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Abstract

An algorithm to estimate camera motion from the progressive deformation of a
tracked contour in the acquired video stream has been previously proposed. It relies
on the fact that two views of a plane are related by an affinity, whose 6 parame-
ters can be used to derive the 6 degrees-of-freedom of camera motion between the
two views. In this paper we evaluate the accuracy of the algorithm. Monte Carlo
simulations show that translations parallel to the image plane and rotations about
the optical axis are better recovered than translations along this axis, which in turn
are more accurate than rotations out of the plane. Concerning covariances, only
the three less precise degrees-of-freedom appear to be correlated. In order to obtain
means and covariances of 3D motions quickly on a working robot system, we resort
to the Unscented Transformation (UT) requiring only 13 samples per view, after
validating its usage through the previous Monte Carlo simulations. Two sets of ex-
periments have been performed: short-range motion recovery has been tested using
a Staübli robot arm in a controlled lab setting, while the precision of the algorithm
when facing long translations has been assessed by means of a vehicle-mounted
camera in a factory floor. In the latter more unfavourable case, the obtained errors
are around 3%, which seems accurate enough for transferring operations.
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1 Introduction

The importance conferred to noise in computer vision has progressively in-
creased along the years. While the first visual geometry algorithms focused
on the minimum number of points required to obtain a desired information,
later input redundancy was incorporated into these algorithms to cope with
real noisy images, and nowadays error propagation and uncertainty estimation
techniques are being applied as a necessary step to then actively try to reduce
uncertainty.

Algorithms to recover epipolar geometry and egomotion have followed this
general trend. Although eight point matches are known to be sufficient to
derive the fundamental matrix [1, 2], redundant matchings lead to a more
useful estimation in practice [3, 4]. A first step to explicitly deal with er-
rors is to detect outliers. The two most popular algorithms are: Least Mean
Squares (LMedS), of which Zhang [5] gives a detailed description, and Ran-
dom Sample Consensus (RANSAC), proposed by Fischler and Bolles [6]. Torr
and Murray [7] provide a comparative study of them.

The next step is to model input noise in order to analyse how it propagates
to the output. Good introductions with examples applied to real cases can be
found in [8] and [9]. In the absence of a priori knowledge, input uncertainty is
often assumed to obey a Gaussian distribution [4]. Variable interdependence,
when available, is usually represented by means of a covariance matrix [10, 11].
Some studies [12, 13] show that using covariances to characterize uncertainty
in the location of point features within algorithms based on point correspon-
dences may lead to improvement over algorithms that do not take uncertainty
into account. Moreover, uncertainty in the estimation of the covariance matrix
also affects the quality of the outputs.

Once input noise is modelled, uncertainty propagation can be studied either
analytically or statistically. Analytic studies often entail deriving the Jacobian
of the input-output relation which, for nonlinear functions, requires resorting
to linear approximations. Gonçalves and Araújo [14] carry out such an analy-
sis for egomotion recovery from stereo sequences. Other egomotion estimation
algorithms entail a singular value decomposition (SVD) and specific proce-
dures have been developed to analyse how uncertainty propagates to singular
vectors and values [15, 16].

Uncertainty propagation can also be studied from a statistical viewpoint.
Monte Carlo simulation is a powerful and simple tool [17] that entails sam-
pling the input space densely and executing the algorithm for each sample.
Thus, it is only affordable when few results are needed or computing time is
not a concern. To speed up the process, Julier and Uhlmann proposed the



Unscented Transformation (UT), which attempts to find the smallest sample
set that captures the statistical distribution of the data. The appropriateness
of UT for a particular problem can be tested through Monte Carlo simulation
and, if validated, this transformation leads to considerable time savings.

The goal of this paper is to analyse the accuracy of an algorithm we previously
proposed [18, 19] to estimate camera motion from the progressive deformation
of a tracked contour in the acquired images. Section 2 briefly reviews how the
affinity linking two views is extracted from contour deformation, and how
this affinity is then used to derive 3D camera motion in our algorithm. Next,
in Section 3, the precision of this algorithm is analysed using Monte Carlo
simulation.

A second aim of this work is to obtain the covariance matrix of the six degrees-
of-freedom of egomotion in real-time, in order to use it in robotics applications.
For this, the Unscented Transformation becomes of great use, as explained in
Section 4. By allowing to propagate covariances, this transformation permits
analysing correlations between the recovered translations and rotations. Fi-
nally, some conclusions and future prospects are presented in Section 5. Ad-
ditionally, Appendix A contains the complete results of the covariance propa-
gation performed in Section 4.

2 Mapping contour deformations to camera motions

Under weak-perspective conditions (when the depth variation of the viewed
object is small compared to its distance to the camera, and the object is close
to the principal ray), the change in the image projection of an object in two
different views can be parameterised as an affine deformation in the image
plane, which can be expressed as
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where (x, y) is a point in the first view, (x′, y′) is a point in the second view, and
M = [Mi,j] and t = (tx, ty) are, respectively, the matrix and vector defining
the affinity in the plane.

Assuming restricted weak-perspective imaging conditions instead of the more
general perspective case is advantageous when perspective effects are not
present or are minor [20]. The parameterisation of motion as an affine image
deformation has been used before for active contour tracking [21], qualitative
robot pose estimation [18] and visual servoing [22].



The affinity relating two views is usually computed from a set of point matches [23,
24]. However, point matching algorithms require richly textured objects, or
scenes, which often are not available. In these situations, object contours may
be easier to find [9]. In this work an active contour [21] fitted to a target object
is used as an alternative to point matching. The active contour is coded as a
B-Spline [25] and, accordingly, a small vector of control points is enough to
represent the whole contour.

Let Q be the vector formed with the coordinates of NQ control points, first
all the x-coordinates, and then all the y-coordinates:

Q =







Qx

Qy





 . (2)

It has been formerly demonstrated [18, 21] that the difference between two
views of a contour in terms of control points, Q′ − Q, can be written as

Q′ − Q = WS (3)

where W is the shape matrix

W =
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 (4)

composed of Qx, Qy, and the NQ-dimensional vectors 0 = (0, 0, . . . , 0)T and
1 = (1, 1, . . . , 1)T , and where

S = (tx, ty,M11 − 1,M22 − 1,M21,M12) (5)

is the 6-dimensional shape vector that in fact encodes the image deformation
from the first to the second view.

In our implementation, the contour is tracked along the image sequence with
a Kalman filter [21] and, for each frame, the shape vector and its associated
covariance matrix are updated. The affinity coded by the shape vector relates
to the 3D camera motion in the following way [18, 21]:
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where Rij are the elements of the 3D rotation matrix R, Ti are the elements
of the 3D translation vector T, and Z0 is the distance from the viewed object
to the camera in the initial position.

We will see next how the 3D rotation and translation are obtained from the
M = [Mi,j] and t = (tx, ty) defining the affinity. Representing the rotation
matrix in Euler angles form,

R = Rz(φ)Rx(θ)Rz(ψ), (8)

where Rz(φ) is the matrix encoding a rotation of φ about the Z axis, Rx(θ) is
the matrix encoding a rotation of θ about the X axis, and Rz(ψ) is the matrix
encoding a rotation of ψ about the Z axis. Note that due to the particular
arrangement of those rotation matrices, here the upper 2 × 2 principal sub-
matrix R|2 of R is equal to the product of the corresponding upper 2 × 2
principal sub-matrices of the decomposed rotation

R|2 = Rz|2(φ)Rx|2(θ)Rz|2(ψ) . (9)

Combining (6) and (9) we obtain
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Then,

MMT = Rz|2(φ)


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where
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(

Z0
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.

This last equation shows that θ can be calculated from the eigenvalues of the
matrix MMT , which we will name (λ1, λ2):

cosθ =

√

λ2

λ1

, (12)

where λ1 is the largest eigenvalue. The angle φ can be extracted from the
eigenvectors of MMT ; the eigenvector v1 with larger value corresponds to the



first column of Rz|2(φ):

v1 =
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Isolating Rz|2(ψ) from Equation (10),

Rz|2(ψ) = (1 + Tz

Z0

)
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and observing, in Equation (11), that

1 +
Tz
Z0

=
1√
λ1

,

sinψ can be found, and then ψ.

Once the angles θ, φ, ψ are known, the rotation matrix R can be derived from
Equation (8).

The scaled translation in direction Z is calculated as

Tz
Z0

=
1√
λ1

− 1. (15)

The rest of components of the 3D translation can be derived from t and R

using Equation (7):

Tx
Z0

=
tx√
λ1

, (16)

Ty
Z0

=
ty√
λ1

. (17)

Using the equations above, the deformation of the contour parameterized as a
planar affinity permits deriving the camera motion in 3D space. Note that, to
simplify the derivation, the reference system has been assumed to be centered
on the object.



3 Assessing the precision of the obtained motion components

3.1 Rotation representation and systematic error

As shown in Equation (8), rotation is codified as a sequence of Euler angles
R = Rz(φ)Rx(θ)Rz(ψ). Typically, this representation has the problem of the
Gimbal lock: when two axes are aligned there is a problem of indetermination.
In a noisy scenario, this happens when the second rotation Rx(θ) is near the
null rotation. As a result, small variations in the camera pose due to noise in
the contour acquisition process do not lead to continuous values in the rotation
representation (see Rz(φ) and Rz(ψ) in Fig. 1(a)). Using this representation,
means and covariances cannot be coherently computed. In our system this
could happen frequently, for example at the beginning of any motion, or when
the robot is moving towards the target object with small rotations.

We propose to change the representation to a roll-pitch-yaw codification. It is
frequently used in the navigation field, it being also called heading-attitude-
bank [26]. We use the form

R = Rz(ψ)Ry(θ)Rx(φ) =








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sθ −cθsφ cθcφ















, (18)

where sψ and cψ denote the sinus and cosinus of ψ, respectively. The inverse
solution is:

φ = arctan 2(R32, R33) (19)

θ = arcsin(−R31) (20)

ψ = arctan 2(R21, R11). (21)

Typically, in order to represent all the rotation space the elemental rotations
should be restricted to lie in the [0..2π] rad range for ψ and φ, and in [0..π]
rad for θ.

Indeed, tracking a planar object by rotating the camera about X or Y further
than π/2 radians has no sense, as in such position all control points lie on a
single line and the shape information is lost. Also, due to the Necker reversal
ambiguity, it is not possible to determine the sign of the rotations about these
axes. Consequently, without loss of generality, we can restrict the range of the
rotations around the X and Y axis, φ and θ respectively, to lie in the range
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(a) Rotation matrix is obtained by composing R = Rz(φ)Rx(θ)Rz(ψ) as proposed
before in [21]
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here in (18)

Figure 1. Histogram of the computed rotation values for 5000 trials adding Gaussian
noise with σ = 0.5 pixels to the contour control points. (a) In the ZXZ representa-
tion, small variations of the pose correspond to discontinuous values in the rotation
components Rz(φ) and Rz(ψ). (b) In contrast, the same rotations in the ZYX rep-
resentation yield continuous values.

[0..π
2
) radians and let Rz(ψ) in [0..2π] radians. With this representation, the

Gimbal lock has been displaced to cos(θ) = 0, but θ = π/2 is out of the range
in our application.

With the above-mentioned sign elimination, a bias is introduced for small
Rx(φ) and Ry(θ) rotations. In the presence of noise and when the performed
camera rotation is small, negative rotations will be estimated positive. Thus,
the computation of a mean pose, as presented in the next Section, will be bi-
ased. Figure 2(a) plots the results of an experiment where the camera performs
a rotation from 0 to 20◦ about the X axis of a coordinate system located at the
target. Clearly, the values Rx(φ) computed by the Monte Carlo simulation are
closer to the true ones as the amount of rotation increases. Figure 2(b) sum-
marizes the resulting errors. This permits evaluating the amount of systematic
error introduced by the rotation representation.
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Figure 2. Systematic error in the Rx component. Continuous line for values obtained
with Monte Carlo simulation and dotted line for true values. The same is applicable
to the Ry component.

In sum, the proposed rotation space is significantly reduced, but we have
shown that it is enough to represent all possible real situations. Also, with
this representation the Gimbal lock is avoided in the range of all possible
data. As can be seen in Figure 1(b), small variations in the pose lead to small
variations in the rotation components. Consequently, means and covariances
can be coherently computed with Monte Carlo estimation. A bias is introduced
when small rotations about X and Y are performed, which disappears when
the rotations become more significant. As will be seen later, this is not a
shortcoming in real applications.
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Figure 3. Original contour projection (dotted line), contour projection after the
combined motion detailed in Section 3.2.2 (continous line), and contour projection
with the combined motion excluding the translation (point-dotted line) to better
appreciate the extreme deformation reached with rotations in the experiments, in-
cluding some perspective effects.



3.2 Uncertainty propagation to each motion component

The synthetic experiments are designed as follows. A set of control points on
the 3D planar object is chosen defining the B-Spline parameterisation of its
contour. The control points of the B-Spline are projected using a perspective
camera model yielding the control points in the image plane (Fig. 3). Although
the projection is performed with a complete perspective camera model, the
recovery algorithm assumes a weak-perspective camera. Therefore, the per-
spective effects show up in the projected points (like in a real situation) but
the affinity is not able to model them (only approximates the set of points
as well as possible), so perspective effects are modelled as affine deformations
introducing some error in the recovered motion. For these experiments the
camera is placed at 5000 mm and the focal distance is set to 50 mm.

Several different motions are applied to the camera depending on the experi-
ment. Once the camera is moved, Gaussian noise with zero mean and σ = 0.5
is added to the new projected control points to simulate camera acquisition
noise. We use the algorithm presented in Section 2 to obtain an estimate of the
3D pose for each perturbed contour in the Monte Carlo simulation. 5000 per-
turbed samples are taken. Next, the statistics are calculated from the obtained
set of pose estimations.

3.2.1 Effect of noise on the recovery of a single translation or rotation

Here we would like to determine experimentally the performance (mean error
and uncertainty) of the pose recovery algorithm for each camera component
motion, that is, translations Tx, Ty and Tz, and rotations Rx, Ry and Rz. The
first two experiments involve lateral camera translations parallel to the X or
Y axes. With the chosen camera configuration, the lateral translation of the
camera up to 300 mm takes the projection of the target from the image center
to the image bound. The errors in the estimations are presented in Figure 4(a)
and 4(c), and as expected are the same for both translations. Observe that
while the camera is moving away from the initial position, the error in the
recovered translation increases, as well as the corresponding uncertainty. The
explanation is that the weak-perspective assumptions are less satisfied when
the target is not centered. However, the maximum error in the mean is about
0.2%, and the worst standard deviation is 0.6%, therefore lateral translations
are quite correctly recovered. As shown in [27], the sign of the error depends
on the target shape and the orientation of the axis of rotation.

The third experiment involves a translation along the optical axis Z. From
the initial distance Z0 = 5000 the camera is translated to Z = 1500, that is a
translation of −3500 mm. With this translation the effects of approximating
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Figure 4. Mean error (solid lines) and 2σ deviation (dashed lines) for pure motions
along and about the 3 coordinate axes of a camera placed at 5000 mm and focal
length 50 mm. Errors in Tx and Ty translations are equivalent, small while centered
and increasing while uncentered, and translation is worst recovered for Tz (although
it gets better while approximating). Errors for small Rx and Ry rotations are large,
as contour deformation in the image is small, while for large transformations errors
are less significant. The error in Rz rotations is negligible.

can be clearly appreciated. The errors and the confidence values are shown
in Figure 4(e). As the camera approaches the target, the mean error and its
standard deviation decrease. This is in accordance with how the projection
works 1 . As expected, the precision of the translation estimates is worse for
this axis than for X and Y .

1 The resolution in millimeters corresponding to a pixel depends on the distance of
the object to the camera. When the target is near the camera, small variations in
depth are easily sensed. Otherwise, when the target is far from the camera, larger
motions are required to be sensed by the camera.



The next two experiments involve rotations of the camera about the target. In
the first, the camera is rotated about the X and Y axes of a coordinate system
located at the target. Figure 4(b) and 4(d) show the results. As expected, the
obtained results are similar for these two experiments. We use the alternative
rotation representation presented in Section 3.1, so the values Rx and Ry are
restricted. As detailed there, all recovered rotations are estimated in the same
side of the null rotation, thus introducing a bias. This is not a limitation in
practice since, as will be shown in experiments with real images, the noise
present in the tracking step masks these small rotations, and the algorithm is
unable to distinguish rotations of less than about 10◦ anyway.

The last experiment in this Section involves rotations of the camera about
Z. As expected, the computed errors (Fig. 4(f)) show that this component is
accurately recovered, as the errors in the mean are negligible and the corre-
sponding standard deviation keeps also close to zero.

3.2.2 Effect of noise on the recovery of a composite motion

In the next experiment a trajectory is performed combining all component
motions along and about the 3 coordinate axes. With respect the last experi-
ment, the Tz motion has been reversed to go from 5000 mm to 8500. This is
because the approach up to 1500 mm performed in the preceding experiment,
combined with the lateral translation, would take the target out of the image.

Obviously, the lateral translation is not sensed in the same way when the cam-
era is approaching (Figure 4(a)) as when the camera is receding. At the end
of the camera motion the target projection is almost centered and, as can be
observed in Figures 5(a) and 5(c), the error in the lateral translation recov-
ery keeps close to 0 as the projection is almost centered in all the sequence.
Congruent with receding motion, the uncertainty grows as the camera gets
farther from the target. Comparing Figure 5(a) with Figure 4(a), observe that
uncertainty grows in both cases, but it is caused by different reasons.

Depth translation recovery error is shown in Figure 5(e). It is nearly null
along all the motion, except at the beginning of the sequence, when the cam-
era has not moved. We will show later the this is due to the bias introduced
by the rotation representation together with a correlation between the recov-
ered motions. As soon as rotations Rx and Ry are correctly recovered, the
Tz translation is also. As expected, while receding, uncertainty increases. In
Figure 4(e), there is a bias error all along the trajectory, because rotations are
always null. Instead, in this experiment (Fig. 5(e)), there is a bias error only
at the beginning.

Results for rotations Rx and Ry are very similar to those in the preceding
experiment. The uncertainty at the end of the sequence is slightly larger due
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Figure 5. Mean error (solid lines) and 2σ deviation (dashed lines) for a combined
motion along and about the 6 coordinate axes of a camera placed at 5000 mm and
focal length 50 mm.

to the increment in the distance between camera and target. The same reason
is applicable to the uncertainty computed for the Rz rotation (Fig. 5(f)), which
also increases. On the other hand, due to the extreme rotation at the end of
the sequence (Rx = 50◦ and Ry = 50◦), a negligible error in the estimation of
the Rz rotation appears.

3.2.3 Sensitivity to the amount of input noise for a composite motion

We would like to compute the estimated uncertainty of the recovered motion
as a function of the amount of noise added to the projected contour control
points. The experiment setup is the same presented in last Section. The camera
motion is defined by a translation of 100 mm along each coordinate axis, and



σ Tx Ty Tz Rx Ry Rz

0.1 0.1105 0.1100 5.2330 0.1982 0.1939 0.0602

0.2 0.2195 0.2185 10.3813 0.3939 0.3850 0.1193

0.3 0.3292 0.3289 15.6153 0.5925 0.5794 0.1791

0.4 0.4390 0.4377 20.7633 0.7910 0.7710 0.2383

0.5 0.5464 0.5465 25.8702 0.9855 0.9616 0.2968

0.6 0.6589 0.6576 31.1632 1.1824 1.1513 0.3612

0.7 0.7681 0.7663 36.3466 1.3787 1.3463 0.4193

0.8 0.8800 0.8786 41.6336 1.5787 1.5415 0.4810

0.9 0.9944 0.9927 47.0746 1.7858 1.7412 0.5449

1.0 1.0991 1.0979 52.0709 1.9856 1.9338 0.6007

Table 1
Standard deviations of the six component motions for increasing levels of noise
added to the contour control points.

a rotation of 30◦ about an axis centered on the target defined by the vector
(1, 1, 1). Gaussian noise with zero mean and standard deviation from σ = 0.1
to σ = 1.0 in steps of 0.1 is repeatedly added to the contour control points,
yielding a set of shape vectors. From these shape vectors, we calculate the mean
shape vector and the covariance in shape space. The results are summarized
in Table 1, where the standard deviations are shown.

As expected, as the noise increases the uncertainty also increases. Note that
in all motion components the uncertainty increases in the same proportion.
Noise of σ = 1.0 implies a perturbation in the projected control points of
±2 pixels, which is a considerable one. In this situation, uncertainties in the
Tx, Ty and Rz components -i.e., motions within the frontoparallel plane- are
very small. Uncertainties in Rx and Ry components are larger. The worstly
recovered component is Tz. Remember that, as has been previously shown, the
performance in this component depends on the initial distance. Here it was
Z0 = 5000 mm. From the point of view of precision, this uncertainty will be
only about 1%.

3.2.4 Relative precision of the different motion components

The results obtained are congruent with intuition. Lateral camera translations
Tx and Ty produce greater changes in pixels, so they are better recovered than
the translation Tz along the optical axis. Rotations Rz about the optical axis
cause large changes in the image, and are better recovered than the other two
pure rotations, Rx and Ry. Estimated variances differ largely for the various
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Figure 6. Graphical representation of the 2× 2 covariance submatrices by means of
the 50% error ellipse. Small points are the projected outputs (recovered motions) of
input samples after Monte Carlo simulation, a bigger point is drawn for the mean,
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using the Unscented Transformation, which will be explained in Section 4.1. Crosses
stand for the transformed sigma points and a continuous ellipse for the uncertainty.

motions. The largest errors and variances occur when the contour projection
is not centered in the image, as weak-perspective assumptions are violated. If
the distance to the target is small, more precision is attained due to increased
resolution, but perspective effects appear. Small rotations out of the plane
are badly estimated, but as the rotation increases the error and the variance
diminish. Rotations in the plane are correctly recovered with small variance.

3.3 Covariance of the recovered motion

To obtain covariance estimates some experiments have been carried out, in-
cluding null camera motion and, analogous to the preceding Section, motion
along and about the 3 coordinate axes. An exhaustive account of the results
can be found in Appendix A. Nearly all experiment outcomes are coincident
in that no correlations appear between motion components. There are only
two exceptions, which will be presented next.

Figure 6(a) corresponds to an experiment without any camera motion, where
noise has been added to the contour control points. As can be observed, the
recovered motion components Rx and Tz are correlated. This can be explained
as follows. When the rotation is slightly overestimated the target projection
should be smaller than it really is. To compensate for this effect, an underes-
timation of the camera translation is obtained where the camera is assumed
to be closer to the target. When the recovered rotation value increases, the
correlation also exists, but its effect is less visible as the rotation value is better
recovered. This can be seen in Figure 6(b), which corresponds to an experiment
where the camera has turned 10◦ with the coordinate system centered on the
target. Here, since the rotation is larger, the translation is correctly recovered.
The same observations are applicable to the Ry and Tz motion components.



The above cross relation explains the underestimation of the translation Tz
presented before in Figure 4(e), which appears because, near the null rotation,
Rx and Ry are overestimated.

Figure 7(a) shows the second source of error detected with the covariance prop-
agation study. When a camera rotation is performed about the X axis, a slight
translation is computed along the Y axis. This can be explained by analysing
the projection process assumed in the weak-perspective camera model. When
the camera rotates, some 3D target points become closer to the camera than
others. Figure 7(b) illustrates this fact. For simplicity, it is easier to represent
target rotation than camera rotation, but both situations are equivalent. Far-
ther points project slightly closer to the projection axis than nearby points.
Consequently, a small Ty translation is computed. Analogously, if the rotation
is about the Y axis, the translation is then computed along the X axis. The
maximum amount of translation occurs at Rx = 45◦, but we can observe that
these errors keep always very small (in real experiments we will see that these
errors are under millimetric). This is not a correlation between variables, but
an effect due to the differences between the weak-perspective model assumed
and the perspective model really used to find the projections of the contour
control points 2 .

These are the only two correlations between recovered motion components
detected in the covariance study performed using Monte Carlo simulation.
As mentioned before, the complete set of experimental results, including all
motions along and about the coordinate axes and all graphical representations
of 2 × 2 covariance submatrices, can be found in Appendix A.

4 Experimentation with real images

The Monte Carlo simulations used before are a simple and powerful tool.
However, they can only be applied when few results are needed or when the
calculation time is not a restriction. We would like to find the uncertainty
propagated to each camera pose at frame rate, which is 20 fps in our case. We
cannot use Monte Carlo simulation since, for each pose, we should sample the
entry space densely and execute the algorithm of motion estimation for each
sample, which is obviously highly time consuming.

The alternative we have adopted, the so-called Unscented Transformation,

2 If the initial distance is larger (less depth relief, as demanded by affine camera
models) this effect is smaller, as the affine camera model fits better the perspective
one, and negligible lateral translations are recovered, as will be seen in the Section
on real experimentation.



−0.5 0 0.5
2

4

6

8

10

12

14

16
yφ

y

φ

(a)

image plane

object

projection
plane

orthogonal

(b)

Figure 7. (a) Graphical representation of the 2 × 2 covariance submatrix by means
of the 50% error ellipse relating rotation φ about the X axis and translation along
the Y axis. Only a camera rotation is performed, but a small translation is also
recovered. (b) Effect of rotating a planar object (which is equivalent to rotating a
camera around a target). The weak-perspective model assumes that image projec-
tions should be where dotted rays meet the image plane, but they are really where
the dashed lines are projected. Consequently, a lateral translation is recovered when
only a rotation has been performed. Note that its amount depends on the initial
distance.

attempts to find the minimum number of samples that represent the statis-
tical distribution of the data, thus reducing considerably the computing time
required for uncertainty propagation.

4.1 The Unscented Transformation (UT)

The Unscented Transformation (UT) was proposed by Julier and Uhlmann
[28, 29]. It is a method for propagating the statistics of a general nonlinear
transformation. The UT is not restricted to assuming that noise sources fol-
low a Gaussian distribution. Briefly, it works as follows: first, a set of input
points (called sigma points) is deterministically selected. This set of points
is expected to capture the statistics of the input distribution. Second, the
nonlinear transformation is applied to these points. Finally, the statistics of
the transformed points are calculated to obtain the estimation of the out-
put statistics for the given input distribution. Note that there is no need to
calculate the partial derivatives of the nonlinear transformation.

UT has been often used whithin a Kalman Filter paradigm to perform the
recursive prediction and state update, leading to the so-called Unscented
Kalman Filter (UKF) [29]. The complexity of the resulting algorithm is the
same as that of the EKF. Julier and Uhlmann [28] demonstrated the benefits of
the UKF in the context of state-estimation for nonlinear control, and Wan and
Van Der Merwe [30] showed its application in parameter estimation problems.
They also developed a formulation where the square root of the covariance
matrix is propagated instead of the matrix itself [31]. With this formulation,



the UT algorithm has better numerical properties (mainly in the UKF frame-
work), and its complexity decreases for parameter estimation problems. An
extension of the concept of the sigma points to work with particle filters and
sums of Gaussians was also developed [32]. Lefebvre et al. [33] proposed an
alternative interpretation of the UT as statistical linear regression, which is
useful to justify the benefits over linearisation.

Different strategies for the choice of the sigma points have been developed. We
will use the originally proposed solution, based on symmetric sigma points [29].
It consists of selecting 2Nx + 1 sigma points, where Nx is the dimensionality
of the input random variable. One sigma point is placed at the mean, and the
others are placed at the mean plus or minus one standard deviation in each
dimension. It can be seen as placing one sigma point at the center of each
face of a hypercube. This is sometimes called the second-order UT, because it
guarantees that the mean and covariance (the first two moments) are preserved
through the transformation.

The Nx-dimensional random variable x with mean x̄ and covariance matrix
Σx is approximated by the set of points:

x0 = x̄

xi = x̄ +





√

Nx

1 − w0
Σx





i

for i = 1, . . . , Nx

xi+Nx = x̄ −




√

Nx

1 − w0
Σx





i

for i = 1, . . . , Nx

(22)

with the weights

w0

wi =
1 − w0

2Nx

for i = 1, . . . , Nx

wi+Nx =
1 − w0

2Nx

for i = 1, . . . , Nx

(23)

where (
√
NxΣx)i is the ith row or column 3 of the matrix square root of NxΣx,

and wi is the weight associated with the ith sigma point. The weights must
satisfy the condition

∑

wi = 1.

By convention the first sigma point x0 corresponds to the point located at the
mean. The weight w0 assigned to this point controls where the others will be

3 Depending on how the matrix Σ is formed, columns or rows are used. If Σ = AAT ,
then the sigma points are formed from the rows of A. However, if Σ = ATA, the
sigma points are formed from the columns of A.



located. If w0 is positive, the remaining points tend to move farther from the
origin, thus preserving the covariance value. If w0 is negative, the points tend
to be closer to the origin [34]. This is a fine tuning mechanism to approximate
the higher-order moments of the distribution.

The mean and covariance of the output variable y can be estimated from the
mapped sigma points yi = f(xi) according to

ȳ =
2n
∑

i=0

wiyi

Σy =
2n
∑

i=0

wi
{

yi − ȳ
} {

yi − ȳ
}T

.

(24)

4.2 Using UT to estimate mean egomotion and covariance

In our egomotion estimation algorithm, the input space is the 6-dimensional
shape vector (Eq. 5), which is transformed through equations 12-17 into the
three translational and the three rotational motion components. To propagate
covariances using UT, 2d+1 = 13 symmetric sigma points are selected, d = 6
being the dimension of the input space.

The procedure to estimate covariances using UT is the following. First, an
active contour is manually initialized by specifying some control points. This
defines a shape matrix W according to Equation 5. The estimation algorithm,
outlined in Algorithm 1, then proceeds as follows. In each iteration, one new
image is acquired. A Kalman filter estimates the affine deformation of the
current contour with respect to the initial contour, coded as a shape vector,
as well as an associated covariance. Based on them, a UT is applied by selecting
13 sigma points in the shape space to which the nonlinear transformation is
applied to find the estimated 3D motion and its estimated covariance.

To validate the derivation of covariances using UT for our egomotion esti-
mation algorithm, the same synthetic experiments reported for Monte Carlo
simulation in Section 3.3 and Appendix A were carried out again using UT,
and the results are included in Figures 6, 7, and A.1 to A.6. In all the exper-
iments the covariance estimated with UT is very similar to the one obtained
with Monte Carlo simulation and, therefore, we conclude that UT can be used
to estimate the covariance of the recovered motion.

Two sets of experiments entailing real robot motions have been performed. In
the first one, a target handled by a Stabli robot arm rotates in front of a still
camera. In the second one, a camera is mounted on a Still EGV-10 forklift
vehicle, which follows a slightly oscillating path towards a target, resulting in



Input: Inverse of the shape matrix W−1, initial control points Qtemplate

Output: Egomotion RT and covariance ΣRT

Acquire a new image;
Iterating the Kalman filter, estimate the control point locations Q of the
projected contour, and estimate the corresponding shape vector using
S = W−1(Q − Qtemplate);
Find the 13 symmetric sigma points xi in shape space (Eq. 22) and their
corresponding weights wi (Eq. 23) from the shape vector S and the
covariance ΣS estimated by the Kalman filter;
for i=1 to 13 do

Calculate the recovered motion corresponding to the sigma point xi;
end

Calculate the egomotion RT and the covariance ΣRT by applying
Equation (24);

Algorithm 1: One iteration of the egomotion and covariance estimation al-
gorithm using UT.

large translational motion.

(a) frame0 (b) frame80

Figure 8. Initial image and maximally rotated image for the rotation experiment.

4.2.1 Rotation experiments using a robot arm

In the first experiment, we estimate motion uncertainty in a setup that we
used before [27]. A Staübli robot arm handling an artificial target rotates it
40◦ (stopping at each 10◦) about an axis placed on the target at 45◦, and then
returns to the initial position. Figure 8 shows the target at the initial position
and at the point of maximum inclination. Observe that this is equivalent to
rotating the camera −45◦ about the same axis. In Figure 9 the evolution of
the 6 motion components along the sequence of acquired frames is plotted,
showing both the UT estimation and the transformation of the shape vector
(named as “direct”).
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Figure 9. Component motions recovered in the real rotation experiment, consisting
of a rotation of 40◦ about a 45◦ inclined axis placed frontoparallel to the camera
and centered on the object, and later a rotation of −40◦ about the same axis. In
red the results obtained with the original algorithm, and in black the values of the
mean calculated with the algorithm using UT.

Congruent with synthetic results (see Fig. 7(b), where a slight Ty translation
is recovered when only Rx rotation is performed), small Tx and Ty translations
(Fig. 9(a) and 9(b)) are recovered while they are not really performed. Thanks
to the calibration performed, these results can be expressed in millimeters and
we can conclude that the computed translation errors (of at most 0.004 mm)
are negligible. As expected, Tz translations are recovered with more error.
The calibration process estimated an initial distance from camera to target of
Z0 = 500 mm, so the precision in the recovery of this translation is between
1% and 3%, which is also concordant with simulation results.

Rotations Rx and Ry are not correctly recovered under 15◦, because of noise
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Figure 10. (a) Standard deviations computed with UT for the real rotation experi-
ment, and (b) trace of the resulting covariance matrix.

in the acquisition and tracking processes. The bias due to the rotation repre-
sentation contributes also to this initial error. Between frames 50 and 100 we
can observe clearly the pauses at every 10◦, and how the rotation computed
with the UT and the one computed directly from the shape vector coincide.
For the Rz rotation, they coincide along the whole sequence.

In Figure 10(a) the standard deviations estimated for the whole motion se-
quence are shown. Tx and Ty deviations are nearly null. The most important
deviation is obtained for the Tz component. Note that the deviation increases
in the middle of the plot, where rotation is larger. This is due to the per-
spective effect explained before in Figure 7(b). It can be observed that the
deviations for Rx and Ry components slightly diminish when rotation values
increase, and return to the initial values when the target is rotated backwards
to the initial position, where the null rotation should be recovered. As ex-
pected, due to the correlation between rotations Rx, Ry and translation Tz,
the uncertainty in Tz slightly diminishes also.

Figure 10(b) plots the trace of the covariance matrix. Since it is a rough
estimation of the covariance size [35], it will serve us here to illustrate the
global uncertainty behavior. In our application, the trace is heavily influenced
by the uncertainty in the Tz component. The global uncertainty decreases in
the first part of the sequence, when the rotations are better estimated, but
in the middle of the sequence the global uncertainty increases because of the
uncertainty in Tz.

4.2.2 Long-range translation experiment using an autonomous vehicle

The second experiment uses the data that we collected in an experience
performed in a real factory environment. The robotized forklift vehicle was
equipped with a positioning laser, whose recordings were used as ground truth
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Figure 11. Real experiment entailing a large slightly-oscillatory translation.
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Figure 12. Recovered component motions for the experiment with a forklift vehicle.
The continuous line represents the motion value and the dashed lines are the 2σ
bounds for the whole sequence.

to evaluate the visual egomotion estimations. In order to obtain metric results,
we calibrated the camera and estimated the initial distance with the laser. An
information board was selected as target, and its initial distance was estimated
to be 7700 mm. An approach of about 3500 mm with a slight lateral oscillation
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Figure 13. (a) Standard deviations computed with UT, and (b) trace plot.

was performed and three of the acquired frames are displayed in Figure 11: at
the initial position, at half sequence and at the final position. The analysis of
the recovered motion results was presented in [36], where a reduced 4D shape
space was used. Here we will calculate the covariance for each estimation of
4-degrees-of-freedom motion.

Figure 12 shows the obtained results. Observe that the uncertainty in the Tx
component increases when the distance of the tracked contour to the image
center also increases. This was explained in Section 3.2.1 and it is due to the
non satisfaction of the affine camera model assumptions. A translation in the
Y direction is also obtained. As explained in [36], this is due to misalignments
between the camera and the robot reference frames. Like for the Tx component,
uncertainty increases when the distance of the tracked contour to the image
center increases, but in this case values are smaller and this effect is not
easily seen. As expected, uncertainty in the translation Tz diminishes as the
robot gets closer to the target. Unfortunately, in this experiment, rotations
Ry were very small and it was not possible to recover them. Consequently, the
uncertainty estimated for this component is very large (see Fig. 12(d)).

We plot the standard deviations of the motion components and the trace of the
covariance matrix in Figure 13. As expected, the trace is dominated by the Tz
uncertainty. Observe how standard deviation of the Tz component varies with
distance. Compared to the previous experiment, where the initial distance was
500 mm and standard deviation was between 20 and 25, the accuracy in the
estimation of Tz and its deviation are similar, since the deviation values are
between 300 and 100 for distances from 7700 mm to 3500 mm.

Summarizing, in this experimental Section we have shown that uncertainty in
egomotion recovery can be estimated at frame rate. By using an implementa-
tion that exploits this capability, we have tested the precision of our approach
in practice, leading to the conclusion that an error of around 3% is obtained
for long-range trajectories. Thus, the approach seems promising to be used for



transferring operatins (since it doesn’t require pre-setting the environment),
in combination with more precise laser positioning for loading and unloading
the forklift vehicle [36].

5 Conclusions and future prospects

A method for estimating robot egomotion has been presented, which relies on
real-time contour tracking in images acquired with a monocular vision system.
Contour deformation due to camera motion is codified as a 6-dimensional affine
shape vector, from which the 6 degrees of freedom of 3D motion are recovered.

The precision of the algorithm has been analyzed through Monte Carlo simu-
lation, and the results obtained are congruent with intuition. Lateral camera
translations Tx and Ty produce greater changes in pixels, so they are better
recovered than the translation Tz along the optical axis. Rotations Rz about
the projection axis cause large changes in the image, and are better recov-
ered than the other two pure rotations, Rx and Ry. Estimated variances differ
largely for the various motions. The largest errors and variances occur when
the contour projection is uncentered in the image, as weak-perspective as-
sumptions are violated. If the distance to the target is small, more precision
is attained, but perspective effects appear. Small rotations out of the plane
are badly estimated, but as the rotation increases the error and the variance
diminish. Rotations in the plane are correctly recovered with small variance.

The Unscented Transformation has been used in real experiments to compute
the uncertainty of the estimated robot motion. A real-time implementation
of the tracking, egomotion and uncertainty estimation algorithms has been
accomplished. A Staübli robotic arm has been used to assess the performance
of the approach when facing large rotations. A second set of real experiments,
carried out in a brewer warehouse with a forklift vehicle, has been used to
validate the motion estimation algorithm in the case of long-range transla-
tions. Contrarily to laser estimation procedures, a natural landmark was used
and no previous intervention on the environment was needed. In a previous
work [36] we calculated the error in motion recovery for this experiment. Here,
with the uncertainty estimation algorithm, we have obtained a relative small
standard deviation (about 3%) in the most uncertain robot motion compo-
nent namely Tz which leaves the real translation value within the statisti-
cal predicted margins. This supports vision-based egomotion estimation as a
promising alternative in situations with relatively low-precision demands.

Future work is clearly oriented by the conclusions reached in this work. On the
one hand, synthetic experiments suggest that the target should be centered in
the image to keep the weak-perspective assumptions and attain more precision.



On the other hand, real experiments show that the range of applicability of the
proposed algorithm is limited as the contour should be kept within the image
all along the sequence. One solution is to switch from one target contour to
another when the former disappears from the image. Another solution, which
we will explore in future work, is to keep the target into the image with the use
of a pan-and-tilt camera. This will permit larger robot motions with smaller
uncertainty.

We have also noticed that the size of the target projection in the image should
be kept within reasonable margins to be able to track and deduce valid in-
formation. For this reason, the approaching translations in the experiments
in the warehouse were of at most 5 meters. This is also a limitation. We are
currently exploring the use of a zooming camera to maintain the size of the
target projection onto the image constant. This presents some challenges as
changing the zoom complicates the pan-and-tilt control, since depending on
the initial distance (which we assume unknown), different control gains should
be applied.

A Complete covariance results

As mentioned in Section 3.3, our goal was to evaluate the covariances resulting
from the egomotion recovery algorithm so as to identify possible correlations
between motion components. As in the experiments in that Section, Gaussian
noise with zero mean and σ = 0.5 is added to the projected target. To visualize
the obtained 6 × 6 covariance matrices, we represent the motion components
pairwise on 2D planes and we draw the mean value and the 50% error el-
lipse. Note that to represent all the possible 2 × 2 submatrices we need 15
2D combinations. We will also compare Monte Carlo and UT results. The
Unscented Transformation uses the covariance obtained in shape space by the
Monte Carlo simulation to select the sigma points with the symmetric schema
described in Section 4.1.

A.1 Perturbing the contour at the initial position

The first experiment in this Section is performed around the initial position,
without any camera motion. Figure A.1(a) shows that no correlations be-
tween translation components can be observed. Coherently with results in
Section 3.2.1 (Fig. 4), we can see that as the target projection is centered
in the image, the Tx and Ty components are precisely recovered with x ≈ 0
and y ≈ 0 and small error. As expected, the computation of the depth trans-
lation Tz is less precise. The estimation of the statistics with the Unscented
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Figure A.1. Representation of 2×2 covariance submatrices for perturbations around
the initial contour position: (a) corresponds to covariances between translation com-
ponents, and (b) covariances between rotations components. Monte Carlo results
(green points for sample projections, filled circle and dotted ellipse for computed
mean and covariance), and UT results (crosses for sigma points, empty circle and
solid ellipse for mean and covariance) are shown.

Transformation is close to the one obtained with the Monte Carlo simulation.

Figure A.1(b) shows the correlations between the rotation components. As
mentioned before in Section 3.1, due to the rotation representation used, the
correct values in the Rx and Ry axes when these values are nearly zero cannot
be recovered. A bias is introduced near the null rotation in each of these axes,
and it has the effect of creating a straight border in the plot for the Monte
Carlo simulation, because no negative points are allowed. The Rz rotation
is correctly recovered. The covariance estimations obtained with the UT do
not exactly match those obtained with the Monte Carlo algorithm due to the
mentioned bias, so we should verify later if the UT approximation is valid
here.

In Figure A.2 the remaining 2 × 2 covariance matrices are represented, all
involving a translation and a rotation component. We can see the bias ef-
fect explained for the zero rotations about X and Y in all figures involving
these rotations. As before, the remaining cases are correctly estimated by the
Unscented Transformation.

A cross relation can be observed between the estimation of the rotation φ
about the X axis and the translation along the Z direction, which has been
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Figure A.2. Representation of 2 × 2 covariance submatrices of translations and ro-
tations for perturbations around the initial contour position. Monte Carlo results
(green points for sample projections, filled circle and dotted ellipse for computed
mean and covariance), and UT results (crosses for sigma points, empty circle and
solid ellipse for mean and covariance) are shown.

explained before in Section 3.3. A similar cross relation appears between the
rotation θ about the Y axis and Tz.

A.2 Perturbing the contour after a single component motion

Now we would like to estimate the covariances in the case of camera motion
along and about the coordinate axes. Significant information appears in the
axis of motion chosen in each experiment so, from the 15 2 × 2 submatrices,
we will plot only the 6 submatrices involving this axis.

First a translation of 300 mm along the X axis is performed. We can see in
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Figure A.3. Representation of 2 × 2 covariance submatrices of translations and ro-
tations for perturbations around Tx = 30 mm. Monte Carlo results (green points
for sample projections, filled circle and dotted ellipse for computed mean and co-
variance), and UT results (crosses for sigma points, empty circle and solid ellipse
for statistics) are shown. Results are similar for a Ty = 30 mm translation.

Figure A.3 the values obtained. The uncertainty is congruent with the values
presented in Figure A.1(a). The translation Tx is correctly recovered with mean
x̄ ≈ 0 and small uncertainty. The Tx − Tz plot seems to show a correlation
between both variables, but observing the scale of the figure we can deduce
that the correlation is spurious. The plots with the Rx and Ry components
show the bias effect described in the preceding Section, so no conclusion can be
extracted from them. Tx and Rz have no correlation, as can be seen in the last
plot. Error of the UT estimation with respect to the Monte Carlo is negligible,
except in the Rx and Ry dimensions (this effect can also be observed in the
previous Figures A.1(b) and A.2).

The results and considerations presented for Tx motion are also valid in the
case of a Ty translation.

When the translation is performed along the Z axis (Fig. A.4), the Tx and Ty
translations are correctly estimated, and their uncertainty keeps small, but the
value Tz is underestimated. As expected, the bias in the Rx and Ry rotation
values is present, as they are close to zero. The correlation observed in the
null motion experiment between Tz − Rx and Tz − Ry is also observed here.
The Unscented Transformation again fits correctly the Monte Carlo mean and
covariance.

The next experiment is performed orbiting the camera around the target about
the X axis (Fig. A.5). Congruent with the previous results (compare with
Fig. 4(b) when rotation is about 30◦), the uncertainty in the recovered Rx
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Figure A.4. Representation of 2 × 2 covariance submatrices of translations and ro-
tations for perturbations around Tz = 30 mm. Monte Carlo results (green points
for sample projections, filled circle and dotted ellipse for computed mean and co-
variance), and UT results (crosses for sigma points, empty circle and solid ellipse
for statistics) are shown.
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Figure A.5. Representation of 2×2 covariance submatrices of translations and rota-
tions for perturbations around Rx = 30◦ motion. Monte Carlo results (green points
for sample projections, filled circle and dotted ellipse for computed mean and co-
variance), and UT results (crosses for sigma points, empty circle and solid ellipse
for statistics) are shown. Results are similar for a Ry = 30◦ rotation.
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Figure A.6. Representation of 2×2 covariance submatrices of translations and rota-
tions for perturbations around Rz = 10◦ motion. Monte Carlo results (green points
for sample projections, filled circle and dotted ellipse for computed mean and co-
variance), and UT results (crosses for sigma points, empty circle and solid ellipse
for statistics) are shown.

values is smaller than that in the experiments with no rotation (Fig. A.1).
The bias in the Ry component is present, and Rz is also well recovered and
uncertainty values have not been altered. With respect to the translations, Tx
is correctly recovered but Ty is estimated with a slight error. We have explained
this effect in Section 3.3 by analysing the projection process (Fig. 7(b)).

The last plot in Figure A.5 shows the correlation between Rx and Tz explained
before in Section 3.3. Observe that the bias in Tz introduced when rotations
Rx and Ry are overestimated is not present here. This is because large ro-
tations are better estimated and, accordingly, there is no need of Tz to be
underestimated to compensate for the errors. As before, the estimation of the
statistics with the Unscented Transformation is close to the one obtained with
the Monte Carlo simulation.

The considerations above are also applicable to rotations about the Ry axis.

In the last experiment the camera is rotated about the optical axis Z. Refer to
Figure A.6. As expected, the value of this rotation is precisely recovered, and
the error keeps small. No correlation with Rx or Ry rotations is observed, but
the typical bias in these variables is also present, inducing the explained bias in
Tz. Translations are recovered as in previous experiments, and no correlations
with Rz appear.



In all the experiments we have shown that covariance estimated with UT is
very similar to that obtained with Monte Carlo simulation. We can conclude
that UT can be used to estimate the covariance of the obtained pose. We have
confirmed the correlation between Tz and Rx or Ry variables, and the small
translations recovered when some rotations are performed.
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