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Abstract—There are only three 6-SPS parallel manipulators with
triangular base and platform, i.e., the octahedral, the flagged, and
the partially flagged, which are studied in this paper. The forward
kinematics of the octahedral manipulator is algebraically intricate,
while those of the other two can be solved by three trilaterations.
As an additional nice feature, the flagged manipulator is the only
parallel platform for which a cell decomposition of its singularity
locus has been derived. Here, we prove that the partially flagged
manipulator also admits a well-behaved decomposition, technically
called a stratification, some of whose strata are not topological cells,
however. Remarkably, the adjacency diagram of the 5-D and 6-D
strata (which shows what 5-D strata are contained in the closure of
a 6-D one) is the same as for the flagged manipulator. The availabil-
ity of such a decomposition permits devising a redundant 7-SPS
manipulator, combining two partially flagged ones, which admits
a control strategy that completely avoids singularities. Simulation
results support these claims.

Index Terms—Configuration space, kinematics singularities,
parallel manipulators, redundant manipulators, robot design.

1. INTRODUCTION

ANY efforts have been devoted to the singularity anal-
M ysis of the Stewart—Gough platform and its specializa-
tions [1]-[3]. Most of the works characterize singularities an-
alytically, without providing much insight on their topological
arrangement in the configuration space of the platform with re-
spect to the base, which has been singled out as an important
open problem in parallel robotics [4]. Indeed, one of today’s
main shortcomings of parallel platforms is that they are forced
to operate in reduced workspaces in order to keep away from
singular configurations. A complete knowledge of the arrange-
ment of singularity hypersurfaces in configuration space would
be most useful for manipulator design, including the use of re-
dundant actuators [5] or joint coupling [6] to eliminate certain
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singularities, as well as to plan trajectories away from singu-
larities or crossing them in a controlled way, thus allowing the
robot to operate in much larger workspaces.

By specializations of the Stewart—-Gough platform we mean
6-SPS designs in which some S joints merge in either the plat-
form, the base, or both. An interesting subset of such specializa-
tions is the one in which there are only three multiple spherical
pairs in both the platform and the base, which thus become tri-
angular. These are often referred to as 3—3 manipulators. There
are three architectures of this type (see Fig. 1), namely the
well-known octahedral manipulator [7], [8], the basic flagged
manipulator [9]-[13], and the, so far, barely known partially
flagged manipulator, which is the object of this paper.

The name “flagged” comes from the fact that one such ma-
nipulator is characterized by the relation between two flags ad-
equately placed on its platform and base: a flag being a triple
(point, line, and plane) with the point contained in the line,
which, in turn, lies on the plane. The interesting property of
such a manipulator is that its singularity locus admits a cell de-
composition inherited from that of the flag manifold [13], which
can be described in terms of incidences between the elements
(point, line, and plane) of the two flags.

Analogously, as we will show in this paper, a partially flagged
manipulator can be characterized by the relation between one
flag and one partial flag, i.e., one in which the point is not
contained in the line. Moreover, it will be proven that its singu-
larity locus admits also a well-behaved decomposition, whose
components are no longer topological cells, however.

As mentioned earlier, research on parallel manipulators has
led to the elimination of singularities by adding actuators either
in an existing or in an added leg, i.e., by introducing redundancy.
Merlet has outlined the key concepts to be considered while de-
signing and using a redundant parallel manipulator [14]. Since
adding a redundant leg may decrease the dimension of the sin-
gularity space [15], some research has been carried out to de-
termine where to locate this leg to effectively decrease or even
eliminate a singularity surface [16]. The result has been several
successful implementations of redundant parallel manipulators
with extra legs [17], [18]. It is worth noting here that the idea
of using redundant actuators is closely related to that of adding
extra sensors to obtain unique closed-form solutions for the for-
ward kinematics of parallel manipulators (see, e.g., [19] and
references therein). Thus, the literature on the location of extra
sensors in parallel manipulators is also an important source of
inspiration to decide where to locate extra actuators.

In a 7-leg parallel manipulator, by switching which leg
remains passive, the distribution of singularities across the
configuration space of the platform with respect to the base
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Fig. 1.

(C-space, for short) changes, and one can exploit this change
for singularity avoidance. To this aim, it is necessary to have a
complete and precise characterization of the singularity loci of
the involved manipulators which, in general, is not available.

In our case, having the decomposition of the singularity loci
of partially flagged manipulators has allowed us to devise a
redundant 7-SPS architecture, combining two partially flagged
manipulators, which admits a control strategy that completely
avoids singularities. The underlying idea is as follows. At the
higher dimensional level, the C-spaces of both manipulators
share a very similar structure with an identical adjacency graph
between the eight 6-D component regions, corresponding to
the eight forward kinematic solutions or assembly modes, and
the twelve 5-D regions, corresponding to singular hypersurface
patches. By adjacency between two subsets we mean that one
subset is contained in the closure of the other. However, these
earlier mentioned regions are not equally located for both ma-
nipulators. Then, switching actuation from one SPS chain to
another implies converting one manipulator into another, thus
changing the location of the 5-D regions. The 7-SPS architec-
ture proposed has been designed so that 5-D regions (singularity
loci) of the two manipulators have at most a 4-D intersection.
This means that the C-space of the resulting manipulator with
switched control has singularity loci of at most dimension 4,
which can easily be avoided in practice. Note that, to avoid sin-
gularities, manipulators are often made to operate within just
one 6-D component region. By adding an extra actuator and
using switched control, the operation workspace thus becomes
considerably enlarged, thereby permitting free motion between
the eight 6-D component regions without having to cross any
singular hypersurface.

This paper is structured as follows. The next section intro-
duces the partially flagged 3—3 architecture and describes its
forward kinematics as a trilaterable manipulator. Section III
studies the topology of its singularity locus as inherited from
a new stratification of the flag manifold (the variety parame-
terizing all the possible placements of a flag in the real 3-D
projective space), which is considerably different from the clas-
sical one. The adjacency diagram of the strata of dimension 6
(nonsingular) and dimension 5 (singular) is worked out in detail.
Section IV discusses the design of the 7-SPS redundant manip-
ulator and the switching strategy that permits the avoidance of

(b)

A

The three architectures for the 3-3 parallel manipulators. (a) Octahedral. (b) Flagged. (c) Partially flagged.

singularities. Some simulation results on such redundant manip-
ulator are presented in Section V. Finally, Section VI provides
some conclusions and points that deserve further attention.

II. FORWARD KINEMATICS OF THE PARTIALLY FLAGGED
3-3 MANIPULATOR

Let us consider the set of 6-legged manipulators whose leg
end-points merge into three multiple spherical joints both in
the base and the platform. There are only three possible ar-
chitectures for this kind of manipulators, also known as 3-3
manipulators (see Fig. 1). One of them corresponds to the
well-known octahedral manipulator [see Fig. 1(a)] whose for-
ward kinematics is quite involved as it amounts to solving an
eighth-degree polynomial, leading to 16 solutions or assembly
modes [8], [20], [21]. On the contrary, the forward kinematics of
the other two can be solved by a sequence of three consecutive
trilaterations, leading to eight solutions [10]-[12]. The flagged
3-3 manipulator [see Fig. 1(b)] was thoroughly studied in [13].
In what follows, we concentrate our attention on the forward
kinematics of the partially flagged 3—3 manipulator in Fig. 1(c).
Using the notation in this figure, the lengths of the six actuators

di,...,dg satisfy the following relations:
di = |AX|*, & =AY, & =]AZ|”
di = |BX|*, & =|BY|*, di=|CZ|".

The configuration of the manipulator will be specified as an el-
ement of R? x SO(3), 1.e., a translation (z, y, 2) of the platform
and a rotation (6,,0,,6.) centered in A. The relation between
the linear actuators’ velocities and the platform’s velocity vector
is

d 0 0 0 d
0 dy 0 0 dy
0 0 dy 0 0 ds
0 0 0 d 0 0 dy
0 0 0 0 ds O ds
0 0 0 0 0 dg dg
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AX 0 i
AY 0 Y
AZ 0 3
| BX ABxAx || 4,
BY AB x AY 0,
CZ AC x AZ 4.

The singularities of the manipulator correspond to the sin-
gularities in either of the two Jacobians [22]. The first ma-
trix is singular when any of the lengths of the actuators is
Zero, i.e., in the limit of the control variables. These are type-I
or inverse kinematics singularities. We will now focus on
type-1II or forward kinematics singularities, namely those orig-
inated by the second Jacobian, which loses its full rank when
either

AX AB x AX
AY | or | AB x AY
AZ AC x AZ

are singular. The left matrix is singular when the tetrahedron
AXY Z has volume zero, which can be understood as A ly-
ing on the plane XY Z. In the second matrix, AB x AX and
AB x AY are linearly dependent if and only if the tetrahedron
ABXY degenerates, i.e., the line going through A and B and
the line going through X and Y either intersect or are paral-
lel. Finally, the condition that AC' x AZ is dependent of the
other two vectors can be written as ABC'Z having null volume,
meaning that Z is in the plane ABC.

To study these singularities, we will use the following features
of the manipulator: a point v = Z, a line [ = XY, and a plane
p = XY Z in the base, and a point v* = A, a line [* = AB,
and a plane p* = ABC in the platform. Then, the degeneration
of the tetrahedra AXY Z, ABXY, and ABCZ corresponds to
v* Cp,INI*#0,and v C p*, respectively.

Note that the features satisfy

vt Clt Cp*

vZICp and v C p.

This fact will be used in the next section to attach a flag (a point
contained in a line contained in a plane) to the platform and
study its incidences with v, [, and p to derive the topology of
the singularities.

It is worth mentioning that, in the case of a flagged
3-3 manipulator, the singularities correspond to the degener-
ation of the tetrahedra AXY Z, ABY Z, and ABCZ. Thus,
in this case, | = Y Z, the other features remaining the same,
which leads to v* C [* C p* and v C [ C p, and therefore,
flags could be attached to both the base and the platform
[13].

III. TOPOLOGY OF SINGULARITIES OF THE PARTIALLY

FLAGGED 3-3 MANIPULATOR

Consider a partially flagged 3—3 parallel manipulator, whose
features are the point v, the line [, and the plane p on the

base, and the point v*, the line [*, and the plane p* on the
platform, satisfying v* C I* Cp*, v Z 1 Cp, and v C p. In
order to lighten the notation, we will make a slight abuse
of language by using v, [, and p to mean either point, line,
and plane in P* = P(E) or their corresponding spanning vec-
tor subspace in F = R*. The features on the platform can
be encoded in a flag Co = {0 Cv* Cl* Cp* C E}, ie, a
sequence of nested subspaces of each dimension, and the
features on the base in a point Z =v and a partial flag
Y., ={0 Cl CpC E},ie.,asequence of less than four nested
subspaces.

As derived in the preceding section, the singularities of this
manipulator can be characterized using its features: a config-
uration is singular if and only if its features satisfy v* C p,
INI*#0, or v C p*. These conditions will be compactly ex-
pressed as v* —p, [-1*, and v — p*, and they correspond to
different incidences between the flag C, and the pair point and
partial flag (Z,Y,). In order to study the structure of the singu-
larities of the manipulator, we will construct a stratification of
the configuration space of the manipulator coherent with these
incidences. A stratification of a subset S of a smooth manifold
M is a finite partition S = U;¢;.S; such that the components
S;, called strata, are smooth submanifolds of M and satisfy a
“regularity” condition, which guarantees that there are not “ex-
ceptional” degenerations between strata: if S; NS # 0, then
S; € S;, where S; stands for the closure of S;. As we will
see, the higher dimensional strata will correspond to the regions
of nonsingular configurations, while the rest of the strata will
comprise all the singularities of the manipulator. The “regular-
ity” condition could be interpreted as follows: if in .S; there is
some singular configuration, which, after perturbation, results
in entering S; (possibly nonsingular), then this is true for every
configuration in .S;.

The construction of the stratification of the configuration
space R? x SO(3) will be performed in three steps. Since the
features on the base are fixed, the partial flag Y, and the point
Z remain unchanged; hence, to each manipulator configuration,
we assign its corresponding flag C,. This leads us to construct
first a stratification of the flag manifold F(4), the variety pa-
rameterizing the spatial projective real flags, and to establish the
adjacency relations between the strata (by means of an order,
which will be called Bruhat order, due to the analogy to the
classical one). Since the manipulator moves in the affine space
R? embedded naturally in 3, not all the spatial projective real
flags are relevant to our purpose; thus, second, we will restrict
the stratification found for F(4) to the set F4(4) of the spatial
affine real flags (those whose point lies in the affine part R?)
and prove that the “regularity” condition still holds [thus giv-
ing a stratification of F4(4)]. Finally, we will show how the
desired stratification of the configuration space R* x SO(3) is
induced via a fourfold covering morphism from F 4(4). At the
end, we will obtain a diagram (see Fig. 7) with the higher di-
mensional (5 and 6) strata and their adjacency, which completely
describes the structure of the singularities of the partially flagged
manipulators.

Although the steps of the reasoning are analogous to
those developed in [13] and [23], it is worth noting that the
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Stratification derived in Theorem 1, showing the incidences between the complete flag C's (shaded) and the reference frame formed by the point Z and

the partial flag Y, (not shaded) for each stratum. The adjacency graph between strata is the Hasse diagram for the Bruhat order of decorated permutations of 1123,
whose first decorated element is 2. 3211 corresponds to the orbit of dimension 6, and 1123, 1213, and 2113 characterize 1-D orbits.

stratification obtained here is formed from completely different
regions, and this difference already begins at the level of the flag
manifold: Compare the diagram in [23, Fig. 4] with our diagram
in Fig. 2; in the latter, no zero-dimensional stratum appears, for
instance. Furthermore, while the strata of F(4) obtained in [13]
or [23] were topological cells and all together formed a cell
decomposition of F(4), some of the strata obtained here for
F(4) are not even cells, i.e., they are not homeomorphic to R"
(see [24]). However, it is worth remarking that both stratifica-
tions share the same structure in the higher dimensional strata,
i.e., the adjacency diagram of the 5-D and 6-D strata is the same
(compare [13, Fig. 16] and our Fig. 7). In fact, we venture to
conjecture that this structure will be shared by all trilaterable
6-SPS parallel manipulators.

A. Stratification of the Flag Manifold

It is classically known (see [25]-[27]) that the complex flag
manifolds admit a family of stratifications (in fact cell de-
compositions) into strata known as Bruhat or Schubert cells,
given by all the possible relative positions under linear trans-
formations between a flag and a reference flag. These strati-
fications are adapted in [13] to the real case and are used in
the study of the singularity loci of a class of parallel manip-
ulators, namely flagged manipulators, whose singularities can
be expressed as incidences between a (complete) flag attached
to the base of the manipulator X, = {0 Cv C I C p C E} and
another (complete) flag attached to the platform of the manipu-
lator C, = {0 C v* C I* C p* C E}.
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In this section, we will construct an alternative stratification
for the real flag manifold in £ = R*, F(4). In our case, each
stratum of F(4) will comprise all the (complete) flags with the
same relative position (under linear transformations) to a ref-
erence frame, which will consist of, instead of another flag, a
point v = {v;) and a line [ = (v9,v3) not going through the
point. Since the three generating vectors are linearly indepen-
dent, there is an unique plane p = (v, v2, v3) that contains both
the line and the point. This reference frame (v,l,p) can be
thought of as a partial flag, comprising the line and the plane,
Y, ={0Cl CpC FE}, and apoint Z = v, with the additional
property that v C pand v € 1.

We will consider that two flags have the same relative position
(relative to the reference frame), i.e., they are in the same stra-
tum, if there exists a linear transformation which, preserving the
reference frame, sends one flag to the other. This describes the
strata as the orbits of the action on the flag manifold F(4) of the
subgroup G C G L, (R) that preserves the reference frame. Such
linear transformations are used because, in this case, their orbits
represent correctly the set of nonsingular configurations and the
three singularity sets generated by the three trilaterations.

Let G be the subgroup of GL,(R) formed by the ele-
ments that preserve the reference frame (v,l,p), ie., G =
{g € GL,(R)| g(v) = v, g(l) = [} (the condition g(p) = p is
a consequence of the other two conditions). Let ¥ be the per-
mutations of the set of indexes {1,1,2,3}, i.e., w € ¥ is an
application w : {1,2,3,4} — {1, 2, 3} that sends two elements
to 1, one element to 2, and another to 3; w will be repre-
sented by the sequence w(1)w(2)w(3)w(4). A decorated per-
mutation (w,A) is a permutation w € ¥ endowed with a dec-
oration A, which is a nonempty sequence j; < --- < j; satis-
fying w(j1) > -+ > w(jt); (w, A) will be represented by the
sequence w(1)w(2)w(3)w(4) with the element w(j) underlined
(and it will be said that w(j) is decorated) if, and only if, j € A.
Observe that, from this definition, the decorated elements in the
sequence w(1)w(2)w(3)w(4) must appear in decreasing order.

Example: (w, A) = 1321 and (w, A") = 1321 are decorations
of the permutation w = 1321, while 1321 and 1321 are not.

The strata of our stratification will correspond to a family
of decorated permutations, which codify the incidence relations
between the flag attached to the platform of the manipulator and
the reference frame (partial flag and point) attached to the base
(see Fig. 2).

Theorem 1: The orbits of the action of G on F(4) are parame-
terized by decorated permutations (w, A) withw € ¥ and whose
greatest decorated element is 2. These orbits give a stratification
of F(4) into 24 connected strata.

An outline of the proof of this result is given in Appendix A.
Our strata will be denoted by O(w-, A)> and, to lighten notations,
we will sometimes use ¢ = (w, A) € I, where I stands for the
set of decorated permutations of 1123 whose first decorated
element is 2. Switching to the earlier examples of decorated
permutations, and according to Theorem 1, 1321 corresponds
to a stratum, while 1321 does not. Fig. 3(a) and (b) illustrates a
configuration in the 5-D stratum 331, and another in the 4-D
stratum 321, respectively, and gives an intuitive idea of their
dimension.

(b)

Fig. 3. (a) Configuration belonging to O3211 . (b) Configuration belonging to
013 21. Each double arrow represents a DOF.

"%

(\\\‘\x\\\\\\\\\\\\

(@ (b)

Fig.5. Configuration in (a), belonging to the 5-D stratum O321 1, degenerates
to the configuration in (b), belonging to the 4-D stratum O3121, by moving the
line C until it touches the line Y7 .

Let us see how the decorated permutation, e.g., (w,A) =
1321, relates to its associated configurations; the partial flag Y,
is fixed, and then, the first subspace of a possible complete flag
(point) is generated with a point of the first [w(1) = 1] subspace
of the partial flag (line). The second subspace (line) is generated
adding a point of the third [w(2) = 3] subspace of the partial flag
(volume). The third and fourth subspaces (plane, volume) are
generated by adding points of the second and first (w(3) = 2 and
w(4) = 1) subspaces of the partial flag (plane and line). Finally,
the point Z is placed in the sum of the third and fourth points
we took (since the second and third elements are underlined).
The configuration obtained in this way belongs to O;32;. This
construction can be seen in Fig. 4.

In analogy to the classical Ehresmann—Bruhat order for the
permutations of four elements, a partial order for elements of
I can also be defined (see Appendix B), which will be called
adjacency (or Bruhat) order, and it characterizes the adjacency
relations between the strata of our stratification as follows:

(,A) < (W, A") & Ow.a) S Ow.a.

Fig. 5 illustrates the degeneration of the 5-D stratum O33;; into
the 4-D stratum O3, In this case, 3121 < 3211, which means
O3121 € O3011.

The adjacency relations between the strata can be described
by drawing the Hasse diagram of the Bruhat order (Fig. 2). In a
Hasse diagram of a partial order, there is an edge between two
elements a and b if a is over b, which are consecutive, i.e.,a > b
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and there is no c such that a > ¢ > b. In the figure, the strata are
arranged in layers according to their dimension, from (top) the
6-D one down to (bottom) the 1-D ones.

B. From Projective Flags to Affine Flags

The affine space R? can be viewed as a subspace of P? via
R3 = P3\II,,, where I1, stands for the plane at infinity. In what
follows, we will make a slight abuse of language by identifying
the subspaces (that are affine, i.e., that are not contained in I1)
of P with their restrictions to R?. A projective flag whose first
subspace is affine, i.e., whose point is in R3, is called an affine
flag, and the subset of F(4) parameterizing the affine flags will
be denoted by F 4(4). For our purpose, since we associate a flag
to each configuration of the platform of a parallel manipulator,
we are only interested in affine flags. For this reason, we will
restrict the stratification of F(4) obtained previously to a par-
tition of the subset F4(4) of affine flags and show that it still
gives a stratification.

Given a stratification of the flag manifold, as for instance the
one obtained in Theorem 1, F(4) = (J,.; O;, another stratifi-
cation for F 4(4) is easily constructed by defining the new strata
as the restriction to F4(4) of the originals

Fa) = Fa@)n|JO; = (0;n Fae)) = O

iel iel iel

where O, = O; N F4(4). This clearly gives a finite partition of
F 4(4) into submanifolds, and the conditions of stratification are
easily verified (see [24]). This stratification, however, does not
guarantee the strata to be connected sets, which is an important
condition in the study of singularity spaces. A new stratification
can be constructed by defining each connected component of
the strata of F4(4) as a stratum of the new stratification: O] =
U.en, Of, where N; is the set of indices of the connected
components of (’);. The number of strata grows, but in our case,
the number of connected components in each O} is at most 2.
Theorem 2: The partition

=y o

i€l eeN;

gives a stratification of F4(4) into 39 strata. Moreover,

1) #V; = 1 in the cases where i corresponds to a decorated
permutation either beginning with 2 and without any 1
decorated (e.g., 2131) or beginning with 1 and none of the
ones is decorated (e.g., 1231).

2) §N; = 2 in the cases where 7 corresponds to a decorated
permutation either beginning with 3 (e.g., 3211), or be-
ginning with 2 and has one 1 decorated (e.g., 2131), or be-
ginning with 1 and the second 1 is decorated (e.g., 1231).

In conclusion, the strata are divided according to Table 1.

Decorated permutations in 1) correspond to configurations

where either v* = v (permutation of type 2 * 1x in Table I), or
v* C I (of type 1 * 1x). On the other hand, the ones in 2) can be
interpreted as either v* ¢ p (permutation of type 3* in Table I),
splitting according to which side of the plane p the point v*
lies, or v* C p and v* ¢ [ and v* # v (of type 2 * 1x), splitting
depending on which side of the line [ and inside the plane p the

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

TABLE I
NUMBER OF STRATA OF THE STRATIFICATION OF F(4) AND THEIR
SUBDIVISION IN F 4(4)

(w, A) | Number of strata in 7(4) | Number of strata in F 4(4)
3% 6 12

2% 1k 3 3

2% 1% 6 12

1% 1% 6 6

1% 1% 3 6

Total 24 39
The asterisk denotes a subset (may be empty) of nonunderlined subindexes that complete the
decorated permutation (except for number 2, which is always underlined).

‘ O+ "‘
O-
Fig. 6. Strata of dimensions 6 and 5 of the stratification of F4(4) and their

adjacency relations.

point v* lies, or v* C ! and v ¢ p* (of type 1 * 1, except for
1213), splitting depending on which side of p* the point v lies,
orv C p*and v ¢ I* and v* # v (permutation 1213), splitting
depending on which side of the line [* and inside the plane p*
the point v lies.

Additionally, the splitting of the strata can also be interpreted
as the sign of the volume of some of the tetrahedra defining the
trilateration.

In particular, the strata of dimensions 6 and 5 split each one
into two connected components, and their adjacency relations
are represented in Fig. 6 (see Appendix C for details). The
rounded rectangles represent the two 6-D strata O and O~
(connected components of Os,,;), while the circles are the six

5-D strata: O,%. _pand O,._, (connected components of (’)/2 311)s

O}}. and O} . (connected components of Oj;,,), and O;_,.

and O,_,. (connected components of Oi/iﬁ 1)

C. From Affine Flags to Manipulator Configurations: The
Topology of Singularities

The stratification of the set F4(4) that we have just ob-
tained induces a straightforward stratification of the configu-
ration space (C-space) of the manipulator R? x SO(3) via a
fourfold covering morphism 7 : R? x SO(3) — F4(4), which
is explained in detail in [13] and [23]. In fact, 7 sends to any
affine flag C, = {0 C v* CI* C p* C E} € F4(4) (attached
to the platform of the manipulator) the four positive-oriented or-
thonormal frames centered at v*, q; = {v*; e}, e}, e} } with 1 <
i < 4, spanning C,, i.e., v* + (e}) =I*, v* + (e}, e}) = p*.
It holds that {qi}1§i§4 = {qlu s R1 i » quio s R3qi0 },_Where
R, stands for a rotation of 7 rad about the axis v* + (e}’ ), for
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Graph showing the topology of C-space for partially flagged manipulators. The rectangles represent the 6-D cells of C-space nonsingular configurations

that correspond to the eight different assembly modes, while the ellipses are the 5-D cells of singular configurations.

whatever given iy € {1,...,4}. Observe that, while C, gives
the affine features of the relative position between base and plat-
form, {q; }1<;<4 give the four platform configurations sharing
the same flag Cl,.

This 7 provides a procedure to pull back the stratification of
the affine flags to obtain a useful decomposition of the C-space
of the manipulator, since the singularity locus corresponds to the
strata of dimension lower than or equal to 5. Hence, R? x SO(3)
is divided into eight 6-D strata [four times two 6-D disjoint con-
nected strata in F4(4)], which, by connectedness arguments
(since F4(4) is path-connected), are eight connected compo-
nents of the nonsingular configurations corresponding to the
eight assembly modes of the manipulator. They are separated
by 24 5-D strata of singular configurations [four times six 5-D
disjoint strata in F 4(4)]. Analogously, as in [13], by resorting
to the theory of path lifting [28], the adjacencies between these
eight 6-D strata and 24 5-D strata can be derived, resulting in
the graph shown in Fig. 7. The rectangles represent the eight
6-D connected components of C-space of nonsingular config-
urations, while the ellipses are the 5-D manifold patches of
singular configurations separating these components. As noted
before, it is remarkable that at this level the adjacency diagram
is the same as the one obtained in [13] for the flagged manipula-
tors, despite the stratification obtained here being formed from
different regions.

In Fig. 7, to characterize each 6-D stratum, we use a triple
of signs corresponding to the orientation of the three tetrahedra
appearing in the trilaterations, which solve the forward kine-
matics of the manipulator. Each of the four 5-D strata coming
from OF € F4(4) is denoted by (¢)¢ (as, for instance, the four

strata (v — p*)* mapping to O, . by m).

IV. SINGULARITY-FREE REDUNDANT MANIPULATOR

In this section, we study all the ways in which an extra leg
can be added to a 3-3 partially flagged manipulator and analyze
their effect on singularities.

The only actuators that can be added to the partially flagged
3-3 manipulator shown in Fig. 1(c) are BZ,C X, and C'Y. Since
the results obtained by adding C'X or adding C'Y" are equivalent
due to the symmetry of X and Y, we will only consider the

TABLE II
LIST OF POSSIBLE MANIPULATORS OBTAINED BY ADDING THE ACTUATOR
BZ TO THE ORIGINAL ONE

Add | Remove | Features Comments

BZ AX (Z,YZ,XY Z; | a flagged manipulator’
B, AB,ABC)

BZ AY (Z,XZ,XYZ; | aflagged manipulator’
B,AB,ABC)

BZ AZ (Z,XY,XYZ; | a partially-flagged
B,AB,ABC) | manipulator'?

BZ BX (Z,YZ,XYZ; | a flagged manipulator’®
A,AB,ABC)

BZ BY (Z,XZ,XYZ; | aflagged manipulator'®
A, AB, ABC)

BZ CcZz - architecturally singular

TABLE III

LIST OF POSSIBLE MANIPULATORS OBTAINED BY ADDING THE ACTUATOR
CY TO THE ORIGINAL ONE

Add | Remove | Features Comments

CcYy AX (Y,)YZ,XYZ; | an inverted partially-
B, AC,ABC) | flagged manipulator

cY AY - an octahedral manipulator

(2-2-2)

cY AZ (Y, XY, XYZ; | an inverted partially-
C,AB,ABC) | flagged manipulator*

cY BX (Y,YZ,XY Z; | aflagged manipulator®
A, AC,ABC)

CcY BY (X, YZ,XYZ; | a partially-flagged
A, AC,ABC) | manipulator®

cYy czZ (Y,XY,XYZ; | A flagged manipulator*®
A, AB, ABC)

cases BZ and CY . In Tables II and III, we see all the possible
combinations of enabling and disabling a leg, and the features
shared with the original manipulator are also indicated. The
combinations sharing the singularity corresponding to v — p*
are marked with T, [ - [* with ¥, and v* — p with .

All the possible manipulators obtained after adding the ac-
tuator BZ (Table II) preserve the 5-D singularity v — p*,
Z € ABC, and therefore, it will be present in the singularity loci
of the redundant manipulator. Their nonsingular configuration
space will consist of two 6-D connected components separated
by a 5-D singularity.

Authorized licensed use limited to: UNIVERSITAT POLITECNICA DE CATALUNYA. Downloaded on December 9, 2009 at 06:54 from IEEE Xplore. Restrictions apply.



778

TABLE IV
INTERSECTIONS OF THE SINGULARITIES OF TWO OF THE MANIPULATORS
PRESENT IN THE STUDIED 7-LEGGED STRUCTURE

vl — P} I+ 1] v —p1
ZeABC | XYNAB#0| AcXxvz
v — ph (Y € AB)U AY C (ABCn
Y € ABC YZCABC | (xy C ABC) XYZ)
Io- 1 (Z e AC)U I -1HN (AeXY)U
YZnAC#0 || (YZ C ABC) (2-15) (AC C XYZ)
T BZ C (ABCN | (Be XY)U
BEXYZ XY Z) (ABC Xyz) | ABCXYZ

Z X Z
(@) (b)

Fig. 8. (a) Redundant 3-3 parallel manipulator. By enabling one of the actua-
tors shown in light grey while disabling the other, the manipulator can exchange
its structure between a basic partially flagged manipulator (enabling A X ) and an
inverted basic partially flagged manipulator (enabling C'Y"). (b) Redundant par-
allel manipulator without multiple spherical joints that has the same singularity
locus as that in (a).

When adding the actuator C'Y (or, equivalently, C'X) the
results are richer (see Table III). In this case, there is a com-
bination without any shared 5-D singularity stratum with the
original manipulator. A manipulator with actuators AX, AY,
AZ,BX, BY, CY,and CZ, disabling AX or C'Y, has a con-
nected nonsingular configuration space and its singularity locus
has dimension 4. This can be seen by computing the dimen-
sion (DOFs) of the nine intersections of the singularity loci, as
shown in Table IV, straightforward for all the cases, except for
(Iy - 1)) N (I3 - 1), which is more complex.

In conclusion, a redundant manipulator with triangular base
and platform can be constructed [see Fig. 8(a)] having a
6-D workspace with singularity sets of dimension 4 and, hence,
having a connected set of nonsingular configurations.

It is worth mentioning that the singularity loci cannot be
further reduced from dimension 4, since the set (YZ N AC #
0) N (XY N AB # (), of dimension 4, will always be present.

As a shortcoming, one may think that the practical imple-
mentation of the resulting platform would involve a formidable
design task because of the presence of multiple spherical joints.
Fortunately, these joints can be eliminated by substituting the
point-line components, i.e., sets of two legs sharing an attach-
ment, with other equivalent kinematic chains without altering
the singularities of the platform. The geometric conditions that
must be satisfied so that a point-line component can be sub-
stituted by another point-line component without altering the
singularity locus of the platform are discussed in [29]. How a
point-line component can be substituted by a serial kinematic
chain, in particular, a PR P chain, without altering the parallel
singularities of the platform is discussed in [30]. Using these
two kinds of substitutions, it is possible to derive the design in
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partil’-llly ﬂaggedI manipulatolr
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(a)

" redundantI manipulatolr

L 1 1 1
0 50 100 150 200 250 300

(b)

Fig. 9. Evolution of the singularity detection function F'(q) along a path for
(a) the two component manipulators and (b) the redundant manipulator.

Fig. 8(b), which has the same singularity locus as thatin Fig.8(a),
but where all multiple spherical joints have been eliminated.

V. SIMULATION RESULTS

The simulations have been performed using C++ for the
computation of the distances and configurations, and Blender to
visualize the simulations that required control over the actuators.

As explained in Section II, the singularities of a partially
flagged manipulator can be characterized by the degeneration
of either one of the tetrahedra AXY Z, ABXY, or ABCZ.
Thus, the function

F(q) =min{Volaxyz, Volupxy, Volupcz}

provides a measure of how far the configuration q is from a
singularity. When applying switched control to our redundant
manipulator, we use this function to determine which of the two
component manipulators is farther from a singular configuration
and, consequently, which actuator must be passive.

The most important advantage of our redundant manipula-
tor is its connected singularity-free workspace. To exemplify
this characteristic, we have planned a path from a configuration
with the platform parallel to the base and over it, to a config-
uration with the platform under the base. These configurations
belong to distant nonsingular 6-D strata of the two component
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TABLE V
STRATA CROSSED BY THE TWO STRUCTURES OF THE
REDUNDANT MANIPULATOR

time | partially flagged | inverted partially flagged
0 - —+ -+ -
57 - —+ -+ -
58 -+ + -+ -
67 -+ + -+ -
68 -+ + -++
83 -+ + -+ +
84 -+ + +++
150 -+ + +++
151 +++ +++
196 +++ +++
197 ++ - +++
206 ++ - +++
207 ++ - + -+
300 ++ - + -+

manipulators forming the redundant one: from O~ to O~
for the partially flagged manipulator (Fig. 8, with AX active)
and from O~*~ to O~ in the case of the inverted partially
flagged manipulator (Fig. 8, with CY active). Hence, in both
cases, the manipulator has to cross three singular 5-D strata,
corresponding to v — p*, [ - I*, and v* — p.

This can be seen in Fig. 9, where the evolution of the singu-
larity detection function F'(q), i.e., the minimum of the three
tetrahedra volumes, along a nonsingular path is plotted for the
two component manipulators [see Fig. 9(a)] and the redundant
composite one [see Fig. 9(b)]. Since in each configuration the
control strategy chooses the less singular structure, the singu-
larity detection function of the redundant manipulator is the
maximum of the functions of both components. Note that this
function does not nullify along the path, since there are no si-
multaneous singularities in the two component manipulators.
The strata crossed by each component manipulator, which is
labeled with the signs of the three tetrahedra, along the path are
shown in Table V.

Videos of this simulation, as well as further experimental
results, can be found in [24].

Note that, since the simultaneous singularities form 4-D sets
in a 6-D space, any singular path can be slightly perturbed in
order to obtain a nonsingular path.

VI. CONCLUSION AND FUTURE PROSPECTS

The configuration space (C-space) of the partially flagged 3-3
manipulator consists of eight 6-D regions (corresponding to the
eight solutions of its forward kinematics) separated by singular
5-D hypersurfaces. Building on classical results on the stratifi-
cation of flag manifolds, we have derived a complete description
of this C-space in terms of disjoint regions of decreasing dimen-
sionalities, such that a region of dimension k is entirely in the
boundary of aregion of dimension k + 1 and, in turn, is bounded
by regions of dimension k£ — 1.

This provides a detailed charting of the singular hypersur-
faces consisting of all the regions of dimension 5 and lower,
and thus, it is a powerful tool to avoid singularities, both at
the manipulator design and path planning stages. For instance,
it has been shown that, by adding a seventh leg to a partially

(@) (b)

Fig. 10. (a) Partially flagged 63 parallel manipulator and (b) its singularity-
equivalent partially flagged 3—3 manipulator.

flagged manipulator and applying switching control, the eight
nonsingular 6-D regions in the initial C-space are fused into just
one region for the redundant manipulator, due to the removal
of the singular 5-D hypersurface patches, and consequently, the
manipulator workspace is considerably enlarged. Concerning
path generation, the strategy used here for illustrative purposes
(straight path and, if necessary, perturbation) is the simplest
possible that avoids singularities locally. More complex control
algorithms are being developed for global path optimization
based on the graph of strata and subject to two types of con-
straints: avoiding interferences between the platform, the base,
and the legs and keeping the actuators within their operational
ranges.

It is worth noting that the obtained C-space decomposition
is valid for the whole family of partially flagged manipulators,
i.e., those sharing the same singular hypersurfaces. Although
the derivation of this family is beyond the scope of this paper,
let us provide a glimpse of how it would develop. By apply-
ing successive kinematics-preserving transforms [29] to subsets
of legs of the partially flagged 3-3 manipulator, other kine-
matically equivalent designs are obtained. Fig. 10 provides an
example, where a partially flagged 6—3 manipulator is shown to
derive from the 3-3 one. Let us mention that this separation of
multiple spherical joints is most useful from the practical design
viewpoint.

A similar singularity charting had previously been attained
for flagged manipulators [13], [23], which, remarkably, had the
same structure for 5-D and 6-D strata. However, there are im-
portant differences between the two decompositions, the most
interesting from our viewpoint being that the 0-D strata in the
C-space of flagged manipulators do not exist for partially flagged
ones. This is due to the fact that a complete flag has degenerated
into a partial one, because the vertex is no longer contained in
the corresponding line. It looks as if the disintegration of the flag
would lead to the progressive disappearance of low-dimensional
strata until reaching the limit of 3-D strata, which must neces-
sarily be present because some of them depend on individual
flag elements. Therefore, we plan to study the consequences of
taking the vertex out of the plane by using the results of [31]
on two subspaces and a flag and, afterward, those of taking the
line out of the plane. Our conjecture is that the same graph of
5-D and 6-D strata (see Fig. 7) will be shared by all trilaterable
6-SPS parallel manipulators.
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APPENDIX A
STRATIFICATION OF THE FLAG MANIFOLD F (4)

The aim of this part of the Appendix is to present the reason-
ings that lead to prove Theorem 1, which gives a stratification
of the flag manifold F(4) suitable for our practical purpose: to
provide a complete description of the singularities of the class
of parallel robots named as partially flagged manipulators. First
of all, we will study the stratification of all the possible config-
urations between a point and two flags and use this information
to obtain the desired stratification of F(4).

Keeping the notations of Section III (see also Table VI),
let F(b) be the variety parameterizing the partial flags of
the type Y, = {0 C 1 C p C E =R*}, where [ and p span a
line and plane, respectively, in P3 = P(E). Consider the vari-
ety P? x F(b) x F(4), which describes all possible configura-
tions of a point Z in P3, a partial flag Y, € F(b), and a flag
C, € F(4), and let the linear group GL,(R) act diagonally on
B x F(b) x F(4), Le. g(Z, Y, Cu) — (8(2), g(Ya), 8(C4))
for any g € GL4(R). This action is studied by Magyar [32],
and his results can be summarized as follows (adapted over R,
which is the case that concerns us).

Theorem 3 ([32]):

1) The orbits of the action of GL4(R) onP* x F(b) x F(4)

are parameterized by decorated permutations of 1123, and
there are 82 different orbits D, ) of this action.

deg
2) A partial order < (named degeneration order) can be de-
fined that characterizes the degeneration in Zariski topol-
ogy between the orbits

deg

(w,A) < (W, A") & Dyya)NDran #0.

It is shown in [24] that this action, in fact, gives a stratifica-
tion of P3 x F(b) x F(4) and that the degeneration order also
characterizes degeneration between orbits in Euclidean topol-
ogy (over R) and, furthermore, the adjacency between orbits

deg —
(w,A) < (W, A") & Day SDiar -

Once the structure of the orbits of the action of GL,(R) on
P3 x F(b) x F(4) has been established, the stratification of
F(4) can be deduced. We will show that the orbits of the action
of G on F(4), which are the strata of our stratification (see
Section III-A), correspond to subsets of the orbits of G L4 (R)
onP? x F(b) x F(4).

Recall that, for our practical purpose, we have a reference
frame (v, 1, p) attached to the base of the robot consisting of
a point v, a line [, and a plane p satisfying v ¢ [ C p and
v C p, which can be thought as a partial flag Y, = {0 Cl C
p C E} € F(b) and a point Z = v € P?, and that we have
a flag Co = {0 Cv* CI* Cp* C E} € F(4) attached to the
platform. Observe that, in our application, the pair (Z,Y,) re-
mains fixed (and depends on each robot instance) whereas C,
varies as the robot moves: we are only interested in the rel-
ative position between C, and the reference frame (Z,Y,). It
is worth noting that the topological results stated in this pa-
per are valid, irrespective of the choice of (Z,Y,), provided
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TABLE VI
LIST OF NOTATION
Symbol Explanation
dy ...dg Lengths of the 6 actuators of a 3-3 manipulator.
ABC, XYZ Joints of the manipulator in the platform and

base, respectively.

(z,y,2), (0z,0y,02) Translation and rotation of the platform centered at A.

v, I, p Point, line and plane of the base corresponding
to Z, XY, XYZ.
v*, I*, p* Point, line and plane of the platform, corresponding
to A, AB, ABC.
E R*.
P3 = P(R%) Projective space.
o Plane at infinity.
R3 = P3\TI Affine space embedded in P3.
Ce Flag {0Cv* Cl*Cp* CE}={0=
CoCC1CCQC03CC4:E}
Ye Partial flag {0 C I C p C E} = {0 =
YoCY2CY3CYy=E}
(X,Ys) Pair of point and partial flag.
v* —p Point v* is contained in p.

L-1* Lines [ and [* intersect.

S Closure of S;.

R3 x SO(3) Configuration space of the platform.
F(4) Flag manifold parameterizing real flags of P3.
Fa(4) Subset of F(4) formed by the affine flags,
i.e. those whose point is in R3,
w Permutation of the set of indices {1,1,2,3}.
(w, A) Decorated permutation.
I Set of decorated permutations whose first
decorated element is 2.
< Adjacency (or Bruhat) order between the
elements of I.
GL4(R) Linear group of R4,
G Subgroup of GL4(R) that preserves (v,l,p).
Ow,a) = Or; Stratum of (4) parameterized by
(w,A)=1€1
OEw.A) Affine flags of Oy Ay, ie. Oy ay N Fa(d).
Ofw_m Connected component of Oéw,A)’ with e € {+,—}.
o+, 0~ Connected components of 0%y .
O;L, —p O P Connected components of Ofq, ;.
Ott= = (++-) 6D stratum of R3 x SO(3), coming from
Ot orO~.
(v* —p)t 6D stratum of R? x SO(3), coming from O, —p
Qi Positive oriented orthonormal frame centered
at v* spanning C.
q Configuration of the manipulator.
F(b) Manifold of partial flags of the type Y.
D(w,A) Orbit of P? x F(b) x F(4) parameterized
by (w, A).
Element of G C GL4(R).
(e1,e2,e3,e4) Basis of E.

Basis of E consisting of a reindexation of

V ={vy()jh<ica
(e1,e2,es,e4) but for one vector.

ol Standard flag associated to (w, A).
* In a representation of Cl, any real number.
1 In a representation of Cl, any non zero real number.

v §Z I C p and v C p are satisfied. This leads us to fix a pair
(Z,Y,) as before and assign to each flag C, € F(4) the triplet
§(Cs) = (Z,Y,,C.) in P? x F(b) x F(4). This assignation
defines an embedding j of F(4) in P3 x F(b) x F(4), which
is coherent with the actions of G and GL4(R) on their re-
spective spaces (see [24]). Two flags are G-equivalent, mean-
ing that there exists an element of G mapping one flag to the
other, if and only if their images by j are GL,(R)-equivalent,
ie.,

GLy(R)

.20 o j(C) = (2Y.,c) "z v, cly = (.

Since the orbits of an action are the sets of equivalent elements,
two flags belong to the same orbit in 7 (4) if and only if their im-
ages by j belong to the same orbitin P? x F(b) x F(4). Hence,
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each orbit in F(4) is injected to an orbit in P? x F(b) x F(4),
and the assignation of decorated permutations to the orbits of G
in F(4) follows. Since in our application the relative position be-
tween Z and Y, is fixed, not all the strata in P* x F(b) x F(4)
have a nonempty intersection with j(F(4)). We have proved
in [24] that only the strata in P* x F(b) x F(4) correspond-
ing to a decorated permutation whose greatest decorated el-
ement is 2 contain the image of an orbit of the action of G
on F(4) (which are those relevant for us; cf., the statement of
Theorem 1). When reasoning that the orbits of the action of
G on F(4) provide a stratification, the more delicate point is
to verify the boundary condition. It follows that once we have
shown that the restriction to F(4) by j of the degeneration or-
der (introduced in Theorem 3) also describes the adjacency
between orbits in F(4) (and, for this reason, it is taken in
Section III-A as the Bruhat order), we need to prove the
equivalency

O(w,A) - 6(@5) in F(4)
54 D(w,A) - 5(5_£) in P x F(b) X .7:(4)

The left-to-right implication simply follows in virtue of the
continuity of j and the good behavior of the boundary condition
under actions of groups on manifolds (see [24]). The opposite
implication is not true for a generic subset of P3 x F(b) x
F(4), but in the case of F(4), we have proved it in [24] using a
deeper understanding of the adjacency relations.

APPENDIX B
CHARACTERIZATION OF THE STRATA OF F(4)

In this part of the Appendix, we will describe the flags that
comprise each stratum of the stratification that we have just
constructed for F(4). Recall that each stratum is an orbit of
the action of the subgroup of the general linear group that
fixes the point v, the line [, and hence, the plane p (see nota-
tion in Section III): G = {g € GL4(R)| g(v) = v, g(l) =1}.
Hence, we will construct a representative element in each orbit
O(w,a),» which will be called standard flag and will be denoted

by CSW‘A), and transform it to all the other flags of the same
orbit by the action of the linear subgroup G.

Once a basis {e;, ey, €3, €4} satisfying | = (e;,e2) and v =
(e3) is fixed, the matrix representation of any element g of G is

g1 g1z 0 gu
g1 g2 0 goy
= 1
& 0 0 g33 934 M
0 0 0 ga

where the ¢th column of the matrix is the image by g of e;. Since
g is invertible, the determinant of the matrix is nonzero

det(g) = det (911 912 ) 933944 7# 0
921 g22

ie.,

g33 #0 gas # 0 and det <g11

gi2
0
921 922) 7

We adapt from Magyar [32] a method to construct a triplet
(Z,Y.,C,) in each orbit of P3 x F(b) x F(4) from a suitable
basis V. We will choose a basis V' for each decorated permu-
tation (satisfying the hypothesis of Theorem 1) in order that
the obtained triplet is contained in j(F(4)), namely in each
constructed triplet (Z,Y,, C,), we will recover the fixed pair
Z =vandY, = (0 C [ C p C E). Given a decorated permuta-
tion (w, A) that represents a stratum O, Ay in F(4), we define
a vector u depending on the type of decoration

es, if 2 is the only decorated value of w
like (w, A) = 3211
e; — ey, if 2 and the first 1 are the only
v decorated values of w, like (w, A) = 3211
e3 — ey, if 2 and the second 1 are the only
decorated values of w, like (w, A) = 3211.

Since {e;,es,u,e,} are linearly independent, we are
able, using these vectors, to construct a basis V =
(Vi (1)15 Vu(2)2> Vo (3)3> Vw(4)4), Which is indexed according
to (w,A) as follows: e; and ey correspond to the vectors
Vu(j); With w(j) =1, u is assigned to the vector v, ;;
with w(j) = 2, and e, corresponds to the vector v,,(;); with
w(7) = 3. In conclusion, sorting V by its first subindex, we
have (Via, Vib, Vac, V3q) = (€1,€2,u,€y).

Using this basis V, which is indexed as we have just
described, we assign to the decorated permutation (w,A)
the following triplet (Z,Y,,C,), where Y, = (0 C Y1 C Y5 C
Y;=FE), Co=(0CC, CCy CCyCCy=EFE) with Y; :=

(viy |1 <), Z = <EjeA Vw<j>j> and Cj := (v | j' < j),
thus resulting in Z = (e3) = v and

Yo=(0C (e1,e) =1 C (e}, es,u)
= <e17e2ae3> =pC <e17e27u7e4> = E)

which both remain fixed for any (w, A) and comprise the desired
features v, [, and p, as desired, and

CB)=C, = (0 C (Vo)1) C (Vu()1: Vus(2)2)
C (Vi (1)15 Vu(2)2, Vu(3)3) C E)

which is called the standard flag of the orbit O(,, o). The whole
G-orbit corresponding to (w, A) consists of all the flags obtained
by applying the group G to the standard flag

Ow.a) ={8C ™| ge G} Cc F(4).

Any (complete) flag Co = (0C C; C Cy, CC3 C Cy = E)
can be represented by an n. X n matrix: the first ¢ columns span-
ning the subspace C;, assuming each column as homogeneous
coordinates of a point in P* = P(E). Any such matrix will be
called a matrix representation of the flag C, and will be written
between square brackets, in contrast to the matrix representa-
tion of a linear application, between parentheses. Note that a
matrix representation is not unique, since the matrix obtained
by multiplying a column by a nonzero scalar or adding a lin-
ear combination of previous columns represents the same flag.
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Hence, a matrix representation of C’fw’M is given by
ClB) = [vyay Ve@e Ve@)s V()

and a matrix representation of the flag gCﬁw’A) is obtained by
applying g to the vectors of CSW‘A) or, in matrix formulation,
by multiplying the matrix of g by the matrix representation of
CEW’M. A characterization of the stratum O(,, a) is a finite col-
lection of matrix representations (with variable entries), which
together represent all the flags in this stratum. A characterization
of O, a) can be given by a unique matrix representation, as for
instance, the product of the matrix (with variable entries) of g
as in (1) and a matrix representation of the standard flag. Some-
times, however, especially when making explicit the number of
DOFs of the stratum, some simplifications will be performed,
and several cases shall be distinguished, and then, more than
one matrix representation will be needed to cover all the flags
in the stratum, as the following examples show.

1) Example: Here, we will find all the configurations of the
stratum O, A) With (w, A) = 1321. Since the second 1
is decorated u = e3 — ey and the vectors of the basis
V are (V11,V32,V237V14) = (81794783 — eg,eg). The
matrix representation of the standard flag Co* % s

10 0 O

1321 _ 0 0 -1 1
G = 00 1 0
01 0 0

Any flag C, generated by the action of G is of the form
C. =g (C12)

g1 912 0 gus 10 0 O
_ 921 92 0 gu 0 0 -1 1
0 0 933 934 0 0 1 O
0 0 0  gas 01 0 O
(911 g14 —Gi12 12
_ | 921 24 —G22 G2
0 g3 933 0
L O  gu 0 0
with
933 £0,  gu #0, (M<” m>¢0
921 g22

Performing some simplifications (adding the third column
to the fourth, and dividing the second, third, and fourth
columns by g44, g33, and gs3, respectively) and using * to
mean any real number and f any nonzero real number

a * ¢ 0
b = d 0 . a c

C, = 0« 1 10° Wlthdet(b d)#().
01 0 0

We can subtract - times the first column from the third col-
umn. Taking r = (ac + bd)/(a® + b?), the scalar product
of (a,b) and (e, d), the resulting vector can be expressed

IEEE TRANSACTIONS ON ROBOTICS, VOL. 25, NO. 4, AUGUST 2009

as —bte; + atey + ez, and

a *x —tb O
b x ta O .

Co= 0« 1 1l with ¢ # 0, and (a,b) # (0,0).
01 0 O

Considering separately the cases a # 0and b # 0, we have
acharacterization of the stratum covered by the two matrix
representations (depending each one on four parameters)

1 0 0 O

o L1l Ao
=yl

100 0]y,

01 00

Hence, O;32; has dimension 4 (cf., Fig. 3).
2) Example: If (w,A) = 3211, then the standard flag and
characterization of this stratum are, respectively

0 -1 1 0
3211 [0 0 0 1
. 10 1 0 0
1 0 00
g4 —g11 911 912
C, =g (C3211) = g24 —G21 g21 g22
g( ) 934 933 0 0
g44 0 0 0
i.e.,
* a 0 —=b
Co= 500 0 it (a,0) £ (0,0).
1 0 0 O

The following equivalent characterization proves that
O3211 is a submanifold of dimension 5 [cf., Fig. 3(b)]:

* 1 0 0
:;?é, ifa 0
et O
If?g ifb# 0.
10 00
APPENDIX C

STRATIFICATION OF THE SET OF AFFINE FLAGS F4(4)

In this part of the Appendix, we will show in detail the subdi-
vision and the adjacency relations between the principal strata
when they are restricted to F4(4), namely the strata of dimen-
sions 6 and 5, since they represent the nonsingular configurations
and the most general singular configurations, respectively.

In our application, the fixed pair (Z,Y,) is attached to the
base of the robot; therefore, when choosing an affine coordinate
system (which is equivalent to choosing the plane at infinity
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II), the subspaces composing Z and Y, must be affine.
Hence, we have chosen Z = (e3) and Y, = ({0} C (e, eq) C
(e1,e2,e3) C E), I, = {[x1,72,73,24] €EP? | 71 — 23 =
0}, which satisfy these restrictions.

In F(4), the only stratum of dimension 6 is O3911, and its
standard flag and characterization are, respectively

0O 0 1 0 rzy a c¢ 0

0 -1 0 1 and zo b d O

0 1 0 O z3 1 0 1

1 0 00 1 0 0 O
. a b

with det (c d) # 0.

03911 is connected and, despite having seven parameters, if the
third column is multiplied by a nonzero scalar, the same flag is
represented, and therefore, it has dimension 6. In F4(4), with
the restriction x1 # x3, it splits into the following two connected
components:

O = {flags with z; < 23},

In F(4), this 6-D stratum is adjacent to three strata of dimension
5, namely 023115 Oglﬂ, and Ogﬂl .

Os311 represents the singularities caused by a null volume of
the first tetrahedron; the point of the platform touches the plane
of the base (v* — p). Its standard flag and characterization are,
respectively

0 0 1 0 c 1 a O
-1 0 0 1 and d zo b 0
1 0 0 0 1 zo 0 1
0 1 0 O 0 1 0 O

. a b
w1thdet(c d>7é0.

It is connected in F(4), and in F4(4), it splits into O,. ,
and (’);,p, which comprise the flags with ¢ < 1 and ¢ > 1,
respectively.

Os12:1 represents the singularities corresponding to a zero
determinant of the second tetrahedron: the lines of the base and
platform intersect (I* - ). Its standard flag and characterization
are, respectively

01 0 0 1 a c¢ 0

00 -1 1 and xo b d 0

00 1 O rz3 0 1 1

1 0 0 0O 1 0 0 O
. a b

with det (c d> # 0.

Despite having seven parameters, the two transformations
(a,b) — (Aa, Ab), for any nonzero A, and (¢, d) — (¢ + pa,d +
ub), for any p, do not change the represented flag and the result-
ing dimension is 5. In the affine flag manifold, this stratum splits
into Ol*;l and O,, ;, which comprise the flags with x; < 3 and
1 > x3, respectively.

The last 5-D strata of F(4), Oz211, corresponds to the singu-
larities of the kind (v — p*), the vertex of the basis is contained

O~ = {flags with 71 > x3} .

in the plane of the platform, and the volume of the third tetra-
hedron vanishes. The standard flag and the characterization of
this stratum are, respectively

0O -1 1 0 1 a 0 —=b
0O 0 0 1 and o b 0 a
0O 1 0O rz3 1 1 0
1 0 00 1 0 0 O
with (a,b) # (0,0).

Restricted to F4(4), it also splits into two strata O, . and
o, _pts with the same restrictions as the previous one: 1 < T3
and x1 > x3, respectively.

Next, we will show how the Bruhat order introduced in
Section III-A for F(4) needs to be refined in order to deter-
mine the adjacency relations between the strata of F4(4) (see
Fig. 6).

In F4(4) not all the boundary conditions [that related two
strata of F(4)] are preserved. Consider a family C,(7) of
complete flags lying on Ot for 7 # 0. Since the first subspace
can be expressed as

Ci(7) = (z1(7)er + x2(T)ex + x3(7)es + ey)

with 21 (7) < x3(7), the C¢(7) cannot converge, for 7 = 0 to

a flag belonging to O, or to O,_,., since these strata have

the restriction x; > x3. The same argument applies to show
that O;7, and Oj_p* are not in the adherence of O~. Since

_ .
O3121 C O3211, we know that O;"; C 0" UO , and we can

conclude that O;%, € O . Analogous arguments apply for O;. ,,
O} ., and O,_,+- On the other hand, by using suitable fam-

v—p*
ilies of flags, it has been proved in [24] that O  C @+,
C O . This gives all

v*—p
0.,c0,0,_,c0  ad0O,_,
the adjacency relations between the strata of dimensions 6 and
5 of the stratification of F4(4) that we have constructed, which
are summarized in Fig. 6.
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