraint-based object positioning [4], or
in simultaneous localization and map building [5]. The problem

Manuscript received January 24, 2008; revised July 25, 2008 and September
30, 2008. First published February 10, 2009; current version published April 3,
2009. This paper was recommended for publication by Associate Editor I. Bonev
and Editor F. Park upon evaluation of the reviewers’ comments. This work was
supported in part by the Spanish Ministry of Science and Innovation under
Project DPI2007-60858, and by the “Comunitat de Treball dels Pirineus” under
Project 2006ITT-10004.

The authors are with the Institut de Robòtica i Informàtica Industrial,
Spanish National Research Council (CSIC), Universitat Politècnica de
Catalunya (UPC), Barcelona 08028, Spain (e-mail: porta@iri.upc.edu; llros@
iri.upc.edu; fthomas@iri.upc.edu).

The paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors. The material includes the
equations and numerical output of all experiments described in Section V. This
material is 1.1 MB in size.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2008.2012337

also appears in other domains, such as in the analysis of complex
deployable structures [6] or general multibody systems [7], [8],
or in the conformational analysis of biomolecules [9]. The com-
mon denominator in all cases is the existence of one or more
kinematic loops in the system at hand, defining a linkage whose
feasible configurations must be determined.

For decades, roboticists have devoted considerable effort to-
ward solving such a problem, but eminently on an ad hoc basis.
Closed form or iterative solutions have been derived for specific
linkages, notable ones including those for the inverse kinemat-
ics of general 6R manipulators [10]–[12], or for the forward
kinematics of parallel platforms [13]. While there exist local
search techniques for finding assembly configurations of gen-
eral linkages [8], scarce efforts have been devoted to obtain
a simultaneously general and complete solver, i.e., one that is
able to tackle linkages of any kind and return all possible prob-
lem solutions. In principle, such a solver could be implemented
by algebraizing the problem and using any general technique
for solving systems of polynomial equations (see Section II),
but unfortunately, a solution to both algebraization and reso-
lution, treated as independent problems, does not necessarily
yield an efficient procedure. In this paper, in contrast, we pro-
pose solution techniques to both problems that fit particularly
well together.

A few works in the literature already provide general com-
plete linkage solvers, but their applicability is limited to planar
or spherical linkages. These include the work by Nielsen and
Roth, who gave an algorithm to derive the Dixon resultant of
any planar linkage [14]; the work by Wampler, which improves
on Nielsen and Roth’s by applying a complex plane formula-
tion [15]; the work by Celaya et al. [16], which provides an
interval propagation algorithm; and finally, the work by Porta
et al. [17], which attacks the problem via linear relaxations.
An examination of these methods shows that [17] is specially
amenable for generalization to the spatial case, a task we pre-
liminary addressed in [18] and which we complete in this paper.
As a result, we contribute with a method that is able to solve the
position analysis of any spatial linkage, irrespective of the joint
types it involves, the interconnection pattern of the links, and
the dimension of the solution space. In every case, the method
returns a discrete map of the linkage configuration space given
as a box approximation (a collection of boxes enclosing all of
its points at the desired resolution level), which allows visual-
izing the linkage configurations and possible self-motions in a
convenient way.

The paper is organized as follows. Section II briefly reviews
related work concerning the resolution of systems of algebraic
equations. Section III shows how the position analysis of a

1552-3098/$25.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

226 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009

multiloop linkage can be formulated as a canonical system with
linear, bilinear, and quadratic monomials. A linear relaxation
method for solving this system is next presented in Section IV.
Section V includes several experiments illustrating the perfor-
mance of a C implementation of the technique. Finally, the paper
conclusions are summarized in Section VI.

II. SOLUTION OF POLYNOMIAL SYSTEMS

Existing techniques for solving systems of polynomial equa-
tions can be classified into algebraic–geometric, continuation,
or branch-and-prune methods. We next review them briefly in
order to place the proposed method in context.

Algebraic–geometric methods, including those based on re-
sultants and Gröbner bases, use variable elimination to reduce
the initial system to a univariate polynomial [19]. The roots of
this polynomial, once backsubstituted into other equations, yield
all solutions of the original system. These methods have proved
quite efficient in fairly nontrivial problems such as the inverse
kinematics of general 6R manipulators [10]–[12], or the for-
ward analysis of general Stewart–Gough platforms [13]. Recent
progress on the theory of toric resultants, moreover, qualifies
them as a very promising set of techniques [20].

Continuation methods, in contrast, begin with an initial sys-
tem whose solutions are known, and then transform it gradually
to the system whose solutions are sought while tracking all solu-
tion paths along the way [21]. In its original form, this technique
was known as the bootstrap method, as developed by Roth and
Freudenstein [22], and subsequent work by Garcia and Li [23],
Garcia and Zangwill [24], Morgan [25], and Li et al. [26], among
others, led the procedure into its current highly developed state,
providing a convenient and reliable tool for solving problems in
kinematics [21].

In a different approach, branch-and-prune methods use ap-
proximate bounds of the solution set in order to rule out portions
of the search space that contain no solution [27]–[29]. They re-
cursively reduce and bisect the initial domain until a fine-enough
approximation of the solution set is derived. The convergence of
this scheme is guaranteed by the fact that the bounds get tighter
as the intermediate domains get smaller. Applications of such
methods to robot kinematics abound, including, e.g., [30]–[36].

While algebraic–geometric and continuation methods are
general, they have a number of limitations in practice. On the
one hand, algebraic–geometric methods usually explode in com-
plexity, may introduce extraneous roots, and can be applied only
to relatively simple systems of equations. Beyond this, they may
require the solution of high-degree polynomials, which may be
a numerically ill-conditioned step in some cases. On the other
hand, continuation methods must be implemented in exact ratio-
nal arithmetic to avoid numerical instabilities, leading to impor-
tant memory requirements, and like elimination methods, they
must compute all possible roots, even the complex ones, which
are physically invalid. This slows the process substantially on
systems with a small fraction of real roots. Branch-and-prune
methods are also general, but present a number of advantages
that make them preferable in our case: 1) contrary to many elim-
ination methods, they do not require intuition-guided symbolic

reductions; 2) they directly isolate the real roots; 3) they can
be made numerically robust without resorting to extraprecision
arithmetic; and 4) some of them can tackle under- and over-
constrained problems without any modification. These are the
main reasons that motivate the approach that we present, which
belongs to this latter category.

Two families of branch-and-prune methods can be distin-
guished, depending on whether they bound the solution set via
Taylor expansions, or via polytopes.

Within the first family, the interval Newton method [27]
is perhaps the most studied one. This method uses a zeroth-
order Taylor expansion of the equations with a remainder of
order 1. Since it requires the interval evaluation of the inverse
of the Jacobian involved in the remainder, it is applicable only
to systems where such Jacobian is nonsingular in all points of
the input domain. Daney et al. [37] and Gavriliu [38] present
methods relying on first-order Taylor approximations of the
equations, with bounded second-order reminders. While [37]
uses linear programming to determine the area of feasible solu-
tions, [38] solves a linear system instead, inverting a Jacobian
matrix. The main difference with respect to interval Newton
methods is that, here, the matrix to be inverted is real-valued,
and therefore, the Jacobian is required only to be nonsingular
at the linearization point. Results show that first-order methods
outperform zeroth-order ones [38].

Methods in the second family bound the solutions by deriv-
ing, at each iteration, a convex polytope enclosing the solution
set. In fact, such a polytope is never determined explicitly, as
its exact form can be rather complex. Instead, its rectangular
hull is readily derived via linear programming. Polytope meth-
ods have similar convergence properties than those of Taylor
methods [28], [39], but present a number of advantages: 1) they
avoid the computation of Jacobian inverses; 2) they naturally
account for inequalities in the problem; and 3) they can directly
deal with under- or overconstrained problems. The first meth-
ods of this kind appeared in the early 1990s, by Sherbrooke
and Patrikalakis, who derived the polytope from properties of
the equations’ Bernstein form [28]. Later on, Yamamura [40]
and Kolev [41] presented algorithms where the equations are
bounded by polytopes made out of bands. More recently, linear
relaxation techniques have been proposed [42], following a re-
search line that can be traced back to the 1970s [29], [43]. A
linear relaxation is a set of linear inequalities that tightly bound
a particular type of function within some domain. The simplest
possible relaxation is the one obtained from a first-order Taylor
expansion plus a second-order remainder that, when bounded,
defines a polytope similar to those of Yamamura’s and Kolev’s
methods. However, rather than resorting to general Taylor ex-
pansions, linear relaxations are defined on an ad hoc basis for
each function, including as many linear constraints as necessary
to produce better bounds for the function.

Among polytope methods, those based on linear relaxations
are usually faster, as they define tighter polytopes with smaller
linear programs. Such advantages, however, apply on equations
of a simple form only, usually restricted to contain linear, bi-
linear, or quadratic monomials. While it is true that all position
analysis formulations [8], [33], [36], [44] could, in principle,

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

PORTA et al.: LINEAR RELAXATION TECHNIQUE FOR THE POSITION ANALYSIS OF MULTILOOP LINKAGES 227

be rewritten into such form, the transformations required to do
so could introduce many extra variables, rendering the solution
method inefficient afterward. This paper provides a way around
this problem by using a formulation that directly comes in the
adequate form (Section III), together with accurate relaxations
for its defining equations (Section IV).

III. KINEMATIC EQUATIONS

We next formulate the kinematic equations of a multiloop
linkage. The formulation closely follows that of reference point
coordinates in multibody dynamics [8], but we elaborate such
formulation further in order to simplify the problem. In particu-
lar, we depart from similar equations expressing the constraints
imposed by the joints (Section III-A), but we use the fact that
the positions of all links can be expressed in terms of their ori-
entations, in order to reduce substantially the size of the system
to be solved (Section III-B). The involved rotation matrices,
moreover, will be parametrized by direction cosines instead of
quaternions so as to obtain simpler expressions.

A few definitions are needed for proper discussion. A linkage
is a pair L = (L, J), where L = {L1 , . . . , Ln} is a set of rigid
links and J = {J1 , . . . , Jm} is a set of lower pair joints, each
connecting a couple of links. We furnish every link Li with a
local reference frame, denoted as Fi , and anchor any one of the
links to the ground, letting its reference frame be the absolute
frame Fa . We will use pFi to indicate that the components of
vector p ∈ R

3 are given in the basis of Fi . Vectors with no su-
perscript will be assumed to be given in the basis of the absolute
frame. A linkage configuration will be an assignment of a pose
(ri ,Ri) to each link, where ri ∈ R

3 is the absolute position of
Fi’s origin and Ri is a 3 × 3 rotation matrix giving the orien-
tation of Fi relative to Fa . Note that we cannot assign arbitrary
poses to the links since the joints impose certain constraints that
must be fulfilled. We next formulate them explicitly.

A. Basic System

Let us assume, for simplicity, that the linkage contains only
revolute joints and no restriction is imposed on the angle rotated
by the links around such joints. Appendixes I and II show how
joint limits and arbitrary lower pairs can be dealt with, leading
to an analogous treatment.

For a joint Ji connecting links Lj and Lk , the valid poses for
such links are those that fulfill the joint equations

rj + Rj pFj

i = rk + Rk pFk
i (1)

Rj dFj

i = Rk dFk
i (2)

where di = qi − pi , and the vectors pi and qi refer to two
different points Pi and Qi on the axis of Ji (see Fig. 1).
Equation (1) forces Lj to be placed so that the point Pi , seen
as attached to Fj , coincides with the same point, seen as at-
tached to Fk . Equation (2) does a similar identification for the
di vector.

Since the coordinates of pi and di relative to Fj and Fk are
a priori known, the only unknowns appearing in the previous
equations are the poses of the two links. The entries of the rota-

Fig. 1. Assembly of two links through a revolute joint (a) can be established
by imposing the coincidence of two points of the links, Pi and Qi , selected on
the axis of the joint (b).

tion matrices, though unknown, are not independent; however,
since if Ri = (ûi , v̂i , ŵi), then it must be

‖ûi‖ = 1 (3)

‖v̂i‖ = 1 (4)

ûi · v̂i = 0 (5)

ûi × v̂i = ŵi (6)

in order for Ri to represent a valid rotation.
The position analysis of a linkage thus reduces to solving

the system formed by (1) and (2), gathered for all joints, and
(3)–(6), gathered for all links. Hereafter, this system will be
referred to as the basic system.

B. Reduced System

Our next goal is to show that the basic system can actually
be simplified, reducing the number of equations and variables
involved. To this end, let us assume for simplicity that the linkage
consists of only one loop, with links and joints numbered from 1
to n consecutively,1 so that joint Ji connects links Li and Li+1 ,
for i = 1, . . . , n. Let us also assume, without loss of generality,
that L1 is the ground link, with (r1 ,R1) = (0, I3), where I3 is
the 3 × 3 identity matrix. In such a situation, (1) can be written,
relative to Ji , as

ri+1 = ri + Ri p
Fi
i + Ri d

Fi
i − Ri+1 qFi + 1

i . (7)

Observe that in the basic system, we can now substitute this
equation by the sum of all equations (7) relative to J1 , . . . , Ji .
This is simply replacing one equation by the linear combination
of itself and other equations. The new equation has the form

ri+1 = qn +
i∑

j=1

(
Rj aFj

j + Rj dFj

j

)
− Ri+1 qFi + 1

i (8)

for i = 1, . . . , n − 1, and the form
n∑

j=1

(
Rj aFj

j + Rj dFj

j

)
= 0 (9)

for i = n, where ai = pi − qi−1 . We call (8) a position equa-
tion, as it gives the position of link i + 1 in terms of link orien-
tations, and (9) a loop equation, as it expresses the fact that the

1In what follows, indexes will be cyclic so that indexes n + 1 and 0 will refer
to 1 and n, respectively.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

228 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009

Fig. 2. Geometric interpretation of (7)–(9) on a single-loop linkage. Links L1 , . . . , Ln are shown as gray regions in the figure. The absolute frame is attached
to L1 , with origin at O. Every link Li has an associated relative frame Fi , whose origin from O is given by ri . Every joint Ji is defined by two points on its
rotation axis, Pi and Qi . Equation (7) expresses the closure of polygon i, shown in thick arrows. Equation (8) corresponds to the sum of polygons 1, . . . , i and (9)
corresponds to the sum of polygons 1, . . . , n. Note that, when summing two adjacent polygons, touching sides get canceled because they correspond to the same
vector appearing on different sides of the equality.

ai and di vectors must form a closed polygon along the whole
linkage. The geometric interpretation of these equations is given
in Fig. 2.

We now realize that (8) are superfluous equations, as they
merely provide the ri vectors in terms of the Ri matrices. In
other words, the problem can be reduced to finding the Ri

matrices that satisfy the reduced system formed by (9) and
(2)–(6) only.

Using elementary graph theory tools [45], the previous sim-
plification extends easily to the case of linkages with multiple
loops. On a general linkage, we construct an associated graph
G(L) = (V,E) with a vertex in V for every link Li and an edge
(u, v) in E for every joint connecting the links of u and v, and
then compute a spanning tree of G(L), rooted at the ground link
of the linkage (see Fig. 3). Note that for every edge e in the tree,
there is a unique path P (e) in the tree, connecting its vertices
with the root. Then, (7) corresponding to e can be substituted
by a sum of equations (7) corresponding to all edges in P (e),
including e itself, and yielding a position equation analogous
to (8). Moreover, for every edge e′ not in the tree, such
edge determines a fundamental cycle C(e′) of G(L), and (7)
corresponding to e′ can be substituted by the sum of equations
(7) corresponding to all edges in C(e′), properly signed,
obtaining a loop equation analogous to (9). Clearly, as for

Fig. 3. Spanning tree of the linkage graph, used to reduce the basic system.

single loops, we need only to solve the reduced system formed
by the loop equations of all fundamental cycles, and (2)–(6)
of all links and joints, since the ri vectors can be later derived
using the position equations.

Although the basic system could also be used to solve the po-
sition analysis problem, we will prefer using the reduced system,

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

PORTA et al.: LINEAR RELAXATION TECHNIQUE FOR THE POSITION ANALYSIS OF MULTILOOP LINKAGES 229

Fig. 4. (a) Shrinking Bc to fit the linear variety L(x) = 0. Bc is shown projected on the xi –qi plane. (b) Half planes approximating the part of the parabola
inside the rectangle [xl

i , x
u
i] × [ql

i , q
u
i]. (c) Smallest box enclosing the intersection of L(x) = 0 with the half planes in (b).

in general, because it involves much less variables (the ri

vectors do not intervene) and equations [m joint equations of the
basic system have been replaced by m − n + 1 loop equations,
i.e., as many as the number of fundamental cycles of G(L)].

IV. SOLUTION STRATEGY

This section provides a method to solve the reduced system
of equations of a multiloop linkage. The method involves a
simple preprocessing step to leave the equations in a canonical
form (Section IV-A) and a numerical algorithm that exploits this
form to isolate all solutions (Section IV-B). The pseudocode of
the algorithm (Section IV-C) and an analysis of its performace
(Section IV-D) are also included.

A. Equation Expansion

Observe that the equations in the reduced system are polyno-
mial and, if xi and xj refer to any two of their variables (the
entries of the rotation matrices), the involved monomials can be
only of the form xi , xixj , or x2

i . In other words, there can be
only linear, bilinear, or quadratic monomials.

Let us define the changes of variables qi = x2
i for each

quadratic monomial and bk = xixj for each bilinear monomial.
As we realize, by applying such changes to the equations of the
reduced system, we obtain a new system of the form

F (x) = (L(x), P (x),H(x)) = 0 (10)

where x = (x1 , . . . , xnl
, q1 , . . . , qnp

, b1 , . . . , bnh
) is a tuple in-

cluding the original and newly defined variables, and
1) L(x) = (l1(x), . . . , lm l

(x)) is a block of linear functions;
2) P (x) = (p1(x), . . . , pmp

(x)) is a block of parabolic func-
tions of the form qi − x2

i ;
3) H(x) = (h1(x), . . . , hmh

(x)) is a block of hyperbolic
functions of the form bk − xixj .

Hereafter, the xi variables will be referred to as primary
variables, and the qi and bi variables as dummy ones. Also, we
will let nv = nl + np + nh and ne = ml + mp + mh .

As it turns out, all component functions of F (x) are relatively
simple. They are either linear functions, or simple bilinear or

quadratic functions involving two or three variables each. More-
over, since the rotation matrices must be orthonormal, the xi

variables can only take values within the [−1, 1] range, which
limits the qi and bk variables to the ranges [0, 1] and [−1, 1], re-
spectively. The search space where the solutions of system (10)
must be sought thus is an orthotope B aligned with the axes,
resulting from the Cartesian product of such ranges. In the text
that follows, any subset of B defined by the Cartesian product
of a number of intervals will be referred to as a box, and we will
write [xl

i , x
u
i] to denote the interval of a box along dimension i.

B. Equation Solving

The algorithm starts with the initial box B and isolates the
valid configurations it contains by iterating over two operations:
box shrinking and box splitting. Using box shrinking, portions
of B containing no solution are eliminated by narrowing some
of its defining intervals. This process is repeated until either:
1) the box is reduced to an empty set, in which case it contains no
solution; or 2) the box is “sufficiently” small, in which case it is
considered a solution box; or 3) the box cannot be “significantly”
reduced, in which case it is bisected into two subboxes via box
splitting (which simply bisects its largest interval). To converge
to all solutions, the whole process is recursively applied to the
new subboxes, until one ends up with a collection of solution
boxes whose side lengths are below a given threshold σ. To
further make this process precise, we next show how to eliminate
portions of a box that cannot contain any solution.

First, note that for a given box Bc ⊆ B, any solution inside Bc

must lie in the linear variety L(x) = 0. Thus, we may shrink Bc

to the smallest possible box bounding this variety inside Bc . The
limits of this new box along, say, dimension xi can be found by
solving the two linear programs

LP1: minimize xi, subject to: L(x) = 0, x ∈ Bc

LP2: maximize xi, subject to: L(x) = 0, x ∈ Bc

giving, respectively, the new lower and upper bounds for xi .
Fig. 4(a) illustrates the process on the plane of two variables xi

and qi , assuming that L(x) = 0 is a straight line in such a plane.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

230 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009

Fig. 5. Tetrahedron defined by the points D1 , . . . , D4 bounds the hyperbolic
paraboloid bk = xixj inside R = [xl

i , x
u
i] × [xl

j , xu
j] × [bl

k , bu
k].

Bc can be further reduced, though, taking into account that the
parabolic and hyperbolic equations must also be satisfied.

Regarding the parabolic equations, qi = x2
i , we take them into

account by noting that the section of the parabola lying inside
[xl

i , x
u
i] × [ql

i , q
u
i] is bound to lie in the shaded area between the

lines s and t, as shown in Fig. 4(b). Line s is the secant through
the points Ai and Bi where the parabola intersects with the
box. Line t is the tangent to the parabola parallel to s. The two
inequalities defining the area between these lines can be added
to LP1 and LP2, producing, in general, a much larger reduction
of Bc , as shown in Fig. 4(c).

Regarding the hyperbolic equations, we incorporate them as
follows. If we consider one of these equations, say bk = xixj ,
then all we need is a collection of half planes tightly de-
limiting the set of points that satisfy bk = xixj inside R =
[xl

i , x
u
i] × [xl

j , x
u
j] × [bl

k , bu
k]. For this purpose, consider the

points D1 , . . . , D4 obtained from clipping the surface bk = xixj

with the box R, as shown in Fig. 5. Using the fact that this sur-
face is a hyperbolic paraboloid, which is doubly ruled, it is easy
to see that the tetrahedron defined by D1 , . . . , D4 completely
encloses the portion of bk = xixj insideR. Hence, to prune por-
tions of a box that do not satisfy the hyperbolic equations, one
can simply introduce the half planes defining this tetrahedron
into LP1 and LP2.

In general, we can define linear relaxations for more complex
equations, such as the norm, dot-, or cross-product equations
(3)–(6). This reduces the number of dummy variables intro-
duced during equation expansion, which speeds up the execu-
tion of each iteration, but such relaxations are usually more
conservative, which increase the number of iterations required
to solve the problem. A tradeoff exists, thus, as for the required
dose of equation expansion.

C. Pseudocode

Algorithm 1 gives the main loop of the process. As input, it
receives the box B, the list F containing the equations L(x) =
0, P (x) = 0, and H(x) = 0, and two threshold parameters σ
and ρ. As output, it returns a list S of “solution boxes” that

Algorithm 1. The top-level search scheme.

Algorithm 2. The SHRINK-BOX procedure.

enclose all points of the solution set. The functions VOLUME(B)
and SIZE(B) compute the volume and the length of the longest
side of B, respectively. These and other low-level procedures of
straightforward implementation will be left unspecified.

Initially, two lists are set up in lines 1 and 2: an empty list
S of solution boxes and a list P of boxes to be processed,
containing B. A while loop is then executed until P gets empty
(lines 3–18), by iterating the following steps. Line 4 extracts
one box from P . Lines 5–9 repeatedly reduce this box as much
as possible, via the SHRINK-BOX function, until either the box is
an empty set (IS-VOID(Bc) is true), or it cannot be significantly
reduced (Vc/Vp > ρ), or it becomes small enough (SIZE(B) ≤
σ). In the latter case, the box is considered a solution for the
problem. If a box is neither a solution nor is empty, lines 14
and 15 split it into two subboxes and add them to P for further
processing.

Note that this algorithm implicitly explores a binary tree of
boxes, whose internal nodes are boxes that have been split at
some time, and whose leaves are either solution or empty boxes.
Solution boxes are collected in list S and returned as output in
line 19.

The SHRINK-BOX procedure is sketched in Algorithm 2. It
takes as input the box Bc to shrink, and the list of equations F .

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

PORTA et al.: LINEAR RELAXATION TECHNIQUE FOR THE POSITION ANALYSIS OF MULTILOOP LINKAGES 231

The procedure starts by collecting in C all linear equations (line
1), all half planes approximating the parabolic equations (lines
2–4), and finally, all half planes approximating the hyperbolic
equations (lines 5–7). The procedure then uses these constraints
to reduce every dimension of the box, solving the linear pro-
grams in lines 8–11, which possibly give tighter bounds for the
corresponding intervals. Observe that the linear programs need
to be solved only for the primary variables (x1 , . . . , xnl

) and
not for the dummy ones.

If system (10) has a finite number of isolated solutions, the
previous algorithm returns a collection of disjoint boxes con-
taining them all, with each solution lying in one, and only one
box. If the solution space is an algebraic variety of dimension
one or higher, the returned boxes will form a discrete envelope
of the variety. In any case, the precision of the output can be
adjusted at will by using the σ parameter, which fixes an upper
limit for the width of the widest interval on all returned boxes.

D. Performance Analysis

The performance of a root finding algorithm is normally as-
sessed in terms of its completeness, correctness, and conver-
gence order.

An algorithm is complete if its output includes all solutions
of the problem at hand. As for the proposed method, we note
that it iterates over two basic operations: the linear relaxation of
nonlinear functions and the solution of linear programs. Both
operations are designed in a conservative way: as defined, a
linear relaxation fully includes the graph of the function it ap-
proximates (within the box where solutions are sought), and the
output of the linear programs always defines an axis-aligned
orthotope enclosing the solution set. The proposed method is
thus complete, because solution points are never ruled out any-
where in the algorithm. While it is true that numerical issues
could arise due to the use of floating-point arithmetic, both in
the computation of the linear relaxations and the solution of the
linear programs, these problems can be easily overcome. Linear
relaxations can be made conservative by carefully considering
the rounding when computing them [42] and, with a cheap
postprocess, the output of the simplex method can be correctly
interpreted so that it is also numerically safe [46], [47].

An algorithm is correct if its output includes only solution
points. In the context of branch-and-prune methods, the algo-
rithm is correct if all of the returned boxes contain, at least one
solution each. Next, we provide a sufficient condition that al-
lows checking the existence of solutions of F (x) = 0 in a given
box Bc . To this end, consider the system formed by L(x) = 0
together with the linear relaxations of P (x) = 0 and H(x) = 0,
derived for Bc as explained in Section IV-B. Note that the so-
lution set of this system is a convex polytope P(Bc) ⊂ R

nv .
If there are as many variables as equations in F (x) = 0 and
the Jacobian of F (x), JF (x), has full rank at least in a point
x = xc ∈ Bc , then the following existence condition can be
used.

If P(Bc) ⊂ Bc , then Bc contains at least one solution point
of F (x) = 0.

Note that, in practice, the condition can be checked easily
by deriving the smallest orthotope enclosing P(Bc) via linear
programming, and checking whether it is contained in Bc .

To prove the condition, we first realize that, by linearizing
F (x) at xc , F (x) = 0 can be written as

F (xc) + JF (xc) (x − xc) + ε(x,xc) = 0 (11)

where ε(x,xc) is a second-order error term. But (11) is equiva-
lent to

x = JF (xc)−1(JF (xc)xc − F (xc) − ε(x,xc)). (12)

Thus, finding the solutions of F (x) = 0 is equivalent to find-
ing the fixed points of the right-hand side of (12), M(x) =
JF (xc)−1(JF (xc)xc − F (xc) − ε(x,xc)). Since y = M(x)
maps points x ∈ Bc to points y ∈ P(Bc), by Brouwer’s fixed
point theorem [48], we can assert that if P(Bc) ⊂ Bc , then there
exists an x∗ ∈ Bc for which x∗ = M(x∗), which implies that
x∗ is a solution of F (x) = 0.

It is worth mentioning that the existence condition just de-
scribed is less restrictive than other sufficient criteria [49]–[51],
yet easier to integrate in our framework. Also, while the test
proposed by Miranda [50] can be extended to nonsquared sys-
tems, the resulting sufficient condition is too weak to be useful
in general. To our knowledge, no results are available to derive
necessary and sufficient conditions for the existence of solutions
in a given box. Therefore, as it happens on all algorithms of this
kind, our algorithm can, in principle, return boxes for which
it is not possible to elucidate whether they include a solution.
In any case, the error in all function approximations ε(x,xc)
is quadratic with respect to the size of the box. Since the al-
gorithm returns boxes whose largest side is below σ, the error
in the equations is always O(σ2). Thus, only boxes with small
errors can be misleadingly taken as solutions. In practice, this
occurs for linkage configurations that are close to a singularity.

The convergence order of a root finding algorithm gives in-
formation about its asymptotic performance. An algorithm is
said to exhibit a convergence of order r if there exists a constant
k ∈ (0, 1), such that

ε(xi+1 ,x∗) ≤ kε(xi ,x∗)r

where xi is an estimation of the exact root x∗ at iteration i and
ε(xi ,x∗) indicates the distance from xi to x∗. As mentioned
in Section II, branch-and-prune methods rely on conservative
bounds to discard subsets of the input domain, which do not
contain solutions. The tighter the bounds, the faster the conver-
gence of the method. Therefore, we can compare the conver-
gence order of different families of branch-and-prune methods
by comparing the quality of the bounds used in each method.

The recursion used by the Newton method is derived from
applying the mean value theorem. For an individual function fi

of F (x), at some point xc ∈ Bc

fi(x) = fi(xc) + ∇fi(ζ) (x − xc).

Here, ζ is also a point of Bc , but it is, in general, unknown.
The interval extension of the Newton recursion overcomes this
problem using an interval evaluation of ∇fi(ζ) for all possible

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

232 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009

Fig. 6. Test cases analyzed. (a) General 6R loop. (b) Special 6R loop. (c) General 6-6 Stewart platform. (d) Special 6-6 Stewart platform.

ζ ∈ Bc . However, if all functions fi are quadratic (as it occurs
in the used formulation), any fi(x) can be expressed in the form

fi(x) = x	 Ai x + b	
i x + ci.

where Ai is an nv × nv symmetric matrix and bi is an nv -
dimensional vector. Thus, we can write

∇fi(x) = (2Ai x + bi)	

= (2Ai (xc + x − xc) + bi)	

= (2Ai xc + bi)	 + (2Ai (x − xc))	

= (2Ai xc + bi)	 + (x − xc)	2Ai

= ∇fi(xc) + (x − xc)	Hfi

where Hfi
is the Hessian of fi , which is constant. Therefore,

each fi can be written as

fi(x) = f(xc) + ∇fi(xc) (x − xc) + (ζ − xc)	Hfi
(x − xc).

On the other hand, a quadratic function can be exactly repre-
sented by its first-order Taylor expansion about xc as

fi(x)= f(xc)+∇fi(xc)(x−xc)+
1
2
(x−xc)	Hfi

(x−xc).

By comparing the last two equations, we see that the mean value
approximation is exact when ζ = (x + xc)/2. Therefore, if x
is subject to lie in Bc , ζ can be only in

Bζ =
{
x′ |x′ =

x + xc

2
, x ∈ Bc

}
.

Clearly, Bζ is fully included in Bc , and thus, by evaluating
∇fi(ζ) for all ζ in Bc , and not only in Bζ , the interval Newton
method overestimates the error. For this reason, at least for
quadratic functions, branch-and-prune methods based on first-
order Taylor approximations, like those used in [38], converge
faster than the interval Newton method, which is known to be
quadratically convergent [52]. Since the approximations derived
from linear relaxations are equal or tighter than those derived
from first-order Taylor approximations, we can conclude that
the convergence order of methods based on the former is equal
or higher than methods based on the latter.

Finally, note that, contrary to interval Newton methods, the
method we present can be applied to under- or overconstrained
systems. On overconstrained systems, the method exhibits the
same convergence order than when applied to well-constrained
ones since the addition of extra equations does not hinder the
convergence in any way. On the contrary, redundancy produces
larger box reductions in SHRINK-BOX and thus reduces the num-
ber of iterations. The drawback is that the higher the number of
equations, the slower the execution of each iteration. On under-
constrained systems, the convergence order of the algorithm is
difficult to derive precisely. A worst case analysis though sheds
some light on it. Note that for an nv -dimensional box Bc all of
whose sides are of length σ, the maximum error at step i is

εi =
√

σ2 nv = σ
√

nv .

The worst possible case occurs when the SHRINK-BOX proce-
dure is completely ineffective, which makes the method rely on
bisection only to isolate the solutions. Should this be the case,
after splitting Bc , the maximum error on each one of the child
boxes would be

εi+1 =

√
σ2 (nv − 1) +

σ2

4
= k εi

where k =
√

(4nv − 3)/(4nv). Thus, in this situation, the
method would exhibit linear convergence, with k approach-
ing 1 (i.e., to the nonconvergence case) as the number of vari-
ables grows. We point out, however, that the worst case just
depicted is rather improbable and, in fact, experiments show
that when isolating positive-dimensional solutions, the con-
vergence order is linear, but k is always substantially smaller
than

√
(4nv − 3)/(4nv) because the SHRINK-BOX procedure

always performs some reduction.

V. EXPERIMENTS

The algorithm has been implemented in C, using the glpk
library [53] to solve the linear programs involved. We next
illustrate its performance on a Pentium Core 2 at 2.4 GHz by way
of the four linkages shown in Fig. 6: a general 6R loop, a general
6-6 Stewart platform, and special versions of these two linkages.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

PORTA et al.: LINEAR RELAXATION TECHNIQUE FOR THE POSITION ANALYSIS OF MULTILOOP LINKAGES 233

TABLE I
DENAVIT–HARTENBERG PARAMETERS OF THE SOLVED 6R LOOPS

Detailed input/output files corresponding to such experiments
can be found in the supplementary material associated with this
paper, available at [54]. We note that although very efficient
solutions for the general versions of these linkages were already
obtained in [10]–[13], via elimination techniques, the methods
in such papers are unable to directly solve the special versions
that present 1-D configuration spaces.

The algorithm has also been tested successfully on numerous
other examples, ranging from planar linkages to spatial robots
and molecules. Details on such experiments are provided in
[55], including their formulation, output solutions, and linkage
animations. In all cases, the presented method is more than one
order of magnitude faster than general polytope methods like
[28] and [44], whose implementation is notably more intricate.

A. Solving General and Special 6R Loops

Loops with six revolute joints typically arise when solving the
inverse kinematic problem of serial 6R robot arms. Since in such
a problem, the pose of the end-effector is known with respect
to the absolute frame, the problem boils down to finding all
possible configurations of a 6R loop. The input/output problem
of the seven-link 7R linkage, moreover, is also equivalent to the
analysis of a 6R loop [10].

The geometry of 6R loops is easily described in terms of
Denavit–Hartenberg parameters, provided in Table I for the two
cases analyzed herein. The parameters in Table I, left, corre-
spond to a linkage proposed by Wampler and Morgan in [56],
which exhibits 16 isolated solutions. The parameters in Table I,
right, correspond to a special Bricard linkage. Because all of its
neighboring axes are intersecting (two of them at infinity), this
linkage exhibits a 1-D self-motion, with bifurcations, and two
additional rigid configurations. In both linkages, the system to
be solved is formed by (9) and (2)–(6). The intervening param-
eters are the aFi

i , dFi
i , and dFi + 1

i vectors, which can be obtained
from the linkage Denavit–Hartenberg parameters as follows.

According to the Denavit–Hartenberg convention, we number
the links and joints consecutively, as shown in Fig. 2, and define
a reference frame Fi for each link Li , with its zi-axis directed
along the axis of the ith joint and its xi-axis directed along
the normal line through joint axes i − 1 and i, with both axes
oriented according to a positive sense given to the loop. Then, if
we select pFi

i = (0, 0,−1) and qFi
i = (0, 0, di) as the locations

Fig. 7. Solution boxes obtained by the algorithm for the special 6R Bricard
linkage. The boxes are 22-D, but are here shown projected onto three of the
problem’s variables: the y components of v̂3 and v̂4 , and the z component of
v̂6 . Boxes i1 and i2 , enlarged here to make them visible, correspond to rigid
assemblies of the linkage. The remaining boxes form a single connected curve
and correspond to a mobile assembly mode. Boxes b1 and b2 enclose linkage
bifurcations, i.e., configurations from which the linkage can evolve in more than
two different ways.

of the Pi and Qi points (see Table I), we obtain

aFi
i = (ai, 0,−1)T (13)

dFi
i = (0, 0, di + 1)T (14)

dFi + 1
i = (0, (di + 1) sin αi+1 , (di + 1) cos αi+1)T (15)

where
1) ai is the distance between joints i − 1 and i along their

common normal;

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

234 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009

TABLE II
GEOMETRIC PARAMETERS OF THE SOLVED 6-6 PLATFORMS

Fig. 8. (a) Solution boxes obtained for Dietmeier’s 6-6 platform, projected onto three of the problem variables: the x components of d̂2 , d̂3 , and d̂4 . (b) Closer
view of the boxes in the neighborhood of a box trace. In the two plots, gray and black boxes correspond to two different runs at σ = 0.1 and σ = 10−7 , respectively.
All black boxes overlap coincident gray ones and have been enlarged to make them visible.

2) di is the distance between consecutive normals along joint
i;

3) αi is the angle from the zi−1 -axis to zi-axis, turning around
the direction of the positive xi-axis.

Overall, the reduced system to be solved is formed by 51
equations involving 45 variables. The number of equations is
larger than the number of variables because Eq. (2) introduces
some redundancy: since the length of vector di is known, it is, in
principle, sufficient to establish the x and y components of (2).
The third component is needed only to remove a sign ambiguity
in the z component of di . We note that the solution strategy
developed in Section IV is able to deal with such overconstrained
systems without any modification.

Choosing the parameters in Table I, left, and setting σ = 10−2

and ρ = 0.95, we solve the general 6R loop in about 7.5 s,

correctly isolating 16 boxes corresponding to the 16 solutions
published in [12]. In this case, the system processed 47 boxes,
16 of which contain a solution, 8 were found to be empty, and
23 were split for recursive processing. All solution boxes were
confirmed to include a solution, using the existence condition
described in Section IV-D.

Choosing the parameters in Table I, right, the 6R loop be-
comes an overconstrained mechanism. Contrary to existing
methods like [10]–[12], the proposed method can directly deal
with such special cases, obtaining a complete box approximation
of the whole configuration space. With σ = 0.025 and ρ = 0.95,
we obtain the 1686 solution boxes shown in Fig. 7 in 313 s, af-
ter processing 3873 boxes, only 251 of which were found to be
empty. Note that we can also infer the structure of the config-
uration space by analyzing the adjacency relationships of such

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

PORTA et al.: LINEAR RELAXATION TECHNIQUE FOR THE POSITION ANALYSIS OF MULTILOOP LINKAGES 235

boxes. In this case, one finds two isolated boxes i1 and i2 , cor-
responding to two rigid configurations of the linkage, together
with a curve of boxes, corresponding to an assembly mode with
a 1-D self-motion. Such mode presents two bifurcation config-
urations b1 and b2 , and the linkage can move from one to the
other in six different ways.

B. Solving General and Special 6-6 Platforms

A Stewart platform is formed by two links, the base and
the platform, connected by six legs. Each leg is a spherical–
prismatic–spherical chain. The most general version of such a
platform is the “6-6,” where the leg anchor points are all dif-
ferent in the base and the platform, and they are not necessarily
coplanar [see Fig. 6(c)]. The difficult problem is to determine the
possible platform poses, relative to the base, given the lengths
for the six legs. Since this is a multiloop linkage, we derive
the reduced system with the help of the linkage graph G(L).
The simplest version of such a graph includes only two vertices,
corresponding to the base and platform links, connected by six
edges, corresponding to the six legs, where each leg is viewed as
a compound spherical–spherical joint (see Table III, last row).
The system to be solved is formed by five loop equations of the
form of (23), corresponding to the five fundamental cycles in
G(L), the six joint equations ‖d̂i‖ = 1 (see Table III, last row)
gathered for all legs, and (3)–(6) corresponding to the platform
link. The absolute frame is placed in the base link, meaning
that the pose of such a link is a priori known. The problem
formulation involves a total of 27 equations in 27 variables.

A general 6-6 Stewart platform can adopt up to 40 different
configurations. One case giving rise to exactly 40 configurations
was found by Dietmeier [57], with the geometric parameters
indicated in Table II, left. For each leg, the table gives the coor-
dinates of the base (pi) and platform (qi) anchor points, relative
to base (F1) and platform (F2) frames, respectively, and the leg
length (li). When solving Dietmeier’s platform with σ = 10−3

and ρ = 0.95, we obtain 35 isolated solutions and several box
traces that include the remaining 11 solutions (see Fig. 8). All
points included in the box traces are quasi-solutions. Recall that
the error is quadratic with the size of the boxes, and thus, for
σ = 10−3 , the error in the returned boxes is below σ2 = 10−6 .
Therefore, the presence of box traces of quasi-solutions indi-
cates that the linkage is close to a singular configuration. It
is possible to isolate the true solutions within such box traces
by running the method with a smaller σ. For σ = 10−7 , our
implementation isolates the correct 40 solutions in 260 s, af-
ter processing 3395 boxes, 1658 of which were found to be
empty. In this case, all solution boxes were also confirmed to
include a solution point, with the existence condition described
in Section IV-D.

Choosing the geometric parameters in Table II, right, the
6-6 platform becomes a particular case of a platform patented
by Griffis and Duffy [58], whose special geometry allows it to
move with 1 DOF, with all of its leg lengths fixed. We highlight
that the problem formulation for this case is identical to the one
used for the general 6-6 platform, only differing on the men-
tioned geometric parameters. Fig. 9 visualizes the solution boxes

Fig. 9. Solution boxes obtained for the Griffis–Duffy platform, at three differ-
ent resolutions, projected onto two of the problem’s variables: the z components
of d̂1 and û2 . In each plot, we indicate the σ parameter used, the CPU seconds
employed (t), and the number of solution boxes found (ns).

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

236 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009

Fig. 10. Solution boxes obtained for the Griffis–Duffy platform, for σ =
0.0625, projected onto three of the problem’s variables: The z components of
d̂1 , û2 , and v̂2 .

obtained by the algorithm with ρ = 0.95, for decreasing values
of the σ parameter. For σ = 0.5, the obtained approximation
is too crude to reveal the topology of the configuration space.
However, as we reduce σ, two separated 1-D components arise
(depicted in white and gray in the figure), allowing for a correct
motion analysis of the linkage at hand. Fig. 10 is a 3-D version
of the last plot in Fig. 9 where the two connected components
can be better appreciated.

VI. CONCLUSION

We have presented a complete method that is able to give box
approximations of the configuration space of arbitrary multiloop
linkages. The method is general, in the sense that it can manage
any type of lower pairs, forming kinematic loops of arbitrary
topology. It is also complete, meaning that every solution point
will be contained in one of the returned boxes. Moreover, in all
experiments done so far, the algorithm was also correct since
by using a small-enough σ-value, all output boxes contained
at least one solution point each. Although we cannot verify
the presence of solutions in all boxes, returning boxes with no
solution is rather improbable due to the fact that the lineariza-
tions introduce errors smaller than the size of the considered
boxes. Moreover, the fact that all equations are simultaneously
taken into account during box shrinking (whether directly or in
a linearized form) palliates the so-called cluster effect, a known
problem of bisection-based techniques of this kind, whereby
each solution is obtained as a compact cluster of boxes in-
stead of a single box containing it, irrespective of the precision
used [59]. In the experiments performed so far, we encountered
spurious output on linkages with close-to-singular configura-

tions, but this cannot be attributed to clustering problems since
the phenomenon disappeared when running the algorithm at
smaller σ-values.

An advantage of the presented method is its ability to deal with
configuration spaces of general structure. This is accomplished
by maintaining a collection of boxes that form a tight envelope
of such spaces, which can be refined to the desired precision in a
multiresolutive fashion. The method is quadratically convergent
to all roots if these are isolated points, and linearly convergent to
them if these form positive-dimensional connected components.
Although the method’s performance is notable for a general
technique of this kind, an extensive study should be endeavored
to determine how its performance scales with the complexity of
the analyzed linkages.

APPENDIX I

ACCOUNTING FOR JOINT LIMITS

Let Lj and Lk be two links connected through a revolute
joint Ji . The relative angle between Lj and Lk , denoted as
φi , is defined as the angle between two unit vectors m̂i and
n̂i , chosen orthogonal to Ji’s axis, rigidly attached to Lj and
Lk , respectively. Suppose that we want to limit φi to lie within
the interval [φl

i , φ
u
i] ⊂ [0, 2π]. We will take these bounds into

account by limiting the range of the sine and cosine of φi . For
this, note that if

ci = cos(φi) (16)

si = sin(φi) (17)

then, ci and si are related to m̂i and n̂i through

ci = m̂i · n̂i (18)

si d̂i = m̂i × n̂i (19)

where d̂i is a unit vector pointing from Pi to Qi . Moreover, the
fact that m̂i , n̂i , and d̂i are fixed inFj ,Fk , andFj , respectively,
implies that

m̂i = Rj m̂Fj

i (20)

n̂i = Rk n̂Fk
i (21)

d̂i = Rj d̂Fj

i . (22)

Thus, to limit φi , we can simply add (18)–(22) to the system
to be solved and constrain the intervals of the si and ci variables
to the interval evaluation of sin(φi) and cos(φi) on [φl

i , φ
u
i].

APPENDIX II

OTHER LOWER PAIRS

This appendix extends the formulation of Section III to deal
with lower pairs of any kind. In principle, it would be suffi-
cient to provide a formulation for the revolute, prismatic, and
helical pairs, as these can be combined to obtain the effect of
a cylindrical, spherical, or planar pair [1]. However, we also
include the equations of the latter three pairs, and those of two
useful compound pairs (the universal and spherical–spherical
pairs), because their direct formulation involves less variables

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

PORTA et al.: LINEAR RELAXATION TECHNIQUE FOR THE POSITION ANALYSIS OF MULTILOOP LINKAGES 237

TABLE III
JOINT EQUATIONS AND δi TERM FOR ALL LOWER PAIRS (ROWS 1–6) AND OTHER COMPOUND PAIRS (ROWS 7 AND 8)

and constraint equations. We start reviewing the equations that
each lower pair introduces in the basic system, playing the role
of (1) and (2), and then examine the modifications they yield in
(9) of the reduced system.

As done in (1) for revolute joints, the formulation of all pairs
requires choosing two points Pi and Qi for Ji , respectively,
attached to Lj and Lk . These points are selected on the axis of
the joint (in the axial pairs), anywhere in the contact plane (in
the planar pair), coincident in the joint center (in the spherical
or universal pairs), or in the center of the ball–socket joints (in
the spherical–spherical pair). The joint equations of each pair,
indicated in Table III, can be described as follows.

1) If Ji is revolute, we have the equations already discussed
in Section III.

2) If Ji is prismatic, Lk can translate only with respect to Lj .
This can be enforced by choosing parallel reference frames
for Lj and Lk , and setting Rj = Rk in the system. Then,
the valid poses for Lj and Lk must verify the equations in
Table III, second row, where d̂i is a unit vector pointing
from Pi to Qi and di is a displacement parameter taking
values within some range.

3) If Ji is cylindrical, Lk can freely rotate and translate with
respect to Lj , along the axis of Ji , and the valid poses
must satisfy the equations in Table III, third row, where di

and d̂i are defined as for prismatic joints.
4) If Ji is helical, it can be seen as a cylindrical joint where

the rotated angle φi and the displacement di are related by
φi = kidi , where ki is the pitch of the helix. Recall from

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

238 IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 2, APRIL 2009

Appendix I that φi must verify (16)–(22), and thus, in
addition to these equations, each helical joint contributes
with the equations in the fourth row to the basic system.

5) If Ji is spherical, Pi coincides with Qi . Link Lk can freely
rotate with respect to Lj , and the valid poses for the two
links verify the equation in the fifth row.

6) If Ji is planar, the contact of links Lj and Lk is constrained
to a plane πi . The conditions for a proper assembly are
given in the sixth row, where n̂i and m̂i are the normals
to such links in Pi and Qi , respectively.

7) If Ji is universal, Pi coincides with Qi . The only constraint
imposed by the joint is the orthonormality of two vectors
ui and vi defining the rotation axes of the joint.

8) If Ji is a spherical–spherical chain connecting Lj and Lk ,
then the distance between Pi and Qi must be fixed. This
can be imposed as shown in the last row of the table, where
d̂i represents a unit vector pointing from Pi to Qi , and li
is the distance between these points.

Regarding the loop equations, note that the first joint equation
given in each row of Table III plays a role similar to that of (1)
for revolute joints. These equations merely force Lj and Lk to
be placed with their Qi points coinciding. As we did for revolute
joints, we can always eliminate the ri vectors and reduce the
system to a simpler one. On a single-loop linkage, with links and
joints numbered as in Fig. 2, the loop equation corresponding
to (9) will have the general form

n∑
i=1

Ri a
Fi
i + δi = 0 (23)

where the δi term depends on the joint type, as given in Table III.
In general, the reduced system will be formed by

1) one loop equation of the form of (23) for each fundamental
cycle of the linkage graph;

2) the second to last joint equations in each row of Table III,
gathered for all joints of the linkage;

3) equations (3)–(6), gathered for all links.
The variables intervening in such a system will be the Ri

matrices, and the di , φi , di , and d̂i variables introduced by the
linkage pairs as described before.

We finally realize that this system already comes in the form
required for equation expansion (Section IV-A) as the interven-
ing monomials are all linear, bilinear, or quadratic. Only in the
case of a linkage with helical joints, trivial trigonometric equa-
tions of the form ci = cos(φi) or si = sin(φi) appear in the
system, which can be handled easily by using linear relaxations
appropriate for these functions.

Finally, angular limits for the different pairs can be defined
essentially, as in Appendix I. The rest of degrees of freedom can
be limited bounding the ranges for the di , di , and d̂i variables.

REFERENCES

[1] K. H. Hunt, Kinematic Geometry of Mechanisms. London, U.K.: Oxford
Univ. Press, 1978.

[2] L.-W. Tsai, Robot Analysis: The Mechanics of Serial and Parallel Manip-
ulators. New York: Wiley, 1999.

[3] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path planning
for linkages with closed kinematic chains,” IEEE Trans. Robot. Autom.,
vol. 17, no. 6, pp. 951–958, Dec. 2001.

[4] A. Rodrı́guez, L. Basañez, and E. Celaya, “A relational positioning
methodology for robot task specification and execution,” IEEE Trans.
Robot., vol. 24, no. 3, pp. 600–611, Jun. 2008.

[5] J. M. Porta, “CuikSlam: A kinematics-based approach to SLAM,” in Proc.
IEEE Int. Conf. Robot. Autom., 2005, pp. 2436–2442.

[6] P. Kumar and S. Pellegrino, “Computation of kinematic paths and bifur-
cation points,” Int. J. Solids Struct., vol. 37, pp. 7003–7027, 2000.

[7] P. E. Nikravesh, Computer-Aided Analysis of Mechanical Systems. En-
glewood Cliffs, NJ: Prentice-Hall, 1988.

[8] J. G. de Jalón and E. Bayo, Kinematic and Dynamic Simulation of Multi-
body Systems. New York: Springer-Verlag, 1993.

[9] W. J. Wedemeyer and H. Scheraga, “Exact analytical loop closure in
proteins using polynomial equations,” J. Comput. Chem., vol. 20, no. 8,
pp. 819–844, 1999.

[10] H.-Y. Lee and C.-G. Liang, “Displacement analysis of the general spatial
7-link 7R mechanism,” Mech. Mach. Theory, vol. 23, no. 3, pp. 219–226,
1988.

[11] M. Raghavan and B. Roth, “Inverse kinematics of the general 6R ma-
nipulator and related linkages,” Trans. ASME J. Mech. Des., vol. 115,
pp. 502–508, 1993.

[12] D. Manocha and J. Canny, “Efficient inverse kinematics for general 6R
manipulators,” IEEE Trans. Robot. Autom., vol. 10, no. 5, pp. 648–657,
Oct. 1994.

[13] T.-Y. Lee and J.-K. Shim, “Forward kinematics of the general 6-6 Stewart
platform using algebraic elimination,” Mech. Mach. Theory, vol. 36,
pp. 1073–1085, 2001.

[14] J. Nielsen and B. Roth, “Solving the input/output problem for planar
mechanisms,” ASME J. Mech. Des., vol. 121, pp. 206–211, 1999.

[15] C. W. Wampler, “Solving the kinematics of planar mechanisms by Dixon’s
determinant and a complex plane formulation,” ASME J. Mech. Des.,
vol. 123, pp. 382–387, 2001.

[16] E. Celaya, T. Creemers, and L. Ros, “Exact interval propagation for the
efficient solution of planar linkages,” presented at the 12th World Conf.
Mech. Mach. Sci., Besançon, France, 2007.

[17] J. M. Porta, L. Ros, T. Creemers, and F. Thomas, “Box approximations
of planar linkage configuration spaces,” ASME J. Mech. Des., vol. 129,
no. 4, pp. 397–405, 2007.

[18] J. M. Porta, L. Ros, and F. Thomas, “Multi-loop position analysis via
iterated linear programming,” in Robotics: Science and Systems, vol. 2.
Cambridge, MA: MIT Press, 2006, pp. 169–178.

[19] D. Cox, J. Little, and D. O’Shea, An Introduction to Computational Alge-
braic Geometry and Commutative Algebra, 2nd ed. New York: Springer-
Verlag, 1997.

[20] I. Z. Emiris, “Toric resultants and applications to geometric modelling,”
in Solving Polynomial Equations: Foundations, Algorithms, and Applica-
tions (Algorithms and Computation in Mathematics Series). New York:
Springer-Verlag, 2005, pp. 269–300.

[21] A. J. Sommese and C. W. Wampler, The Numerical Solution of Systems
of Polynomials Arising in Engineering and Science. Singapore: World
Scientific, 2005.

[22] B. Roth and F. Freudenstein, “Synthesis of path-generating mechanisms
by numerical methods,” ASME J. Eng. Ind., vol. 85, pp. 298–307, 1963.

[23] C. B. Garcia and T. Y. Li, “On the number of solutions to polynomial
systems of equations,” SIAM J. Numer. Anal., vol. 17, pp. 540–546,
1980.

[24] C. B. Garcia and W. I. Zangwill, Pathways to Solutions, Fixed Points, and
Equilibria. Upper Saddle River, NJ: Prentice-Hall, 1981.

[25] A. P. Morgan, Solving Polynomial Systems Using Continuation for Engi-
neering and Scientific Problems. Upper Saddle River, NJ: Prentice-Hall,
1987.

[26] T. Y. Li, T. Sauer, and J. A. York, “The cheater’s homotopy: An efficient
procedure for solving systems of polynomial equations,” SIAM J. Numer.
Anal., vol. 18, no. 2, pp. 173–177, 1988.

[27] E. Hansen, Global Optimization Using Interval Analysis. New York:
Marcel Dekker, 1992.

[28] E. C. Sherbrooke and N. M. Patrikalakis, “Computation of the solutions
of nonlinear polynomial systems,” Comput. Aided Geom. Des., vol. 10,
no. 5, pp. 379–405, 1993.

[29] C. S. Adjiman, S. Dallwig, C. A. Foudas, and A. Neumaier, “A global
optimization method, αBB, for general twice-differentiable constrained
NLPs—I theoretical advances,” Comput. Chem. Eng., vol. 22, pp. 1137–
1158, 1998.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

PORTA et al.: LINEAR RELAXATION TECHNIQUE FOR THE POSITION ANALYSIS OF MULTILOOP LINKAGES 239

[30] R. S. Rao, A. Asaithambi, and S. K. Agrawal, “Inverse kinematic solution
of robot manipulators using interval analysis,” ASME J. Mech. Des.,
vol. 120, pp. 147–150, 1998.

[31] O. Didrit, M. Petitot, and E. Walter, “Guaranteed solution of direct kine-
matic problems for general configurations of parallel manipulators,” IEEE
Trans. Robot. Autom., vol. 14, no. 2, pp. 259–266, 1998.

[32] A. Castellet and F. Thomas, “An algorithm for the solution of inverse
kinematics problems based on an interval method,” in Advances in Robot
Kinematics, M. Husty and J. Lenarcic, Eds. Norwell, MA: Kluwer,
1998, pp. 393–403.

[33] C. Bombı́n, L. Ros, and F. Thomas, “A concise Bézier clipping technique
for solving inverse kinematics problems,” in Advances in Robot Kine-
matics, J. Lenarcic and M. Stanisic, Eds. Norwell, MA: Kluwer, 2000,
pp. 53–61.

[34] J. M. Porta, L. Ros, F. Thomas, and C. Torras, “Solving multi-loop linkages
by iterating 2D clippings,” in Advances in Robot Kinematics, F. Thomas
and J. Lenarcic, Eds. Norwell, MA: Kluwer, 2002, pp. 255–264.

[35] J.-P. Merlet, “Solving the forward kinematics of a Gough-type parallel
manipulator with interval analysis,” Int. J. Robot. Res., vol. 23, no. 3,
pp. 221–236, 2004.

[36] J. M. Porta, L. Ros, F. Thomas, and C. Torras, “A branch-and-prune solver
for distance constraints,” IEEE Trans. Robot., vol. 21, no. 2, pp. 176–187,
Apr. 2005.

[37] D. Daney, Y. Papegay, and A. Neumainer, “Interval methods for certifi-
cation of the kinematic calibration of parallel robots,” in Proc. IEEE Int.
Conf. Robot. Autom., 2004, pp. 1913–1918.

[38] M. Gavriliu, “Towards more efficient interval analysis: Corner forms and
a remainder interval Newton method,” Ph.D. dissertation, California Inst.
Technol., Pasadena, CA, 2005.

[39] R. B. Kearfott, “Discussion and empirical comparisons of linear relax-
ations and alternate techniques in validated deterministic global optimiza-
tion,” Optim. Methods Softw., vol. 21, no. 5, pp. 715–731, 2006.

[40] K. Yamamura, “Interval solution of nonlinear equations using linear pro-
gramming,” BIT, vol. 38, no. 1, pp. 186–199, 1998.

[41] L. V. Kolev, “A new method for global solution of systems of non-linear
equations,” Reliable Comput., vol. 4, pp. 125–146, 1998.

[42] Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J.-P. Merlet, “Efficient
and safe global constraints for handling numerical constraint systems,”
SIAM J. Numer. Anal., vol. 42, no. 5, pp. 2076–2097, 2005.

[43] G. P. McCormick, “Computability of global solutions to factorable non-
convex programs: Part I—Convex underestimating problems,” Math.
Program., vol. 10, pp. 147–175, 1976.

[44] J. M. Porta, L. Ros, F. Thomas, F. Corcho, J. Cantó, and J. J. Pérez,
“Complete maps of molecular-loop conformational spaces,” J. Comput.
Chem., vol. 28, no. 13, pp. 2170–2189, 2007.

[45] G. Chartrand and L. Lesniak, Graphs and Digraphs, 3rd ed. London,
U.K.: Chapman and Hall, 1996.

[46] A. Neumaier and O. Shcherbina, “Safe bounds in linear and mixed-integer
programming,” Math. Program., vol. 99, pp. 283–296, 2004.

[47] C. Jansson, “Rigorous lower and upper bounds in linear programming,”
SIAM J. Optim., vol. 14, no. 3, pp. 914–935, 2004.

[48] L. E. J. Brouwer, “Ueber eineindeutige, stetige transformationen von
flächen in sich,” Math. Ann., vol. 69, pp. 176–180, 1910.

[49] L. Kantorivich, “On Newton’s method for functional equations,” Dokl.
Akad. Nauk SSSR, vol. 59, pp. 1237–1240, 1948.

[50] C. Miranda, “Un’osservatione su un teorema di Brouwer,” Bolletino
dell’Unione Matematica Italiana, vol. 3, no. 2, pp. 5–7, 1940.

[51] K. Borsuk, “Drei sätze über die n-dimensionale sphäre,” Fund. Math.,
vol. 20, pp. 177–190, 1933.

[52] G. Alefeld and J. Herzberger, Introduction to Interval Computations.
Orlando, FL: Academic, 1983.

[53] A. Makhorin. (2008). GLPK—The GNU linear programming toolkit
[Online]. Available: http://www.gnu.org/software/glpk

[54] The IEEE Xplore home page. (2009). [Online]. Available: http://
ieeexplore.ieee.org

[55] The CUIK project home page. (2008). [Online]. Available: http://
www-iri.upc.es/groups/gmr/cuikweb

[56] C. Wampler and A. P. Morgan, “Solving the 6R inverse position problem
using a generic-case solution methodology,” Mech. Mach. Theory, vol. 26,
no. 1, pp. 91–106, 1991.

[57] P. Dietmeier, “The Stewart–Gough platform of general geometry can
have 40 real postures,” in Advances in Robot Kinematics: Analysis and
Control, J. Lenarcic and M. Husty, Eds. New York: Springer-Verlag,
1998, pp. 7–16.

[58] M. Griffis and J. Duffy, “Method and apparatus for controlling geomet-
rically simple parallel mechanisms with distinctive connections,” U.S.
Patent 5 179 525, 1993.

[59] A. Morgan and V. Shapiro, “Box-bisection for solving second-degree
systems and the problem of clustering,” ACM Trans. Math. Softw., vol. 13,
no. 2, pp. 152–167, 1987.

Josep M. Porta received the Engineer degree in com-
puter science and the Ph.D. degree in artificial intelli-
gence from the Universitat Politècnica de Catalunya
(UPC), Barcelona, Spain, in 1994 and 2001,
respectively.

He is currently an Associate Researcher of
the Spanish National Research Council (CSIC) at
the Institut de Robòtica i Informàtica Industrial,
(IRI, CSIC-UPC). His current research interests in-
clude planning under uncertainty and computational
kinematics.

Lluı́s Ros received the Degree in mechanical engi-
neering and the Ph.D. degree (with honors) in in-
dustrial engineering from the Universitat Politècnica
de Catalunya (UPC), Barcelona, Spain, in 1992 and
2000, respectively.

From 1993 to 1996, he was with the Control of
Resources Group, Institut de Cibernètica, Barcelona,
where he was engaged in the application of constraint
logic programming to the control of electric and water
networks. He is currently an Associate Researcher of
the Spanish National Research Council (CSIC) at the

Institut de Robòtica i Informàtica Industrial (IRI, CSIC-UPC). His current re-
search interests include geometry and kinematics, with applications to robotics,
computer graphics, and machine vision.

Federico Thomas (M’05) received the B.Sc. degree
in telecommunications engineering and the Ph.D. de-
gree (with honors) in computer science from the Uni-
versitat Politècnica de Catalunya (UPC), Barcelona,
Spain, in 1984 and 1988, respectively.

He is currently a Professor of Research of the
Spanish National Research Council (CSIC) at the In-
stitut de Robòtica i Informàtica Industrial (IRI, CSIC-
UPC). His current research interests include geom-
etry and kinematics, with applications to robotics,
computer graphics, and machine vision.

Prof. Thomas is an Associate Editor of the IEEE TRANSACTIONS ON

ROBOTICS.

Authorized licensed use limited to: UNIVERSITAT POLITÈCNICA DE CATALUNYA. Downloaded on October 1, 2009 at 10:37 from IEEE Xplore. Restrictions apply.

