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On ∆-Transforms
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Abstract—Any set of two legs in a Gough–Stewart platform shar-
ing an attachment is defined as a ∆component. This component
links a point in the platform (base) to a line in the base (platform).
Thus, if the two legs, which are involved in a ∆ component, are
rearranged without altering the location of the line and the point
in their base and platform local reference frames, the singularity
locus of the Gough–Stewart platform remains the same, provided
that no architectural singularities are introduced. Such leg rear-
rangements are defined as ∆-transforms, and they can be applied
sequentially and simultaneously. Although it may seem counterin-
tuitive at first glance, the rearrangement of legs using simultane-
ous ∆-transforms does not necessarily lead to leg configurations
containing a ∆component. As a consequence, the application of
∆-transforms reveals itself as a simple, yet powerful, technique
for the kinematic analysis of large families of Gough–Stewart plat-
forms. It is also shown that these transforms shed new light on the
characterization of architectural singularities and their associated
self-motions.

Index Terms—Architectural singularities, Gough–Stewart plat-
form, kinematic components, pure condition, self-motion.

I. INTRODUCTION

NOWADAYS, the analysis of robot singularities is proba-
bly the most active research topic in kinematics. Donelan,

from Victoria University of Wellington in New Zealand, main-
tains a database currently containing more than 830 publications
on this topic [1]. Those devoted to the singularity analysis of
parallel robots represent a steadily increasing number; however,
while the pioneer works were of a general nature [2]–[5], most
of the recent works tackle the analysis of particular parallel
designs. In this context, the development of new mathemati-
cal tools for the singularity analysis of parallel robots, though
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Fig. 1. ∆ component consists of two legs sharing one attachment.

difficult, is a must. This paper tries to contribute to this end by
introducing the concept of ∆-transform.

In general, substituting one leg of a Gough–Stewart platform
by another arbitrary leg modifies the platform singularity locus
in a rather unexpected way. Nevertheless, in those cases in which
the considered platform contains rigid subassemblies, or com-
ponents [6], legs can be rearranged so that the singularity locus
is modified in a controlled way provided that the kinematics of
the components is not changed [7].

The simplest component consists of two legs sharing a leg
attachment, as shown in Fig. 1, which we will refer to as a ∆
component for obvious reasons. A ∆ component is rigid in the
sense that, given the lengths of the two involved legs, a point
in the platform (base) is rigidly linked to a line on the base
(platform). A leg in a ∆ component can always be substituted
by another leg connecting the point and the line without altering
the location of the point with respect to the line and, hence, the
kinematics of this component. In other words, the transformed
∆ component spans the same set of velocities as the original
one, i.e., all those parallel to the plane formed by the attachment
points, and in addition, there exists a one-to-one correspondence
between both vectors fields. This simple observation is the basis
for what is referred to as ∆-transform.

The classification of Gough–Stewart platforms, which is on
the basis of the components they contain, was addressed in [6].
Each class consists of all the manipulators, which are obtained
by adding to a given component the remaining legs up to six in all
possible topological configurations. Note that the manipulators
in a class have neither the same forward kinematics nor the same
singularity structure. The present work, on the contrary, tries to
come up with a transformation that preserves the platform’s
singularities, thus opening up the possibility of classifying plat-
forms in families sharing the same singularity structure. One
such family of mechanisms, whose common tripod component
leads them to share parallel singularities, has been studied in the
context of composite serial in-parallel robots [9].

Two remarks that need to be considered here are as follows.
First, we are dealing only with parallel singularities, which are
relevant for the forward kinematic analysis of Gough–Stewart
platforms. Hence, neither serial singularities nor constraint
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wrenches arising in robots with less than 6 degrees of free-
dom (DOFs) are considered. Second, note that the leg rear-
rangements induced by a ∆-transform do modify the Jacobian
matrix (although not the zeros of its determinant). Thus,
each new design that is obtained may behave differently near
singularities.

The idea of using ∆-transforms for the kinematic analysis of
parallel platforms was first proposed, in a rather intuitive way,
in [11] to generate the family of flagged parallel manipulators.
Here, we formalize and extend this idea, thus introducing the
possibility of applying these transformations simultaneously.

When the two legs in a ∆ component are made coincident
by applying a ∆-transform, a trivial architectural singularity is
introduced [12]. In this paper, we show how applying a set of
∆-transforms simultaneously leads to the possibility of intro-
ducing complex, nontrivial, architectural singularities. Obtain-
ing architectural singular platforms in this way provides, as
a by-product, a simple way to characterize their associated
self-motions.

The polynomial expressions of the self-motion curves for
some specializations of the Gough–Stewart platform have been
solved either analytically [13], [14] or numerically using contin-
uation [15], [16]. In contrast, here, we obtain a parameterization
of such curves in configuration space, which are plotted in the
workspace by solving the forward kinematics of a nonarchitec-
tural singular platform whose leg lengths depend on a parameter.

This paper is structured as follows. Section II briefly reviews
the characterization of singularities for Gough–Stewart plat-
forms and the associated concept of pure condition. Section III
introduces the concept of ∆-transform and studies how its appli-
cation modifies the pure condition of the analyzed platform. To
show the potential of this transform for parallel platform kine-
matic analysis, Sections IV and V are devoted to the detailed
analysis of the Zhang–Song and Griffis–Duffy platforms, re-
spectively, which are based on the sequential and simultaneous
application of ∆-transforms. Section VI provides clues and hints
to apply the presented transform to parallel platforms other than
those of the Gough–Stewart type. Section VII summarizes the
main contributions presented in this paper. Finally, the Appendix
compiles basic facts on the concept of pure condition.

II. SINGULARITIES OF GOUGH–STEWART PLATFORMS

Let us consider the general Gough–Stewart platform, as
shown in Fig. 2, whose six linear actuators’ lengths are given
by l1 , . . . , l6 . In an abuse of language, legs will be denoted by
their associated length variable. The linear actuators’ velocities,
which are given by l̇1 , l̇2 , . . . , l̇6 , can be expressed in terms of
the platform velocity vector (v,Ω) as follows:




l̇1

l̇2
...

l̇6


 = K

(
v

Ω

)
(1)

Fig. 2. General Gough–Stewart platform. Each leg li , i = 1, . . . , 6 is
attached to the base and the platform at the points with global coordinates
ai and bi , respectively, and ni is the unit free vector such that lini = bi − ai .

with

K =




nT
1 (a1 × n1)T

nT
2 (a2 × n2)T

...
...

nT
6 (a6 × n6)T


 (2)

i.e., the matrix of Plücker coordinates of the six leg lines (for
details, see [17]), where ai are the global coordinates of the
attachment point of leg li to the base of the Gough–Stewart
platform, and ni is the unit free vector anchored at ai and
defining the orientation of leg li . Note that, in order to simplify
notation, the same symbol is used to represent a point and its
position vector.

The matrix K can be factorized as follows:

K =




1/l1 0 · · · 0
0 1/l2 · · · 0
...

...
. . .

...
0 0 · · · 1/l6







(b1 − a1)T (a1 × (b1 − a1))T

(b2 − a2)T (a2 × (b2 − a2))T

...
...

(b6 − a6)T (a6 × (b6 − a6))T




= diag(1/l1 , 1/l2 , . . . , 1/l6)P.

Then, the singularities of the platform are those configurations
in which

det(K) =
1

l1 l2 l3 l4 l5 l6
det(P) = 0. (3)

The dividing term is usually neglected because it is assumed
that, in practice, leg lengths cannot be null. Thus, only the term
det(P) is considered, which can be expressed as products and
additions of 4 × 4 determinants, with each of them involving the
homogenous coordinates of four different leg attachments [18].
The resulting expression, which will be called pure expression,
can be greatly simplified for most well-known special Gough–
Stewart platforms. For example, for the basic flagged and the
octahedral Gough–Stewart platforms appearing in Fig. 3, the
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Fig. 3. Basic (left) flagged and (right) octahedral Gough–Stewart
platforms.

Fig. 4. ∆ component formed by legs l1 and l2 . Two ∆-transforms can be
applied to move the two attachments, which are a1 and a2 , along the line.

pure expression is given by∣∣∣∣a1 a2 a3 b1
1 1 1 1

∣∣∣∣
∣∣∣∣a1 a2 b1 b2

1 1 1 1

∣∣∣∣
∣∣∣∣a2 b1 b2 b3

1 1 1 1

∣∣∣∣
(4)

and∣∣∣∣b3 a2 a3 b2
1 1 1 1

∣∣∣∣
∣∣∣∣b1 a1 a3 b3

1 1 1 1

∣∣∣∣
∣∣∣∣b2 a1 a2 b1

1 1 1 1

∣∣∣∣
−

∣∣∣∣b3 a2 a3 b1
1 1 1 1

∣∣∣∣
∣∣∣∣b1 a1 a3 b2

1 1 1 1

∣∣∣∣
∣∣∣∣b2 a1 a2 b3

1 1 1 1

∣∣∣∣
(5)

respectively [18]. These two expressions will be useful later, in
Sections IV and V, respectively.

A pure expression, when equated to zero to characterize the
configurations in which a given platform is singular, is known as
a pure condition [46] (see the Appendix for a brief compilation
of basic facts on the concept of pure condition).

III. ∆-TRANSFORM

Let us consider a Gough–Stewart platform containing the ∆
component, which is defined by legs l1 and l2 , as shown on the
left-hand side of Fig. 4. Now, let us introduce leg d1 , as shown in
the same figure. Lengths l1 , l2 , and d1 are not independent, and
the relation between them can be straightforwardly obtained by
realizing that the volume of the tetrahedron, which is defined
by a1 , a2 , a3 , and b1 , is null, i.e., all four points are coplanar.
Then, using Euler’s formula for the volume of a tetrahedron in
terms of the square of its edge lengths [19, Problem 68], we

have

f(l1 , l2 , d1) =

∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1
1 0 (m + n)2 l21 m2

1 (m + n)2 0 l22 n2

1 l21 l22 0 d2
1

1 m2 n2 d2
1 0

∣∣∣∣∣∣∣∣∣∣∣
= 0.

(6)
The aforementioned determinant can be recognized as the

Cayley–Menger determinant of four points (for a review of these
determinants and their generalizations, see [20]). The Cayley–
Menger determinant of n points is proportional to the squared
volume of the simplex that these points define in R

n−1 . This
kind of determinants plays a fundamental role in the so-called
distance geometry, which is a branch of geometry devoted to the
characterization and study of sets of points on the basis of only
their pairwise distances. Hence, distance geometry has immedi-
ate relevance where distances between points are determined or
considered. It started to receive a lot of attention 20 years ago
with the advent of molecular magnetic resonance experiments
to obtain distances between atoms in rigid molecules [21] and,
more recently, in robotics to obtain intrinsic formulations of
different kinematics problems, thus avoiding the introduction of
arbitrary reference frames [22], [23].

Now, (6) can be expressed as

f(l1 , l2 , d1) = nl21 + ml22 − (m + n)d2
1 − mn(m + n) = 0.

(7)
Thus, the time derivative of the leg length d1 can be expressed

as

ḋ1 = − ∂f/∂l1
∂f/∂d1

l̇1 −
∂f/∂l2
∂f/∂d1

l̇2 =
l1
d1

n

m + n
l̇1 +

l2
d1

m

m + n
l̇2 .

(8)
Then, if we substitute leg l1 by leg d1 , the platform leg-length
velocities after this substitution are given by




ḋ1

l̇2
...

l̇6


 =




− ∂f/∂l1
∂f/∂d1

− ∂f/∂l2
∂f/∂d1

. . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1







l̇1

l̇2
...

l̇6




=




l1
d1

n

m + n

l2
d1

m

m + n
. . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1







l̇1

l̇2
...

l̇6


 . (9)

The determinant of the previous matrix is given by

l1
d1

n

m + n
. (10)

As a consequence, using (1) and (3), the pure expression of
the platform after this leg substitution, say det(P1), can be ex-
pressed in terms of the pure expression of the original platform,
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say det(P0), as

det(P1) =
n

m + n
· det(P0). (11)

Thus, the pure expression, after the substitution, is equal to
the original one multiplied by the distance between the two at-
tachments, divided by the same distance before the substitution,
and affected by a sign change if the order of the attachments is
permuted.

The previous substitution is defined as a ∆-transform. In
what follows, a ∆-transform will be denoted by ∆li ,lj ,lk , which
indicates that a ∆ component formed by li and lj is substituted
by the one formed by li and lk .

By applying a ∆-transform to a ∆ component, we have moved
one of its two attachments on the line. We can move the other
by applying one more ∆-transform. For example, on the result
of the previous ∆-transform, we can substitute l2 by d2 , as
shown in the right-hand side of Fig. 4. Then, following the same
reasoning as for the first ∆-transform, the pure expression of
the resulting platform, say det(P2), can be expressed as

det(P2) =
n + r

n
· det(P1) =

n + r

m + n
· det(P0). (12)

Observe that we could apply the previous two ∆-transforms
simultaneously to move both attachments on the line at the
same time. In this case, the relationship between the leg-length
velocities can be expressed as




ḋ1

ḋ2

l̇3
...

l̇6




=




− ∂f1/∂l1
∂f1/∂d1

− ∂f1/∂l2
∂f1/∂d1

. . . 0

− ∂f2/∂l1
∂f2/∂d2

− ∂f2/∂l2
∂f2/∂d2

. . . 0

...
...

. . .
...

0 0 . . . 1







l̇1

l̇2

l̇3
...

l̇6




.

(13)
where

f1(l1 , l2 , d1) = nl21 + ml22 − (m + n)d2
1 − mn(m + n) = 0

f2(l1 , l2 , d2) = rl21 + (m + n)d2
2 − (m + n + r)l22

− r(m + n)(m + n + r) = 0. (14)

Computing the partial derivatives of these functions and substi-
tuting into (13), we obtain




ḋ1

ḋ2

l̇3
...

l̇6




=




l1
d1

n

(m + n)
l2
d1

m

m + n
. . . 0

− l1
d2

r

m + n

l2
d2

m + n + r

m + n
. . . 0

...
...

. . .
...

0 0 . . . 1







l̇1

l̇2

l̇3
...

l̇6




.

(15)
The determinant of the matrix in (15) is given by

l1 l2
d1d2

n(m + n + r) + mr

(m + n)2

which easily simplifies to

l1 l2
d1d2

· n + r

m + n
. (16)

Then, using (1) and (3), we can conclude that the pure ex-
pression of the platform after this double leg substitution can
be expressed, as given in (12). Thus, the result is obviously the
same if we apply the two ∆-transforms either sequentially or
simultaneously. Nevertheless, there are some circumstances in
which a set of ∆-transforms can only be applied simultaneously.
This will become evident in the next two sections.

In what follows, a set of ∆-transforms will be denoted by

{∆l1 ,l2 ,l3 ∆l4 ,l5 ,l6 · · ·}

when applied sequentially and by


∆l1 ,l2 ,l3

∆l4 ,l5 ,l6

...




when applied simultaneously.

IV. EXAMPLE I: ZHANG–SONG PLATFORM

Zhang and Song [24] identified an entire family of spe-
cial Gough–Stewart platforms with closed-form formulation for
their forward kinematics. One member of this family appears in
Fig. 5(d), which is of interest because it has five aligned attach-
ments, both in the base and the platform. Next, we will show that
the pure condition of this platform is equal to that of the basic
flagged platform, as shown in Fig. 3(a) (also known as 3-2-1)
multiplied by a constant factor. To this end, let us first apply the
sequence of ∆-transforms to the basic flagged platform shown
in Fig. 5(a)

{∆p1 ,p3 ,q3 ∆p2 ,p4 ,q4 }

which leads to the platform shown in Fig. 5(b). Now, let us apply
the sequence

{∆q1 ,q2 ,l2 ∆q3 ,q4 ,l4 }

which leads to the platform shown in Fig. 5(c).
Therefore, it can be checked that, using (11) four times, the

pure expression of the platform shown in Fig. 5(c) is that of the
basic flagged platform shown in Fig. 5(a), i.e.,∣∣∣∣a1 a5 a6 b5

1 1 1 1

∣∣∣∣
∣∣∣∣a1 a6 b2 b5

1 1 1 1

∣∣∣∣
∣∣∣∣a6 b2 b5 b6

1 1 1 1

∣∣∣∣
(17)

multiplied by

n2
1

n2
11

(m2 + n2 + r2)2

(m2 + n21)2 . (18)

Now, let us apply the simultaneous set of ∆-transforms


∆l3 l1 d1

∆l1 l2 d2

∆l4 l3 d3

∆l2 l4 d4




.
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Fig. 5. Basic flagged platform in (a) can be transformed through a set of ∆-transforms into the Zhang–Song platform in (d).

This set of ∆-transforms is characterized by the following
linear relation:


ḋ1

ḋ2

ḋ3

ḋ4


 =




∂f1/∂l1
∂f1/∂d1

0
∂f1/∂l3
∂f1/∂d1

0

∂f2/∂l1
∂f2/∂d2

∂f2/∂l2
∂f2/∂d2

0 0

0 0
∂f3/∂l3
∂f3/∂d3

∂f3/∂l4
∂f3/∂d3

0
∂f4/∂l2
∂f4/∂d4

0
∂f4/∂l4
∂f4/∂d4







l̇1

l̇2

l̇3

l̇4


 (19)

where

f1 = (m1 + n1)l21 + n1d
2
1 + m1 l

2
3 − m1n1(n1 + m1)

f2 = (n2 + r2)l21 + m2 l
2
2 − (m2 + n2 + r2)d2

2

− m2(n2 + r2)(m2 + n2 + r2)

f3 = (m2 + n2)l24 + r2 l
2
3 − (m2 + n2 + r2)d2

3

− r2(m2 + n2)(m2 + n2 + r2)

f4 = r1 l
2
2 + n1d

2
4 − (n1 + r1)l24 − r1n1(r1 + n1). (20)

The determinant of the matrix in (19), after computing the
corresponding derivatives, is given by

(m1 + n1)(n1 + r1)m2r2 − (n2 + r2)(m2 + n2)r1m1

n2
1(m2 + n2 + r2)2 .

(21)
As a consequence, the pure expression of the platform, which is
shown in Fig. 5(d), is the product of factors (17), (18), and (21).

It is important to realize that factor (21) vanishes if, and only
if

|a3 − a1 ||a2 − a4 |
|a1 − a2 ||a3 − a4 |

=
|b3 − b1 ||b2 − b4 |
|b1 − b2 ||b3 − b4 |

(22)

i.e., if the cross-ratio [25] of a1 , a4 , a3 , and a2 equals that of b1 ,
b4 , b3 , and b2 . When this happens, the pure expression of the
Zhang–Song platform, which is shown in Fig. 5(d), is identically
zero. In this case, the platform is said to be architecturally
singular, i.e., it is always in a singularity independently of its
leg lengths. Alternatively, it is also said that the platform exhibits
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Fig. 6. Architecturally singular Zhang–Song platform, which is given in
Table I, represented in one of its infinitely many possible configurations.

TABLE I
COORDINATES OF THE ATTACHMENTS IN THEIR LOCAL REFERENCE FRAMES

FOR AN ARCHITECTURALLY SINGULAR ZHANG–SONG PLATFORM AND LEG

LENGTHS FOR WHICH ITS SELF-MOTION IS ANALYZED

(WHICH IS DRAWN IN FIG. 6)

a self-motion, i.e., it is movable while keeping its leg lengths
constant. This architectural singularity corresponds to the line–
line singular component studied in [26], and it also appears as
the fifth type of singularity in [27, Th. 1] (or equivalently in [28,
type 8 in Th. 3]). The cross-ratio singularity condition was also
found in [29] and [30], using much more involved derivations
than the one mentioned previously.

A parameterization of the self-motions resulting from archi-
tectural singularities introduced by a sequence of ∆-transforms
can always be found by proceeding backward, i.e., by undoing
the ∆-transforms and introducing parameters when needed. For
example, for the Zhang–Song platform (see Fig. 6) with the leg-
attachment coordinates appearing in Table I, the cross-ratio con-
dition in (22) is satisfied. Hence, the platform is architecturally
singular and, as a consequence, it will exhibit a self-motion. To
obtain a parameterization of this self-motion, observe that, for
the Zhang–Song architecturally singular platform, using (20), it
can be concluded that


−4 0 1 0
8 2 0 0
0 0 2 8
0 1 0 −4







l21

l22

l23

l24


 =




12 − 3d2
1

160 + 10d2
2

160 + 10d2
3

12 − 3d2
4


 . (23)

Given fixed values for d2
1 , . . . , d

2
4 , the previous linear system

is underconstrained, as expected. In other words, there is an

Fig. 7. Curve traced by the barycenter of the triangular platform, which is
shown in Fig. 6, when it is moved along its self-motion. Each color corresponds
to one branch of the forward kinematics generated as the parameter is swept.

infinite set of values for l21 , . . . , l
2
4 , which are compatible with a

set of values for d2
1 , . . . , d

2
4 . This set can be parameterized, for

the values of d2
i in Table I, by taking one of the leg lengths as

parameter (l24 has been chosen here), yielding

l21 = −l24 + 101 − 35
√

2

l22 = 4l24 − 249 + 135
√

2

l23 = −4l24 + 350 − 140
√

2. (24)

We can proceed to undo the four other ∆-transforms to ob-
tain the leg lengths for the corresponding basic flagged parallel
platform shown in Fig. 5(a). The result is given by

p2
1 = 101 − 35

√
2 − l24

p2
2 = −63 + 33

√
2 + l24

p2
3 = −3l24 + 265 − 105

√
2

p2
4 = −l24 + 101 − 45

√
2

p2
5 = 28 − 12

√
2

p2
6 = 16 − (6 +

√
3)
√

2. (25)

The basic flagged parallel platform can have up to eight as-
sembly modes that can be expressed in closed form in terms of its
leg lengths [11]. Thus, by sweeping l24 in the range (0,∞), eight
curves in the configuration space of the platform are traced. This
provides a complete characterization of the sought self-motion.
Fig. 7 depicts the location of the barycenter of the triangular
moving platform for the obtained self-motion. For the compu-
tational steps in detail, see a Maple worksheet attached as a
multimedia file with this paper.

Each value of the parameter l24 defines a unique point in joint
space (a set of leg lengths), which leads to eight solutions of
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Fig. 8. All eigenvalues for all assembly modes, excluding the one that is always
zero, of JT J, where J is the Jacobian matrix of the analyzed architecturally
singular Zhang–Song platform, as a function of l24 .

the forward kinematics (one for each assembly mode) in con-
figuration space. Note that these solutions may be real only for
some ranges of the parameter. In the example, the parameter
in the interval (22.35, 31.34) yields the real solutions plotted
in Fig. 7. The extremes of this interval correspond to transition
points between different assembly modes (which are marked
with a change of color in the figure). Nevertheless, such tran-
sition points do not correspond to higher order singularities of
the architecturally singular Zhang–Song platform. Indeed, if the
eigenvalues of JJT , where J is the Jacobian matrix of the archi-
tecturally singular Zhang–Song platform, are computed along
its self-motion, five of them are always different from zero.
Fig. 8 plots all eigenvalues in logarithmic scale, excluding the
one that is always zero, for all assembly modes, as a function of
l24 . Note that none of them vanishes.

V. EXAMPLE II: GRIFFIS–DUFFY PLATFORM

Let us consider the octahedral parallel platform shown in the
top portion of Fig. 9, which is also known as 2-2-2 platform,
whose pure expression is given by∣∣∣∣b5 a4 a6 b3

1 1 1 1

∣∣∣∣
∣∣∣∣b1 a2 a6 b5

1 1 1 1

∣∣∣∣
∣∣∣∣b3 a2 a4 b1

1 1 1 1

∣∣∣∣
−

∣∣∣∣b5 a4 a6 b1
1 1 1 1

∣∣∣∣
∣∣∣∣b1 a2 a6 b3
1 1 1 1

∣∣∣∣
∣∣∣∣b3 a2 a4 b5
1 1 1 1

∣∣∣∣.
(26)

Now, applying to it the following set of ∆-transforms:



∆l2 ,l1 ,d1

∆l3 ,l2 ,d2

∆l4 ,l3 ,d3

∆l5 ,l4 ,d4

∆l6 ,l5 ,d5

∆l1 ,l6 ,d6




(27)

Fig. 9. Simultaneous application of six ∆-transforms allows us to transform
an (top) octahedral platform into a (bottom) Griffis–Duffy platform.

we have that the resulting platform is the Griffis–Duffy platform
[31], which appears in the bottom portion of Fig. 9 (for a com-
plete analysis of this special Gough–Stewart platform, see [32]).

The transformation matrix between the leg lengths velocities
associated with the set of ∆-transforms in (27) is given by (28),
shown at the bottom of the next page, where

f1 = m1 l
2
2 + m2 l

2
1 − (m1 + m2)d2

1 − m1m2(m1 + m2)

f2 = n2 l
2
2 + n1 l

2
3 − (n1 + n2)d2

2 − n1n2(n1 + n2)
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f3 = m3 l
2
4 + m4 l

2
3 − (m3 + m4)d2

3 − m3m4(m3 + m4)

f4 = n4 l
2
4 + n3 l

2
5 − (n3 + n4)d2

4 − n3n4(n3 + n4)

f5 = m5 l
2
6 + m6 l

2
5 − (m5 + m6)d2

5 − m5m6(m5 + m6)

f6 = n6 l
2
6 + n5 l

2
1 − (n6 + n5)d2

6 − n6n5(n5 + n6). (29)

After computing the corresponding derivatives, the determinant
of the matrix in (28) is given as in (30), shown at the bottom of
this page.

Therefore, the pure expression of the platform shown in the
bottom portion of Fig. 9 is that of the one shown in the top
portion of Fig. 9 multiplied by factor (30). Note that this factor
is constant, which only depends on architectural parameters.

It is easy to check that factor (30) vanishes if, and only if

|a2 ,a6 ,a3 |
|a2 ,a6 ,a4 |

|a1 ,a5 ,a4 |
|a1 ,a5 ,a3 |

=
|b2 ,b6 ,b3 |
|b2 ,b6 ,b4 |

|b1 ,b5 ,b4 |
|b1 ,b5 ,b3 |

(31)

where |ai ,aj ,ak | is the area of the triangle defined by points
ai , aj , and ak . It is worth noting that these cross-ratios between
areas are projective invariants whose role for coplanar points is
similar to that of the cross-ratios between distances for collinear
points [33].

Using rather more complicated arguments, the algebraic con-
dition derived from factor (30) to detect architectural singulari-
ties in Griffis–Duffy platforms was already found in [32]. In this
latter reference, the reader can also find an alternative geometric
interpretation, which, from our point of view, is not as elegant
as the one given previously in terms of cross-ratios between ar-
eas. Another interpretation of the same factor (30) can be found
in [34]. The same manipulator was used in [35] as a particular
case example of a general theorem on architectural singularities.

An important consequence of this result is that, if factor (30)
is different from zero, the singularity locus of a Griffis–Duffy
platform is the same as that of an octahedral platform. If it is
zero, the platform is architecturally singular.

As an example of architecturally singular Griffis–Duffy plat-
form, consider the platform with the leg-attachment coordinates

TABLE II
COORDINATES OF THE ATTACHMENTS IN THEIR LOCAL REFERENCE FRAMES

FOR AN ARCHITECTURALLY SINGULAR GRIFFIS–DUFFY PLATFORM, AND LEG

LENGTHS FOR WHICH ITS SELF-MOTION IS ANALYZED

(WHICH IS DRAWN IN FIG. 10)

appearing in Table II (see Fig. 10). In this case factor (30) is
identically zero. Hence, the platform is architecturally singular
and, as a consequence, it will exhibit a self-motion. To obtain
a characterization of this self-motion, we will proceed as in the
previous section. First, observe that, for the Griffis–Duffy ar-
chitecturally singular platform, using the system of equations in
(29), it can be concluded that




2 2 0 0 0 0
0 1 1 0 0 0
0 0 2 2 0 0
0 0 0 1 1 0
0 0 0 0 2 2
1 0 0 0 0 1







l21

l22

l23

l24

l25

l26




=




16 + 4d2
1

2 + 2d2
2

16 + 4d2
3

2 + 2d2
4

16 + 4d2
5

2 + 2d2
6




. (32)

Since the previous matrix is rank-defective, there is an infi-
nite number of values for l21 , . . . l

6
6 , which are compatible with

d2
1 , . . . , d

2
6 . Substituting the values of d2

1 , . . . , d
2
6 in Table II and

solving the previous system taking l26 as parameter, we get

l21 = −l26 + 24 − 6
√

3

l22 = l26 − 10 + 4
√

3




∂f1/∂l1
∂f1/∂d1

∂f1/∂l2
∂f1/∂d1

0 0 0 0

0
∂f2/∂l2
∂f2/∂d2

∂f2/∂l3
∂f2/∂d2

0 0 0

0 0
∂f3/∂l3
∂f3/∂d3

∂f3/∂l4
∂f3/∂d3

0 0

0 0 0
∂f4/∂l4
∂f4/∂d4

∂f4/∂l5
∂f4/∂d4

0

0 0 0 0
∂f5/∂l5
∂f5/∂d5

∂f5/∂l6
∂f5/∂d5

∂f6/∂l1
∂f6/∂d6

0 0 0 0
∂f6/∂l6
∂f6/∂d6




(28)

m2m4m6n2n4n6 − m1m3m5n1n3n5

(m1 + m2)(m3 + m4)(m5 + m6)(n1 + n2)(n3 + n4)(n5 + n6)
(30)
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Fig. 10. Architecturally singular Griffis–Duffy platform, which is given in
Table II, represented in one of its infinitely many possible configurations.

l23 = −l26 + 16 − 4
√

3

l24 = l26 + 2 + 2
√

3

l25 = −l26 + 30 − 10
√

3. (33)

The octahedral platform can have up to 16 assembly modes
that can be obtained as the roots of an eight-degree polynomial
in the square of the unknown [36, p. 161]. Thus, no algebraic
formula exists for the forward kinematics of the octahedral plat-
form. Nevertheless, the self-motion can be characterized by
sweeping l26 in the range (0,∞) and obtaining the roots of the
bioctic polynomial numerically. The 16 solutions obtained for
each value of l26 form eight pairs of manipulator postures, with
one being the mirror image of another about the base plane.

Fig. 11 shows the location of the barycenter of the triangular
moving platform for the obtained self-motion. The parameter is
swept from its lowest value (discontinuities on the top, bottom,
and right on the figure) to its uppermost value (discontinuities
in the center of the figure). It is interesting to note that four
assembly modes are real for l26 ∈ (3.89, 6.025), and eight are
real for l26 ∈ (6.025, 8.9). The platform cannot be assembled for
l26 , which is outside the range (3.89, 8.9). As in the example of
the previous section, the configurations obtained for the value
of the parameter that lead to changes in the number of assem-
bly modes do not correspond to higher order singularities of
the architecturally singular platform. Indeed, if the eigenvalues
of JJT , where J is the Jacobian matrix of the architecturally
singular Griffis–Duffy platform, are computed along the self-
motion, five of them are always different from zero. Fig. 12 plots
all eigenvalues in logarithmic scale, excluding the one that is
always zero, for all assembly modes, as a function of the chosen
parameter. Note that none of them vanishes.

Fig. 11. Curve traced by the barycenter of the triangular platform, which is
shown in Fig. 10, when it is moved along its self-motion. The parameter is
swept from its lowest value (discontinuities on the top, bottom, and right on the
figure) to its uppermost value (discontinuities in the center of the figure). In the
color version of the plot, this is displayed as changing from red (lower values) to
blue (upper values). The curve consists of two symmetric disjoint components
with respect to the plane z = 0 (the base plane). Note that for the same color,
different points are obtained, corresponding to different assembly modes.

Fig. 12. All eigenvalues for all assembly modes, excluding the one that is
always zero, of JT J, where J is the Jacobian matrix of the analyzed architec-
turally singular Griffis–Duffy platform, as a function of l26 .

In order to validate the obtained self-motions, we have com-
pared the results, which are obtained using the proposed pa-
rameterization technique, and those obtained using the CUIK
software package. CUIK uses linear relaxation techniques to
discretize the space of all the configurations that a multiloop
linkage can adopt [37]. The obtained results for the attachment
coordinates and the leg lengths of the Griffis–Duffy manipulator
in [37] (also available online in [38]) are shown in Fig. 13. For
this example, details on the obtained parameterization are pro-
vided in a Maple worksheet, which is included in the attached
multimedia material. The solution obtained using CUIK consists
of a list of boxes approximating the self-motion with a resolu-
tion of 10−3 . It can be checked that the sampled points obtained
using the proposed technique are all included in these boxes.
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Fig. 13. Self-motion discretization of an architecturally singular Griffis–Duffy
platform, which is obtained using CUIK, is plotted in light transparent blue, and
the samples obtained with the presented parameterization are in dark blue.

VI. FURTHER APPLICATION CONTEXT

The aim of this paper is to define the concept of ∆-transform,
as well as to explain the details of its usage, thus showing
how sets of such transforms can be applied sequentially and/or
simultaneously.

In order to illustrate the potential of the approach, two ex-
amples have been worked out in detail, both unraveling the
singularity-wise equivalence of two well-known parallel plat-
forms (flagged and Zhang–Song, on the one hand, and oc-
tahedral and Griffis–Duffy, on the other hand), thus permit-
ting simplification of designs by removing multiple spherical
joints.

Now, let us mention that the ∆-transform has proven useful
in several other contexts. Aside from the extension of the core
family of flagged manipulators [11] with some new designs
[30], the interesting family of partially flagged platforms has
now been derived [39], which includes the celebrated 3-2-1
Hunt–Primrose manipulator as one of its members. Of practical
relevance is the synthesis of a singularity-free redundant design,
which combines two members of this family, and is also free of
multiple spherical joints.

Another promising application is in the context of paral-
lel manipulators, including a 5-DOF line–plane component
[40], where fruitful kinematic equivalences are currently being
explored.

Needless to say, the application of the ∆-transform to 3-DOF
planar parallel manipulators is straightforward.

However, the proposed methodology goes well beyond the
fully parallel Gough–Stewart platforms mentioned up to now
as it applies to any parallel robot having a ∆ component or
any kinematically equivalent serial chain. For instance, several
2-DOF serial chains, which are considered in [41], are kinemat-
ically equivalent to ∆ components, and we have exploited this
fact in previous works to analyze the singularity structure of,
for instance, a three-legged manipulator with PRPS chains as
legs (see, [11, Fig. 12]).

VII. CONCLUSION

The idea of using ∆-transforms for the kinematic analysis
of parallel platforms, which is introduced in this paper, was
first proposed in [11] to generate the family of flagged parallel
manipulators. In this paper, we have formalized and extended
this idea, thus introducing the possibility of applying sets of
these transformations simultaneously. This extension permits
the following:

1) classifying platforms in families sharing the same singu-
larity structure;

2) modifying platforms, without modifying the location of
their singularities, to satisfy extra design criteria (this
includes the possibility of eliminating multiple spheri-
cal joints, whose implementation always introduces some
complications);

3) characterizing self-motions associated with nontrivial ar-
chitectural singularities.

With regard to the last point, note that the characteriza-
tion of self-motions has important practical applications in
redundant parallel robots and the emerging area of recon-
figurable parallel robots. For example, a redundant parallel
robot, in which its base attachments can be moved along
guides [42], should be controlled in such a way that it remains
far from this kind of singularities. Alternatively, one might
be interested in approaching them so that the robot stiffness
is reduced in a given direction to ease some tasks requiring
accommodation.

A ∆-transform essentially refers to a leg rearrangement in a
∆ component, which is a rigid subassembly involving a line and
a point. Then, it is reasonable to wonder if other particular leg
rearrangements exist for point–plane, line–line, or line–plane
components that leave singularities invariant. The point–plane
case can be easily shown to reduce to the application of two
∆-transforms [11], while the line–line one has been shown in
Section IV (see Fig. 5) of this paper to also boil down to the
application of four serial followed by four simultaneous ∆-
transforms. The case of the line–plane component and, possibly,
that of the general plane–plane one remain as a promising avenue
of future research.

APPENDIX

Singularities of Gough–Stewart platforms correspond to zeros
of det(P) in (3). It is known that the rows of matrix P are the
Plücker coordinates of the leg lines [3], [43]. Thus, identifying
singularities amounts to finding those configurations in which
the leg-lines vectors become linearly dependent. This kind of
linear dependency was first treated in [44] and [45].

White [46] showed that the condition det(P) = 0 could be
expressed as the sum of terms involving the product of three
determinants, which are termed brackets, the four columns of
which correspond to the coordinates of four leg attachments
written in homogeneous coordinates. Thus, this expression be-
coming zero, which is known as the pure condition, is equivalent
to the determinant of P vanishing.

There exist several equivalent expressions of the pure con-
dition associated with the general Gough–Stewart platform.
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Downing et al. [18] used the following 16-term expression:

[b1a1b4b5 ][b2a2a4b6 ][b3a3a5a6 ]

− [b4a4b1b2 ][b5a5a1b3 ][b6a6a2a3 ]

− [b1a1b4b5 ][b2a2a4a6 ][b3a3a5b6 ]

+ [b4a4b1b2 ][b5a5a1a3 ][b6a6a2b3 ]

− [b1a1b4a5 ][b2a2a4b6 ][b3a3b5a6 ]

+ [b4a4b1a2 ][b5a5a1b3 ][b6a6b2a3 ]

+ [b1a1b4a5 ][b2a2a4a6 ][b3a3b5b6 ]

− [b4a4b1a2 ][b5a5a1a3 ][b6a6b2b3 ]

− [b1a1a4b5 ][b2a2b4b6 ][b3a3a5a6 ]

+ [b4a4a1b2 ][b5a5b1b3 ][b6a6a2a3 ]

+ [b1a1a4b5 ][b2a2b4a6 ][b3a3a5b6 ]

− [b4a4a1b2 ][b5a5b1a3 ][b6a6a2b3 ]

+ [b1a1a4a5 ][b2a2b4b6 ][b3a3b5a6 ]

− [b4a4a1a2 ][b5a5b1b3 ][b6a6b2a3 ]

− [b1a1a4a5 ][b2a2b4a6 ][b3a3b5b6 ]

+ [b4a4a1a2 ][b5a5b1a3 ][b6a6b2b3 ] = 0 (34)

while Ben-Horin and Shoham [47] used the following 24-term
expression instead:

[b1a1b2a2 ][b3a3b4b5 ][a4a5b6a6 ]

− [b1a1b2a2 ][b3a3a4b5 ][b4a5b6a6 ]

− [b1a1b2a2 ][b3a3b4a5 ][a4b5b6a6 ]

+ [b1a1b2a2 ][b3a3a4a5 ][b4b5b6a6 ]

− [b1a1b2b3 ][a2a3b4a4 ][b5a5b6a6 ]

+ [b1a1a2b3 ][b2a3b4a4 ][b5a5b6a6 ]

− [b1a1a2a3 ][b2b3b4a4 ][b5a5b6a6 ]

+ [b1a1b2a3 ][a2b3b4a4 ][b5a5b6a6 ]

− [b1a1b2b3 ][a2b4a4b5 ][a3a5b6a6 ]

+ [b1a1a2b3 ][b2b4a4b5 ][a3a5b6a6 ]

− [b1a1a2a3 ][b2b4a4b5 ][b3a5b6a6 ]

+ [b1a1b2a3 ][a2b4a4b5 ][b3a5b6a6 ]

+ [b1a1b2b3 ][a2b4a4a5 ][a3b5b6a6 ]

− [b1a1a2b3 ][b2b4a4a5 ][a3b5b6a6 ]

+ [b1a1a2a3 ][b2b4a4a5 ][b3b5b6a6 ]

− [b1a1b2a3 ][a2b4a4a5 ][b3b5b6a6 ]

+ [b1a1b2b4 ][a2b3a3b5 ][a4a5b6a6 ]

− [b1a1b2a4 ][a2b3a3b5 ][b4a5b6a6 ]

− [b1a1a2b4 ][b2b3a3b5 ][a4a5b6a6 ]

+ [b1a1a2a4 ][b2b3a3b5 ][b4a5b6a6 ]

− [b1a1b2b4 ][a2b3a3a5 ][a4b5b6a6 ]

+ [b1a1b2a4 ][a2b3a3a5 ][b4b5b6a6 ]

+ [b1a1a2b4 ][b2b3a3a5 ][a4b5b6a6 ]

− [b1a1a2a4 ][b2b3a3a5 ][b4b5b6a6 ] = 0 (35)

where ai and bi are the homogeneous coordinates of the attach-
ments ai and bi , respectively, for i = 1, . . . , 6. In other words,
ai = (aT

i , 1)T , and bi = (bT
i , 1)T (see Fig. 2).

The advantage of using the previous expressions to represent
the dependence of leg lines is seen when investigating simpli-
fied forms of the general Stewart–Gough platform in which, for
example, some legs share attachments. In general, placing con-
straints on the geometrical structure of the platform reduces the
number of bracket terms to a manageable level, thus offering the
opportunity for simple geometrical interpretations of the singu-
larities. For example, since a bracket involving the same point
at least twice is zero, the pure condition of a platform in which
several attachments coincide is greatly simplified. Although us-
ing either (34) or (35) to obtain the simplified forms of the pure
condition is fully equivalent, the result might be more compact
in one case than in the other, thus avoiding the need of further
algebraic manipulations for its simplification. For instance, for
the octahedral manipulator, which is shown in the right-hand
side of Fig. 3, (34) reduces directly to the pure condition in (5),
and for the manipulator, which is shown in the left-hand side of
Fig. 3, (35) simplifies directly to the pure condition in (4).
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