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Abstract An algorithm to derive the pure condition of any double-plaStewart-
Gough platform in a standard form suitable for comparisopresented. By ap-
plying the multilinear properties of brackets directly teetsuperbracket encoding
of the pure condition, no straightening is required. It isrttshown that any 3-3
platform has a corresponding 6-6 platform having its sanperuracket, meaning
that they have identical singularity loci. In general, thperbracket of any double-
planar platform can be written as a linear combination ofdheerbrackets of 3-3
platforms, leading to a direct singularity assessment bgeuoting the resulting de-
composition.

1 Introduction

The usual method for identifying the singular configurasiarf a Stewart-Gough
platform is to find those configurations in which the vectdr®liicker coordinates
of its leg-lines become linearly dependent [1]. This canditis equivalent to as-
sessing whether the determinant of the kinematic transftiom matrixK, relating
prismatic joint velocities with end-effector twists, vahes. An alternative method
to investigate the singularities of a Stewart-Gough ptatfis to consider itgure
condition, a polynomial of 4x 4 determinants, termeltackets, the four columns
of which correspond to the coordinates of four leg attacheemitten in homoge-
neous coordinates. The pure condition for a Stewart-Golagfopm becoming zero
is equivalent to the determinant Kfvanishing.

The pure condition for the general Stewart-Gough platfasran expression in-
volving 16 different bracket monomials, each monomial ¢stivgy of the product
of three brackets. This pure condition, with the labelindrgf. 1, can be expressed
as:
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[abgi] [cdhK][ef j1] — [ghad][i jbe][kid f] — [abgi] [cdhi]ef jk] + [ghac][i jbf] ki d€]
—[abgj][cdhk][efil] + [ghad]]i jbe] [kl cf] + [abgj] [cdhl][efik] — [ghad][ijbf] [kl ce]
—[abhi][cdgK][ef j1] + [ghbd] i jae] [kId f] + [abhi] [cdgl][ef jk] — [ghbc][i jaf] kI de]
+[abhij][cdgk][efil] — [ghbd][i jag][kIcf] — [abhj][cdal] [efiK] + [ghbd]fijaf][Klce. (1)

It can be proved that the pure condition eq%de(m, wherely, ..., lg
are the six leg lengths.

The advantage of the bracket representation of the ¢ e g i Kk
linear dependence of leg-lines is seen when inves
gating simplified forms of the general Stewart-Goug
platform in which some legs share attachments and/dr
some attachments are collinear or coplanar. Placin
constraints on the geometrical structure of the platfor .
reduces the number of bracket terms to a manageaBI_e d f _ h 1
level, thus offering the opportunity for simple geomet{9: 1 Labeling for the at-
. . . . . tachments of a general 6-6
rical mterpreta_tl_ons of the smgularme_s. For exampIeStewart_Gough platform.
the pure conditions of the three possible 3-3 Stewart-
Gough platforms in Fig. 2 [2, 3, 4] reduce to the bracket espars appearing in
the same figure.

It is worth nothing that a pure condition can be written in mdifferent equiv-
alent forms. Obtaining the shortest form for each case may applyingsyzygies
(see [4] for detalils).

Flagged Partially flagged Octahedral
a c e a c e a c e
b d f b d f b d f
[abd f][acd f][acef] [abdc][acde][bdef] [abfc][acde][bdef]

+[abfd][acbe][cdef]

Fig. 2 The three possible topologies for 3-3 Stewart-Gough platferflagged, partially flagged
and octahedral— and their corresponding pure conditions.

There is a direct connection between the exterior calcuBragsmann-Cayley
algebra [5]) and bracket algebra. For instance, the extpramluct of four points in
space in Grassmann-Cayley algebra translates directhbtacket. It is generally
accepted that the conversion of Grassmann-Cayley algebbaatket algebra is
straightforward. Moreover, bracket algebra can be coadetid coordinate algebra
by replacing points in brackets with their homogeneous dinates and expanding
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the determinants into polynomials. Unfortunately, theeree procedures are not
trivial. The conversion from polynomials of coordinatestacket polynomials is,
in general, extremely difficult. The operation that cons@rbracket expression into
a Grassmann-Cayley expression is called Cayley factaizgbr which no general
algorithm exists yet.

The Grassmann-Cayley expression for the pure conditiondsvk as thesuper-
bracket [6]. Given the general 6-6 Stewart-Gough platform in Figtslsuperbracket
is represented dab, cd, ef,gh,ij,kl], where each termrsis the Grassmann-Cayley
algebra entity representing the line defined by pairdads.

In [7], the multilinear properties of brackets were exm@dito obtain simplified
pure conditions for platforms with aligned attachmentshia base and/or the plat-
form. The algorithm presented in [7] uses the so-cadted ghtening procedure to
obtain canonical bracket forms that can be compared. Unfately, the obtained
bracket expressions are long and it is difficult to state dytlare in their shortest
form. Here, by applying the multilinear properties of bratskdirectly to the super-
bracket instead of the brackets in the pure condition, arorapt simplification is
obtained. Actually, the straightening procedure is avbide

The proposed algorithm permits to express the pure conddfoany double-
planar platform (that is, any parallel platform with its {itam and base attach-
ments coplanar) as a linear combination of the pure comditiof 3-3 platforms
with flagged, partially-flagged and octahedral topologyaAnsequence, the pre-
sented algorithm permits detecting singularity equivegenbetween double-planar
platforms in a straightforward way.

This paper is structured as follows. Section 2 presentslgfogitnm. Based on it,
section 3 shows how platforms with different topologies bame equivalent pure
conditions and, as a consequence, the same singularity. ldsuanother possible
application, section 4 shows how the pure condition of aitrary double-planar
platform can always be expressed as a linear combinatioorefgonditions of 3-3
platforms. Finally, section 5 summarizes the main results.

2 Decomposing a super bracket into simple superbrackets

Using the same notation as in [7], the collinearity conditid pointa lying on line
pg can be expressed as:
a=kip+(1—ki)a. (2)

In what follows, the points that are used to define an aligrimeéth be called
characteristic points (p andq in the expression above), and those expressed as a
linear combination of thentomposite points (ain the expression above).

Now, using the distributive property of the join operatiomdathe scalar mul-
tiplication, the expression of a line through poirdgsand b can be written as
ab=avb=(kip+ (1—ki)q) Vb =kipb+ (1—ki)gh. Then, using the distribu-
tive property again, a superbracket containing peirtan be expanded into two
superbrackets as follows:
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[ab,cd,ef  gh,ij,kl] = ki[pb,cd,ef gh,ij, k] + (1—ki)[gb,cd, ef ,gh,ij,kI]. (3)

By recursively applying this operation to a superbrackebliving composite points,
it is possible to express it as the sum of superbrackets dameonly on character-
istic points, calledsimple superbrackets.

Finally, since the elements in a superbracket can be pedrsiang the same
rules as those used when permuting columns or rows in ogdareterminants, the
elements of the resulting simple superbrackets can be pekicographic order to
make their comparison possible.

The above procedure in algorithmic form appears in Alganith The function
ZeroSB(sbr) checks whether a simple superbracket is identically zehe. asiest
way to do this, without writing coordinates, is to expandshperbracket in terms of
brackets using (1) and setting to zero all brackets comtgitiie same point at least
twice. The functiorSortSB(sbr) sorts the lines of a superbracket in a lexicographic
order and computes the sign of the corresponding permatatio

Algorithm 1 ExpandSB(): Expansion of a superbracket containing composite point

Input: sbr =[a,b,c,d,e f,g,h,i,j,kl]: list of 12 points representing a superbracket.
Output: alinear combination of simple superbrackets.
if sbr is a simple superbrackéten
if ZeroSB(sbr) then
return0;
else
return SortSB(sbr);
end if
else
for i=1to 12do
if sbrli] is a composite poirthen
coe, points < Split(sor(i]);{Ex: in (2) it would be,coe = [k, (1—kz)], points= [p,q] }
compy « coe[1] - ExpandSB(sbr gy (i pointsz) ):{ Substitution of the i-th membgr
compy «— coe[2] - ExpandSB(sbr gy fjj= pointsj2));
return comps + compy;
end if
end for
end if

Once alinear combination of simple superbrackets is obthione can substitute
each of them by a bracket expression using the general farmyl) to obtain the
pure condition for the analyzed platform. Note that the i@ output is useful,
even before expressing it in terms of brackets, to detegiuanity equivalences
between platforms. This is shown in Section 3.

Finally, note that a coplanarity among attachments can peseged as a linear
combination of three points: # belongs to the planpqv, thena = ky1p+ ki2q -+
(1— ki1 —ki2)v for some scalark; 1 andk;2 and, therefore, the proposed algorithm
can be easily extended to deal with coplanarities. In deplaear platforms, all
attachments, either in the base or the platform, can be ssg@dein terms of only
three characteristic points. As a consequence, the outplué groposed algorithm
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would always be a linear combination of superbrackets spaeding to platforms
with flagged, partially flagged and octahedral topology. §liican be said that the
three possible 3-3 platforms behave as a basis for all deplalear Stewart-Gough
platforms. This is exemplified in Section 4.

3 Platformswith different topologies and the same singularities

Figure 3 displays three inputs supplied to the proposedisihgo, together with the
obtained outputs. Each input consists of the twelve poisasenting the super-
bracket of a 6-6 platform, and all outputs are in the form ofnapde superbracket
multiplied by a constark;. These three outputs are very special cases, correspond-
ing to the three topologies for 3-3 platforms appearing m 2. Thus, there exist
6-6 platforms that, with the adequate alignments for thegyr dttachments, give a
single-term decomposition. Moreover, they have singtikgriequivalent to those of
3-3 platforms with flagged, partially-flagged or octahedeogiologies. And, to the
best of our knowledge, there are no other 6-6 platforms thaset shown in Fig. 3
with singularities directly equivalent to those of a 3-3tfdam.

The constant factorki, Ky, and Kz multiplying the obtained decompositions
(which, in these cases, consist of a single superbracke®nwquated to zero, give
the condition for each 6-6 platform to become architectyrsingular. Indeed, if
one of these constants is zero, the corresponding supkebrigcidentically zero
and, as a consequence, the platform is always singularémdiemtly of the lengths
of its legs.K; = 0 andK;, = 0 correspond to the cross-ratio condition of the line-
line component [8], as already noted in [9, 10, 7, 11], &d= 0 corresponds to
the architecturally singular condition of the Griffis-Dyfblatform, in concordance
with results in [12, 13].

4 Double-planar platformsand the three 3-3 topologies

Consider the platform in Fig. 4. It has two alignments in tasdand one alignment
involving five points in the platform. When decomposing itpetbracket using the
proposed algorithm, five simple superbrackets are obtgDatput 1 in Fig. 4). Two
of them correspond to superbrackets associated with 3tfbptes with partially-
flagged topology, and the other three with 3-3 platforms Wafged topology. Now,
we can translate each of these simple superbrackets irntkdinaolynomials, using
the expressions in Fig. 2, to obtain the pure condition ofchiesidered platform.
When performing this operation, and applying syzygies, amom factor to all
terms arises: the brackébce]. This common factor tells us that the considered
platform in is a singularity when poifitlies on the planace. This is a direct conse-
quence of the presence of a line-plane component definedeldy-pioint alignment
[14].
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Casel
g1 =kia+ (1—kg)c, g2 =kea+ (1—kp)c, g3 =ksa+ (1—kz)c

G =ked+(1-ka)f, Os=ksd+(1—ks)f, gs=ked+ (1—ke)f
2 G Q@ g3 ¢ € a c e

b d % Os O f b d f
input: [a,b,q1,d, g2, 04,03, 05,C, 0, & f] output: K; - [ab,ad,af,cd,cf,ef]

Ky =k (ks(1—ks) (ks —ka) — (1 —ka)(Ke — ks)kz) — koka(ks —ka)(1—ke)

Case?2
qu=kia+(1-ki)c, 2=koa+(1-ko)c, O3 =ksra+ksC+ (1—ksp—ks)e

G =kab+ (1—ki)d, s =ksb+(1—ks)d, 0= keb+(1—ke)d
a ql q2 C q3 e a C e

b 94 G U6 d f b d f
inDUt: [a7 b7 Q1,04,02,0s,C, q67q37d7e7 f] output: Kz- [aba ad7Cb7 Cd7ed7ef]

Kz = (1 — ka1 —ks2)(k2((1—ke) (ks —ks)kp — (1 —ks) (ks — kg)) —ki(ks —ks)(1—ka))

Case3
Gu=kia+(1-ki)e, 2=ka+(1-k)c, agz=ksc+(1-kg)e

G=kbt(1-ka)f, Gs=ksb+(1-ks)d, G =ked+(1—ke)f
2 0 ¢ g3 & g a c e

% b U d O f b d f
input: [a,0s,d2,b,01, f,03,d, ¢, s, €, qe] output: K3- [ab,af,cb,cd, ed, ef]

K = kaka(1—kz)(1—ks)(1—ks)(1—ke) — kokskske (1 —Ka)(1—ka)
Fig. 3 The 6-6 platforms on the left have the same singularities as itegrective 3-3 platforms

on the right, provided that the constant multiplying the atedi simple superbracke;, is not
identically zero, in which case the corresponding 6-6 platfar architecturally singular.
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—kl)e q2:k20+(1—k
—ks)e Ga = kab+ (1 —kq)d
o)t ked+ (L—ke

InpUt: [a7 ba C, q47q17q57q27d7q37q67e’ f]

VM- DKWL A A

Output 1 ci1[ab, cb cd, cf ed, ef +cz[ab eb cd, cf ed ef]
+cz[ab, ch, cd, eb,ed ,ef] +cafab, cb, cf, eb, ed ,ef] 4+ cs[ab,ch,cd, cf, eb, ef]

MN - M- 4 - NK - X

Output 2: cl[ab ad ch, cd cf, ef +cz[ab ad, cb cd ed, ef]
+cz[ab, ad, cb cf, ed ef]+c4[ab ad, cd cf ed,ef]+05[ab cb,cd, cf,ed, ef]

Fig. 4 Using the proposed algorithm, the decomposition of the superérasisociated with the
platform in this figure is that ifOutput 1. If q; is redefined a%ia+ (1 — ki)c, the resulting
superbracket decomposition is thatQutput 2. In both cases, the 3-3 platform associated with
each simple superbracked is represented in the same order of tratestion.

If we change the location of poig to break the 5-point alignment and we align
it with ¢c and a, the line-plane component disappears. Applying our allgorito
the resulting superbracket, the obtained decompositisnaomtains a superbracket
corresponding to a 3-3 platform with octahedral topologytfiit 2 in Fig. 4). Co-
herently, the resulting expression, when translated indckets, contains no com-
mon factors.

5 Conclusions

The proposed algorithm permits a straightforward singtylanalysis of any Stewart-
Gough manipulator with planar base and platform by justectipg its resulting su-
perbracket decomposition. In particular, if it factoriZesplying that no octahedral
topology appears among its components), then each comnator fzorresponds
to a rigid substructure (point-plane, line-line, line4p#) of the manipulator and,
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therefore, such factor becoming null indicates an architat singularity of the
corresponding type.

The presented algorithm has been implemented in Maple 1finnt package
that also contains procedures for representing graphittedl superbracket decom-
positions in terms of 3-3 topologies similar to those apipegin Figs. 3 and 4.

We are currently addressing the derivation of entire fasilbf Stewart-Gough
platforms sharing the same singularity structure, in paldr, those for the three
3-3 topologies. Moreover, we would like to extend the patdmif the algorithm by
permitting the appearance of virtual points (playing anantg@nt role as regards to
singularities) in the brackets, in order to push the decaitiom further.
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