
DELLEN AND WÖRGÖTTER: DISPARITY FROM STEREO-SEGMENT SILHOUETTES 1

Disparity from stereo-segment silhouettes of
weakly-textured images

Babette Dellen1

bkdellen@bccn-goettingen.de
Bernstein Center for Computational
Neuroscience (BCCN) Göttingen,
Max-Planck-Institute for Dynamics and
Self-Organization, Göttingen, Germany

Florentin Wörgötter
worgott@bccn-goettingen.de

BCCN Göttingen, University Göttingen,
Göttingen, Germany

Abstract

We propose a novel robust stereo algorithm for weakly-textured scenes. Unique cor-
respondences existing between the silhouettes of corresponding image segments allow
assigning accurate disparities to segment boundary points. This information as well
as stereo from the weak texture inside segments, which is extracted using a region-
constrained window-based matching algorithm, are fused and disparities are interpolated
inside segments while considering potentially occluded areas derived from the depth-
ordering of segments. The algorithm is applied to a set of weakly-textured images and it
is demonstrated that stereo from segment silhouettes often provides sufficient informa-
tion to reconstruct disparities in weakly- and non-textured image areas. The algorithm
is applied to several real stereo images and its performance is evaluated quantitatively
using images from the 2006 Middlebury dataset.

1 Introduction
In stereo vision, 3D information is reconstructed from two images of the same scene taken
from different viewpoints. Different approaches to stereo disparity estimation have been ex-
tensively compared in several studies [4, 12, 13]. Most stereo algorithms perform well in
textured image areas, but often fail when there is only weak texture, due to the correspon-
dence problem. Here local matching fails, and, as a consequence, global methods do not
deliver correct disparities either, simply because the energy functions used in global meth-
ods remain under-constrained. However, stereo from weakly textured images is important
for many applications, which take place in urban or industrial settings, where little texture
exists, requiring novel solutions to the stereo problem.

While being ill-suited for stereo analysis, weakly-textured image parts can easily be used
for color-based segmentation and, in addition, it is often also possible to find unique segment
correspondences between images. The goal of the present study is to recover disparity in
weakly-textured image parts by using correspondent image segmentation together with an
interpolation algorithm based on a spring-mass model. To this end, we constrain interpo-
lation (the springs and the masses) by the disparities of the segment-edges as well as by
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Figure 1: Block diagram of the algorithm. See text for details.

the vague, remaining stereo information inside a segment, which we can still recover using
conventional stereo algorithms. This way we can regenerate rather accurate disparity infor-
mation in regions that are usually quite resistant to stereo analysis, such as some images from
the 2006 Middlebury stereo dataset, which are, for this reason, rarely being used for stereo-
algorithm benchmarking. Furthermore, while the algorithm consists of several components,
our analysis below shows that the same parameter set can be used for all images analyzed so
far.

The paper is structured as follows. First, we provide an overview of the different algo-
rithmic components of the method and present first results for weakly-textured Middlebury
stereo images in Section 2. In Sections 3, 4, 5, 6, and 7 the different algorithmic steps are
explained in greater detail. In Section 8, the algorithm is applied to two other scenes which
contain very little texture and the results are evaluated quantitatively. Finally, in Section 9,
the results are discussed and directions for future research are given.

2 Overview of the algorithm

The proposed method is based on the assumption that regional correpondences between
stereo images provide robust and valuable information about the 3D structure of the vi-
sual scene that can be exploited to obtain dense stereo information even in untextured image
areas. The stereo image is first decomposed into corresponding regions, i.e. stereo segments
(see step 1-2 of Fig. 1). More details can be found in Section 3. A representative example of
such a decomposition can be seen in Fig. 4(a-d). This part of the algorithm can be replaced
by other methods, if desired, such as [11, 16].

For each stereo segment, segment silhouettes are computed in both frames. Unique cor-
respondences of silhouette-edge points are searched, and the respective disparities are cal-
culated (see also Section 4 and step 4 of Fig. 1). While many segment edges represent real
object boundaries, some edges are in fact caused by an occlusion and thus do not represent
a “true” edge. These occluded edges need to be identified to avoid erroneous interpolation
results.

Occluded areas are estimated by finding the approximate depth ordering of the scene
(see Section 6 and step 3 of Fig. 1). The segment-center disparity for each stereo segment is
computed from the distance between the left and right segment center. The stereo segments
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Figure 2: Schematic of the spring-mass model. Disparities are modeled as positions of mass
points, connected to their nearest neighbors through interaction forces (springs). Data forces
incorporate precomputed disparities of segment boundaries and inner-segment areas.

are ordered according to their segment-center disparity. An edge of a segment that is adjacent
to an edge of another segment with larger disparity (thus, it is closer) is then assumed to be
caused by an occlusion, and an occlusion map is obtained.

Additionally, texture inside segments can be exploited by applying a window-based
stereo algorithm which operates strictly inside stereo segments (see Section 5 and step 5
of Fig. 1), thus occlusion problems do not arise. Confidence values are computed and only
those disparities are used that have a high confidence, resulting usually in sparse disparity
maps.

The sparse disparity information from both the segment-silhouette edges and inner-
segment texture are used to interpolate disparity values inside segment areas (see Section 7
and step 6 of Fig. 1). For this purpose, we developed an interpolation algorithm based on
a spring-mass model incorporating region constraints. Each pixel of the image is described
by a mass point, connected via elastic springs to its nearest neighbor (see Fig. 2). However,
if the neigbor belongs to a different segment, the connection is cut. The amplitude of the
mass point represents its disparity value. The precomputed sparse disparity maps are used
to define data forces which push the respective masses towards the precomputed value. A
damping force is included to drive the system to a local minimum. The corresponding system
of equations is numerically solved.

Results of the algorithm applied to the stereo-image pair Baby1 (Fig. 3(a)) from the
Middlebury stereo database (http://vision.middlebury.edu/stereo/data/scenes2006/) [15] are
shown in Fig. 3(c,f). The basic structure of the scene could be recovered, as compared to
ground truth (see Fig. 3(b)). Results of a state-of-the-art global stereo algorithm are shown
in Fig. 3(d) for comparison. These results have been obtained using the stereo-matcher front
end and the MRF library (http://vision.middlebury.edu/MRF/code/) [15], based on the works
of [2, 3, 8, 15]. For optimization, we used the graph cuts algorithm with α expansion and
default parameters except for the disparity range, which was adjusted to fit the disparity
range of the respective image. For less textured scenes, the graph-cuts algorithm delivers
poor results, which we do not show in most cases, since it would be an unfair comparison,
considering that these algorihms are designed for sufficiently textured images. The graph-
cuts based stereo algorithm provides for example excellent results for more textured images,
e.g. Tsukuba, Venus, Cones, and Teddy from the Middlebury dataset. Nevertheless, we listed
the computed average error for the selected Middlebury images in Table 1 to provide the
reader at least some orientation for evaluating our results. Results of our algorithm for the
Middlebury images Lampshade2, Plastic, and Wood1 are shown in Fig. 3(i,l,o). Please note
that all areas for which no disparities could be given have been colored black, including
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Figure 3: Results for the Middlebury dataset 2006 (a) Baby1 left image. (c) Ground truth.
(c) Estimated disparities (d) Result of graph-cuts based global stereo algorithm. (e) Enlarged
part of the baby torso (ground truth). (f) Same area for our results. (g) Lampshade2 left
image. (h) Ground truth. (i) Estimated disparties. (j) Plastic left image. (k) Ground truth.
(l) Estimated disparities. (m) Wood1 left image. (n) Ground truth. (o) Estimated disparities.
Images can be retrieved from http://vision.middlebury.edu/stereo/data/scenes2006/.
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monocular parts.

3 Stereo Segments

Our first goal is to get stereo segments (see step 1-2 of Fig. 1). For this purpose, we use
an image-segmentation method in which stereo segments are obtained trough a 3D linking
process. First, a spin variable σi is assigned to each pixel i of the stereo image. To incorporate
constraints in form of local correspondence information, we distinguish between neighbors
within a single frame (2D bonds) and neighbors across frames (3D bonds). We create a
2D bond (i,k)2D between two pixels within the same frame with coordinates (xi,yi,zi) and
(xk,yk,zk) if |(xi− xk)| ≤ 1, |(yi− yk)| ≤ 1, and zi = zk. Across frames, we create a 3D bond
(i, j)3D between two spins i and j if |(xi +dx

i j − x j)| ≤ 0.5, yi = y j, zi 6= z j, and ai j = 1. The
values dx

i j is the shift of the pixels between frames zi and z j along the axis x, obtained from an
initial disparity map (step 1 of Fig. 1). The parameters ai j are the respective amplitudes (or
confidences). Disparities used for the linking process are obtained using the stereo-matcher
front end and the MRF library from http://vision.middlebury.edu/MRF/code/ [15], based on
the works of [2, 3, 8, 15], using α expansion for optimization, delivering an amplitude of
1 everywhere. However, this method can be replaced by any stereo algorithm of choice,
since the segment-linking process is highly robust to errors in the initial disparity map and
delivers correct results even for very sparse disparity maps, requiring only an initial disparity
“guess”.

The spin model is now implemented such that neighboring spins with similar color have
the tendency to align. We use a q-state Potts model [10] with the Hamiltonian

H =− ∑
〈ik〉2D

Jikδσi,σk − ∑
〈i j〉3D

Ji jδσi,σ j , (1)

with Ji j = 1−4/4̄ and 4i j = |gi − g j|, where gi and g j are the gray (color) values of the
pixels i and j, respectively. The mean distance 4̄ is obtained by averaging over all bonds.

Here, 〈ik〉2D and 〈i j〉3D denote that i,k and i, j are connected by bonds (i,k)2D and
(i, j)3D, respectively. The Kronecker δ function is defined as δa,b = 1 if a = b and zero
otherwise. The segmentation problem is then solved by finding clusters of correlated spins
in the low temperature equilibrium states of the Hamiltonian H. The total number M of seg-
ments is then determined by counting the computed segments. It is usually different from
the total number q of spin states, which is a parameter of the algorithm (here q = 10).

We solve this task by implementing a clustering algorithm. In a first step, “satisfied”
bonds, i.e. bonds connecting spins of identical spins σi = σ j, are identified. Then, in a
second step, the satisfied bonds are “frozen” with a some probability Pi j. Pixels connected
by frozen bonds define a cluster, which are updated by assigning to all spins inside the same
clusters the same new value [14]. In the method of superparamagnetic clustering proposed
by Blatt et al. (1996) [1] this is done independently for each cluster. In this paper, we will
employ the method of energy-based cluster updating (ECU), where new values are assigned
in consideration of the energy gain calculated for a neighborhood of the regarded cluster
[9, 17]. The algorithm is controlled by a single “temperature” parameter, and has been shown
to deliver robust results over a large temperature range. After a 140 iterations, clusters are
used to define stereo segments (see Fig. 4(a-b)).
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4 Disparities of segment-silhouette points
Our second goal is the computation of disparities of segment-silhouette boundary points (see
step 4 of Fig. 1). Given two corresponding segments, a unique correspondence for boundary
pixels can be found for the outer segment boundaries as long as the pixel does not belong to
a boundary segment oriented parallel to x-axis, i.e. the scanline. A pixel i with segment label
si and position xi is considered to be a left segment boundary pixel il if there is no pixel u
with xu < xi and su = si. A pixel i with segment label si is considered to be a right segment
boundary pixel ir if there is no pixel u with xu > xi and su = si. For each scanline, we find
the boundary pixels il and ir for the left image and the boundary pixels jl and jr for the
right image. The edge disparities are then defined as de

i = dil δil ,i + dir δir ,i with amplitudes
ae

i = δil ,i +δir ,i where dil = il − jl and dir = ir − jr.

5 Disparities from inner-segment texture
Our third goal is the computation of disparities from weak texture inside stereo segments
(see step 5 of Fig. 1), using a region-constrained window-based matching algorithm. For
each pixel i of the left image IL, we define a rectangular window Ri around pixel i, and
compute its correlation coefficient ci, j = ai, j/(bib j) with the rectangular window R j of each
pixel j of the right image IR along the x-axis (scanline), with

ai, j = ∑
u∈R j

∑
v∈Ri

[IR(xu,yu)−m j][IL(xv,yv)−mi]δsu,siδsv,si (2)

bi = ∑
v∈Ri

[IL(xv,yv)−mi]δsv,si (3)

b j = ∑
u∈R j

[IR(xu,yu)−m j]δsu,si , (4)

where si, su, and sv are the segment labels of pixels i, u, and v, respectively, and

mi = ∑
v∈Ri

I(xv,yv)δsv,si/ ∑
v∈Ri

δsv,si (5)

m j = ∑
u∈R j

I(xu,yu)δsu,si/ ∑
u∈R j

δsu,si . (6)

For each pixel i we find the pixel jmax = arg [max j(ci, j)] for which the correlation coefficient
ci, j is maximal. The disparity value of pixel i is defined as

dc
i = xi− x jmax , (7)

and the respective confidence value is given by ci, jmax . The amplitude ac
i is further defined

by

ac
i = θ

(
∑

u∈R jmax

∑
v∈Ri

δsv,siδsu,si ,τ1

)
θ(ci, jmax ,τ2) , (8)

where τ1 and τ2 are thresholds, and θ is a step function with θ( f ,τ) = 1 if f is larger than τ

and zero otherwise.
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6 Potentially occluded areas
Our fourth goal is the identification of potentially occluded areas (see step 3 of Fig. 1).
These occlusions are computed from the ordering of segments. For each stereo segment, we
compute the disparity of the center of mass of the segment

dcm,i = ∑
u∈Si,le f t

xu/ ∑
u∈Si,le f t

1− ∑
u∈Si,right

xu/ ∑
u∈Si,right

1 . (9)

Then we compute the Occlusion Map according to

Oi = θ

(
∑

j∈N j

θ (dcm, j −dcm,i,τ3) ,0

)
(10)

where N j is rectangular neighborhood around pixel j of 5×5 pixels and τ3 = 5 is a parameter.
The disparities of occluded pixels are excluded from the interpolation process.

7 Disparity interpolation within segments
Our final goal is the fusion of disparity information derived in the previous steps and the
subsequent interpolation of disparities inside segments to obtain a dense disparity map (see
step 6 of Fig. 1). We assign a mass mi to each pixel i of the left image. All masses within
a segment are connected by springs with a spring constant k. Each mass is described by
“position” xi and “velocity” vi = dxi/dt. The position corresponds to the instantaneous
disparity value of the mass, scaled by factor fs = 5/dmax, where dmax = 1.5max(de

i ). We
obtain the following dynamical system

dxi/dt = vi (11)
dvi/dt = −γvi +Fedges +Finner +Fint (12)

with the data forces Fedges = keae
i ( fsde

i − xi) and Finner = gcac
i ( fsdc

i − xi), and an interaction
force Fint = k ∑l∈Ni(xl − xi)δsi,sl , where the sum goes over all four nearest neighors Ni of
mass i which are within the same segment. The constant γ = 0.5 determines the amount
of damping of the system. The system is initialized with random values and the developed
using a 4th order Runge-Kutta technique with 1200 iteration steps and a step size of 1/6
time units. To remove outliers from the inner disparity data, we define gc = kc(1−|xi−dc

i |)
if gc > 0 and zero otherwise. Spring-mass models have been employed previously for 3D
reconstruction and global optimization in early vision [5, 6], but not in combination with
image segmentation.

8 Results
We apply the algorithms to various stereo images with parameter choices τ1 = 40, τ2 = 0.92,
kc = 0.25, ke = 5, k = 10, and window-size for the region-constrained correlation-based
matching algorithm of 11× 11 pixels. For the computation of stereo segments, the same
temperature T = 0.27 was used for all images and parameters to obtain the initial disparity
map were not changed. Disparities of segments i for which ∑ j∈Si(a

c
j +ae

j) = 0 are set to zero
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Figure 4: Results for real weakly-textured stereo pairs. (a) Left image of Cluttered Scene.
(b) Right Image. (c) Segmentation of left image. (d) Segmentation of right image. (e) Initial
disparity map (graph cuts). (f) Estimated occluded areas. (g) Edge disparities. (h) Disparities
in inner-segment areas. (i) Interpolation result using edge disparities only. (j) Interpolation
result using both edge and inner-segment disparities. (k) Result of trash can (enlarged). (l)
Left image of Basket scene. (m) Right image of Basket scene. (n) Estimated disparities.
Monocular parts have been colored black.
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Sequence e ρ < 0.5 < 1 < 1.5 < 2 < 2.5 < 3 egc ρgc

Baby1 0.81 75 72 85 89 92 93 95 2.7 100
Lampshade2 2.0 85 49 65 75 79 83 85 8.44 100

Plastic 3.97 89 27 37 44 50 54 58 11.84 100
Midd1 1.39 67 62 75 79 83 85 87 1.76 100

Bowling2 1.44 81 64 77 82 86 88 89 1.91 100
Wood1 1.91 82 53 64 71 76 79 82 3.55 100

Table 1: Mean disparity errors, densities, and percentage of pixels having an disparity error
smaller than a threshold of 0.5-3 pixels for six stereo images from the 2006 Middlebury
dataset together with the mean disparity errors egc and the respective densities ρgc of the
graph-cuts based global stereo algorithm.

and excluded from further analysis (color-coded in black). The algorithm is very robust and
the same parameter set can “always” be applied.

We show the results of the different stages of the algorithm on the example of the Clut-
tered Scene stereo pair, containing many objects which contain no or only little texture (see
Fig. 4(a-b)). Stereo segments are extracted, i.e. a pixel in the left image and pixel in the
right image belonging to the same stereo segment are assigned the same label. The color-
coded results are depicted in Fig. 4(c-d). The initial disparity map utilized to obtain segment
correspondences is shown in Fig. 4(e). From the stereo segments, segment-edge dispari-
ties are computed, cleaned from occlusions (shown in Fig. 4(f)), and presented in Fig. 4(g).
In Fig. 4(h), the estimated inner-segment disparities which are above threshold are shown.
Next, the edge disparities, inner-segment disparities, and segments are used to define the
forces of the spring-mass model. In Fig. 4(i), the interpolation results using only the edge-
disparity map are shown, demonstrating that texture is not absolutely required to recover the
basic structure of the scene. The final interpolation result using both the edge-disparity map
and the inner-segment disparity map is shown in Fig. 4(j). The 3D shape of most of the
objects could be recovered while preserving object boundaries, as can be seen looking at the
inset shown in Fig. 4(k). These results have been achieved despite the large disparities of
Cluttered Scene, which pose an additional challenge to most stereo algorithms.

We further applied the algorithm to an extremely sparsely textured lab scene, showing an
robot arm handling a plastic basket (see Fig. 4(l-m)). The stereo image pair is characterized
by large disparities, caused by a drastic viewpoint change. Nevertheless, our algorithm could
find a disparity map that evidently captures the based 3D structure of the scenario, shown in
Fig. 4(n). We also applied the algorithm to six images from the Middlebury stereo database
[12] (see Fig. 3). The qualitative results have already been described in Section 2. We further
evaluated the mean disparity error e in pixels and the density of the computed disparity maps.
The mean error ranged from 0.81 to 3.97 pixels. The results are summarized in Table I.

9 Discussion

We presented a novel robust method for disparity computation using stereo-segment silhou-
ettes. Despite the elaborated structure of the algorithm, the results for various stereo-image
pairs could be obtained with the same parameter set. For the Middlebury stereo images,
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disparty maps with an average error between 0.81 and 3.97 pixels were obtained. Even for
very weakly textured scenes such as basket, the algorithm succeeded in capturing the basic
3D structure of the scene. We also demonstrated that the algorithm is applicable to stereo
images characterized by large disparities, which often pose a problem to other stereo algo-
rithms. However, the algorithm is designed for stereo images containing little or no texture
and as such is not expected to perform well in textured areas, also because color similarity
alone cannot lead to a satisfactory segmentation result.

Color segments have been used before to improve disparity estimation. Yang et al.
(2008) applied first a window-based stereo algorithm to the stereo-image pair and then fit-
ted planes to segments [18]. Other methods assume that planes in disparity space coincide
with color-segments, improving pixel assigment to their respective disparity plane, e.g. [7].
By contrast, our method is based primarily on the computation of disparities from stereo-
segment silhouettes, which, to our knowledge, have not been utilized before. Texture cues
are used then as an additional cue to improve results, but are not mandatory. Furthermore,
disparities are interpolated using a spring-mass model and not via a surface-fitting procedure.
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