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Abstract An algorithm to derive the pure condition of any double-planar Stewart-
Gough platform in a standard form suitable for comparison ispresented. By ap-
plying the multilinear properties of brackets directly to the superbracket encoding
of the pure condition, no straightening is required. It is then shown that any 3-3
platform has a corresponding 6-6 platform having its same superbracket, meaning
that they have identical singularity loci. In general, the superbracket of any double-
planar platform can be written as a linear combination of thesuperbrackets of 3-3
platforms, leading to a direct singularity assessment by inspecting the resulting de-
composition.

1 Introduction

The usual method for identifying the singular configurations of a Stewart-Gough
platform is to find those configurations in which the vectors of Plücker coordinates
of its leg-lines become linearly dependent [1]. This condition is equivalent to as-
sessing whether the determinant of the kinematic transformation matrixK, relating
prismatic joint velocities with end-effector twists, vanishes. An alternative method
to investigate the singularities of a Stewart-Gough platform is to consider itspure
condition, a polynomial of 4×4 determinants, termedbrackets, the four columns
of which correspond to the coordinates of four leg attachments written in homoge-
neous coordinates. The pure condition for a Stewart-Gough platform becoming zero
is equivalent to the determinant ofK vanishing.

The pure condition for the general Stewart-Gough platform is an expression in-
volving 16 different bracket monomials, each monomial consisting of the product
of three brackets. This pure condition, with the labeling ofFig. 1, can be expressed
as:
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[abgi][cdhk][e f jl]− [ghac][i jbe][kld f ]− [abgi][cdhl][e f jk]+ [ghac][i jb f ][klde]

−[abg j][cdhk][e f il]+ [ghad][i jbe][klc f ]+ [abg j][cdhl][e f ik]− [ghad][i jb f ][klce]

−[abhi][cdgk][e f jl]+ [ghbc][i jae][kld f ]+ [abhi][cdgl][e f jk]− [ghbc][i ja f ][klde]

+[abh j][cdgk][e f il]− [ghbd][i jae][klc f ]− [abh j][cdgl][e f ik]+ [ghbd][i ja f ][klce]. (1)

It can be proved that the pure condition equals1
l1l2l3l4l5l6

det(K), wherel1, . . . , l6
are the six leg lengths.

a c e g i k

b d f h j l
Fig. 1 Labeling for the at-
tachments of a general 6-6
Stewart-Gough platform.

The advantage of the bracket representation of the
linear dependence of leg-lines is seen when investi-
gating simplified forms of the general Stewart-Gough
platform in which some legs share attachments and/or
some attachments are collinear or coplanar. Placing
constraints on the geometrical structure of the platform
reduces the number of bracket terms to a manageable
level, thus offering the opportunity for simple geomet-
rical interpretations of the singularities. For example,
the pure conditions of the three possible 3-3 Stewart-
Gough platforms in Fig. 2 [2, 3, 4] reduce to the bracket expansions appearing in
the same figure.

It is worth nothing that a pure condition can be written in many different equiv-
alent forms. Obtaining the shortest form for each case may need applyingsyzygies
(see [4] for details).
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Fig. 2 The three possible topologies for 3-3 Stewart-Gough platforms–flagged, partially flagged
and octahedral– and their corresponding pure conditions.

There is a direct connection between the exterior calculus (Grassmann-Cayley
algebra [5]) and bracket algebra. For instance, the exterior product of four points in
space in Grassmann-Cayley algebra translates directly to abracket. It is generally
accepted that the conversion of Grassmann-Cayley algebra to bracket algebra is
straightforward. Moreover, bracket algebra can be converted to coordinate algebra
by replacing points in brackets with their homogeneous coordinates and expanding
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the determinants into polynomials. Unfortunately, the reverse procedures are not
trivial. The conversion from polynomials of coordinates tobracket polynomials is,
in general, extremely difficult. The operation that converts a bracket expression into
a Grassmann-Cayley expression is called Cayley factorization, for which no general
algorithm exists yet.

The Grassmann-Cayley expression for the pure condition is known as thesuper-
bracket [6]. Given the general 6-6 Stewart-Gough platform in Fig. 1,its superbracket
is represented as[ab,cd,e f ,gh, i j,kl], where each termrs is the Grassmann-Cayley
algebra entity representing the line defined by pointsr ands.

In [7], the multilinear properties of brackets were exploited to obtain simplified
pure conditions for platforms with aligned attachments in the base and/or the plat-
form. The algorithm presented in [7] uses the so-calledstraightening procedure to
obtain canonical bracket forms that can be compared. Unfortunately, the obtained
bracket expressions are long and it is difficult to state if they are in their shortest
form. Here, by applying the multilinear properties of brackets directly to the super-
bracket instead of the brackets in the pure condition, an important simplification is
obtained. Actually, the straightening procedure is avoided.

The proposed algorithm permits to express the pure condition of any double-
planar platform (that is, any parallel platform with its platform and base attach-
ments coplanar) as a linear combination of the pure conditions of 3-3 platforms
with flagged, partially-flagged and octahedral topology. Asa consequence, the pre-
sented algorithm permits detecting singularity equivalences between double-planar
platforms in a straightforward way.

This paper is structured as follows. Section 2 presents the algorithm. Based on it,
section 3 shows how platforms with different topologies canhave equivalent pure
conditions and, as a consequence, the same singularity locus. As another possible
application, section 4 shows how the pure condition of an arbitrary double-planar
platform can always be expressed as a linear combination of pure conditions of 3-3
platforms. Finally, section 5 summarizes the main results.

2 Decomposing a superbracket into simple superbrackets

Using the same notation as in [7], the collinearity condition of pointa lying on line
pq can be expressed as:

a = k1p+(1− k1)q. (2)

In what follows, the points that are used to define an alignment will be called
characteristic points (p andq in the expression above), and those expressed as a
linear combination of them,composite points (a in the expression above).

Now, using the distributive property of the join operation and the scalar mul-
tiplication, the expression of a line through pointsa and b can be written as
ab = a∨ b = (k1p +(1− k1)q)∨ b = k1pb +(1− k1)qb. Then, using the distribu-
tive property again, a superbracket containing pointa can be expanded into two
superbrackets as follows:
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[ab,cd,e f ,gh, i j,kl] = k1[pb,cd,e f ,gh, i j,kl]+ (1− k1)[qb,cd,e f ,gh, i j,kl]. (3)

By recursively applying this operation to a superbracket involving composite points,
it is possible to express it as the sum of superbrackets depending only on character-
istic points, calledsimple superbrackets.

Finally, since the elements in a superbracket can be permuted using the same
rules as those used when permuting columns or rows in ordinary determinants, the
elements of the resulting simple superbrackets can be put inlexicographic order to
make their comparison possible.

The above procedure in algorithmic form appears in Algorithm 1. The function
ZeroSB(sbr) checks whether a simple superbracket is identically zero. The easiest
way to do this, without writing coordinates, is to expand thesuperbracket in terms of
brackets using (1) and setting to zero all brackets containing the same point at least
twice. The functionSortSB(sbr) sorts the lines of a superbracket in a lexicographic
order and computes the sign of the corresponding permutation.

Algorithm 1 ExpandSB(): Expansion of a superbracket containing composite points
Input: sbr = [a,b,c,d,e, f ,g,h, i, j,k, l]: list of 12 points representing a superbracket.
Output: a linear combination of simple superbrackets.

if sbr is a simple superbracketthen
if ZeroSB(sbr) then

return 0;
else

return SortSB(sbr);
end if

else
for i=1 to 12do

if sbr[i] is a composite pointthen
coe, points ← Split(sbr[i]);{Ex: in (2) it would be,coe = [k1,(1− k1)], points = [p,q]}
comp1 ← coe[1] ·ExpandSB(sbrsbr[i]=points[1]);{Substitution of the i-th member}
comp2 ← coe[2] ·ExpandSB(sbrsbr[i]=points[2]);
return comp1 + comp2;

end if
end for

end if

Once a linear combination of simple superbrackets is obtained, one can substitute
each of them by a bracket expression using the general formula in (1) to obtain the
pure condition for the analyzed platform. Note that the obtained output is useful,
even before expressing it in terms of brackets, to detect singularity equivalences
between platforms. This is shown in Section 3.

Finally, note that a coplanarity among attachments can be expressed as a linear
combination of three points: ifa belongs to the planepqv, thena = k11p + k12q +
(1− k11− k12)v for some scalarsk11 andk12 and, therefore, the proposed algorithm
can be easily extended to deal with coplanarities. In double-planar platforms, all
attachments, either in the base or the platform, can be expressed in terms of only
three characteristic points. As a consequence, the output of the proposed algorithm
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would always be a linear combination of superbrackets corresponding to platforms
with flagged, partially flagged and octahedral topology. Thus, it can be said that the
three possible 3-3 platforms behave as a basis for all double-planar Stewart-Gough
platforms. This is exemplified in Section 4.

3 Platforms with different topologies and the same singularities

Figure 3 displays three inputs supplied to the proposed algorithm, together with the
obtained outputs. Each input consists of the twelve points representing the super-
bracket of a 6-6 platform, and all outputs are in the form of a simple superbracket
multiplied by a constantKi. These three outputs are very special cases, correspond-
ing to the three topologies for 3-3 platforms appearing in Fig. 2. Thus, there exist
6-6 platforms that, with the adequate alignments for their leg attachments, give a
single-term decomposition. Moreover, they have singularities equivalent to those of
3-3 platforms with flagged, partially-flagged or octahedraltopologies. And, to the
best of our knowledge, there are no other 6-6 platforms than those shown in Fig. 3
with singularities directly equivalent to those of a 3-3 platform.

The constant factorsK1, K2, andK3 multiplying the obtained decompositions
(which, in these cases, consist of a single superbracket), when equated to zero, give
the condition for each 6-6 platform to become architecturally singular. Indeed, if
one of these constants is zero, the corresponding superbracket is identically zero
and, as a consequence, the platform is always singular independently of the lengths
of its legs.K1 = 0 andK2 = 0 correspond to the cross-ratio condition of the line-
line component [8], as already noted in [9, 10, 7, 11], andK3 = 0 corresponds to
the architecturally singular condition of the Griffis-Duffy platform, in concordance
with results in [12, 13].

4 Double-planar platforms and the three 3-3 topologies

Consider the platform in Fig. 4. It has two alignments in the base and one alignment
involving five points in the platform. When decomposing its superbracket using the
proposed algorithm, five simple superbrackets are obtained(Output 1 in Fig. 4). Two
of them correspond to superbrackets associated with 3-3 platforms with partially-
flagged topology, and the other three with 3-3 platforms withflagged topology. Now,
we can translate each of these simple superbrackets into bracket polynomials, using
the expressions in Fig. 2, to obtain the pure condition of theconsidered platform.
When performing this operation, and applying syzygies, a common factor to all
terms arises: the bracket[abce]. This common factor tells us that the considered
platform in is a singularity when pointb lies on the planeace. This is a direct conse-
quence of the presence of a line-plane component defined by the 5-point alignment
[14].
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Case 1

q1 = k1a+(1− k1)c, q2 = k2a+(1− k2)c, q3 = k3a+(1− k3)c

q4 = k4d +(1− k4) f , q5 = k5d +(1− k5) f , q6 = k6d +(1− k6) f
aa

bb

cc

dd

ee

ff

q1 q2 q3

q4 q5 q6

input: [a,b,q1,d,q2,q4,q3,q5,c,q6,e, f ] output: K1 · [ab,ad,a f ,cd,c f ,e f ]

K1 = k1(k3(1− k5)(k6− k4)− (1− k4)(k6− k5)k2)− k2k3(k5− k4)(1− k6)

Case 2

q1 = k1a+(1− k1)c, q2 = k2a+(1− k2)c, q3 = k31a+ k32c+(1− k31− k32)e

q4 = k4b+(1− k4)d, q5 = k5b+(1− k5)d, q6 = k6b+(1− k6)d
aa

bb

cc

dd

ee

ff

q1 q2 q3

q4 q5 q6

input: [a,b,q1,q4,q2,q5,c,q6,q3,d,e, f ] output: K2 · [ab,ad,cb,cd,ed,e f ]

K2 = (1− k31− k32)(k2((1− k6)(k4− k5)k1− (1− k5)(k4− k6))− k1(k6− k5)(1− k4))

Case 3

q1 = k1a+(1− k1)e, q2 = k2a+(1− k2)c, q3 = k3c+(1− k3)e

q4 = k4b+(1− k4) f , q5 = k5b+(1− k5)d, q6 = k6d +(1− k6) f

a
a

b
b

c
c

d
d

e
e

f
f

q1q2 q3

q4 q5 q6

input: [a,q4,q2,b,q1, f ,q3,d,c,q5,e,q6] output: K3 · [ab,a f ,cb,cd,ed,e f ]

K3 = k4k1(1− k2)(1− k3)(1− k5)(1− k6)− k2k3k5k6(1− k4)(1− k1)

Fig. 3 The 6-6 platforms on the left have the same singularities as theirrespective 3-3 platforms
on the right, provided that the constant multiplying the obtained simple superbracket,Ki, is not
identically zero, in which case the corresponding 6-6 platform is architecturally singular.
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a

b

c

d

e

f

q1 q2 q3

q4

q5
q6

q1 = k1c+(1− k1)e q2 = k2c+(1− k2)e
q3 = k3c+(1− k3)e q4 = k4b+(1− k4)d
q5 = k5b+(1− k5)d q6 = k6d +(1− k6) f

Input: [a,b,c,q4,q1,q5,q2,d,q3,q6,e, f ]

+ + + +

a aa aa

b bb bb

c cc cc

d dd dd

e ee ee

f ff ff
Output 1: c1[ab,cb,cd,c f ,ed,e f ]+ c2[ab,eb,cd,c f ,ed,e f ]

+c3[ab,cb,cd,eb,ed,e f ]+ c4[ab,cb,c f ,eb,ed,e f ]+ c5[ab,cb,cd,c f ,eb,e f ]

+ + + +

aaaaa

bbbbb

ccccc

ddddd

eeeee

fffff
Output 2: c1[ab,ad,cb,cd,c f ,e f ]+ c2[ab,ad,cb,cd,ed,e f ]

+c3[ab,ad,cb,c f ,ed,e f ]+ c4[ab,ad,cd,c f ,ed,e f ]+ c5[ab,cb,cd,c f ,ed,e f ]

Fig. 4 Using the proposed algorithm, the decomposition of the superbracket associated with the
platform in this figure is that inOutput 1. If q1 is redefined ask1a + (1− k1)c, the resulting
superbracket decomposition is that inOutput 2. In both cases, the 3-3 platform associated with
each simple superbracked is represented in the same order of the decomposition.

If we change the location of pointq1 to break the 5-point alignment and we align
it with c and a, the line-plane component disappears. Applying our algorithm to
the resulting superbracket, the obtained decomposition now contains a superbracket
corresponding to a 3-3 platform with octahedral topology (Output 2 in Fig. 4). Co-
herently, the resulting expression, when translated into brackets, contains no com-
mon factors.

5 Conclusions

The proposed algorithm permits a straightforward singularity analysis of any Stewart-
Gough manipulator with planar base and platform by just inspecting its resulting su-
perbracket decomposition. In particular, if it factorizes(implying that no octahedral
topology appears among its components), then each common factor corresponds
to a rigid substructure (point-plane, line-line, line-plane) of the manipulator and,
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therefore, such factor becoming null indicates an architectural singularity of the
corresponding type.

The presented algorithm has been implemented in Maple 10 within a package
that also contains procedures for representing graphically the superbracket decom-
positions in terms of 3-3 topologies similar to those appearing in Figs. 3 and 4.

We are currently addressing the derivation of entire families of Stewart-Gough
platforms sharing the same singularity structure, in particular, those for the three
3-3 topologies. Moreover, we would like to extend the potential of the algorithm by
permitting the appearance of virtual points (playing an important role as regards to
singularities) in the brackets, in order to push the decomposition further.
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