
Ascertaining relevant changes in visual data by interfacing AI reasoning
and low-level visual information via temporally stable image segments.

Nataliya Shylo1, Florentin Wörgötter1, and Babette Dellen2,3

Abstract— Action planning and robot control require logical
operations to be performed on sensory information, i.e. images
of the world as seen by a camera consisting of continuous
values of pixels. Artificial intelligence (AI) planning algorithms
however use symbolic descriptors such as objects and actions
to define logic rules and future actions. The representational
differences at these distinct processing levels have to be bridged
in order to allow communication between both levels. In
this paper, we suggest a novel framework for interfacing AI
planning with low-level visual processing by transferring the
visual data into a discrete symbolic representation of temporally
stable image segments. At the AI planning level, action-relevant
changes in the configuration of image segments are inferred
from a set of experiments using the Group Method of Data
Handling. We apply the method to a data set obtained by
repeating an action in an abstract scenario for varying initial
conditions, determining the success or failure of the action.
From the set of experiments, joint representations of actions
and objects are extracted, which capture the rules of the given
scenario.

I. INTRODUCTION

The visual scene presented to the camera of a robot
while performing an action, i.e. manipulating objects in the
scene, contains abundant information about the surrounding
world, much of which is not relevant for understanding the
consequences of the action. The extraction of action-relevant
information from the visual scene is crucial for creating joint
internal representations of actions and objects, i.e. object-
action complexes (OACs), which are a prerequisite for the
robot to interact with its environment in a meaningful way
and to progressively accumulate world knowledge [1], [2].

During the course of the robot’s exploration of a given
scenario, symbolic instantiations of actions have to be com-
pared with the visual input, i.e. continuous values of pixels,
requiring an appropriate, condensed representation of the
image sequence. There are four main requirements that need
to be fulfilled by the visual descriptors: (i) the number of
visual descriptors representing the scene should be small,
since AI reasoning often requires computationally exhaus-
tive combinatorial searches to be executed, (ii) the visual
descriptors should be discrete in order to be compatible
with functions at the action level, (iii) the visual descriptors

This work was not supported by any organization
1Bernstein Center for Computational Neuroscience in Göttingen, Uni-

versity of Göttingen, Bunsenstrasse 10, 37073 Göttingen, Germany
{natalia,worgott}@nld.ds.mpg.de

2Bernstein Center for Computational Neuroscience in Göttingen, Max
Planck Institute for Dynamics and Self-Organization, Bunsenstrasse 10,
37073 Göttingen, Germany bkdellen@bccn-goettingen.de

3Institut de Robòtica i Informàtica Industrial (CSIC-UPC), Llorens i
Artigas 4-6, 08028 Barcelona, Spain.

should be traceable troughout the frames of the image
sequence (temporal stability), and (iv) the visual descriptors
should capture sufficient content of the scene, i.e. parts of
objects. In our framework, appropriate image descriptors
are obtained from an image segmentation algorithm which
tracks segments from frame to frame [3], hence returning
temporally stable discrete segment labels, which can be
immediately utilized for AI planning. They represent large,
connected image areas, which usually can be linked to (parts
of) an object. These temporally stable segments provide the
interface between the sensory level and the AI planning
stage.

The process of pairing actions and symbolic visual de-
scriptors requires relevant changes in the configuration of
the image parts to be detected. By repeatedly performing a
particular action, reoccurring chains of visual events can be
derived from the experimental data. This task can be posed
as an induction problem, i.e. we want to extract functions
having dependencies between input and output data such that
the functions represent actions while the variables of the
function represent attributes of objects. Various techniques
have been suggested for solving the induction problem (for
a review see [4]- [5]), e.g. methods using multiple regression
analysis [4], [6], case-based reasoning systems [7]–[9], deci-
sion trees [10], [11], algorithms of boundary combinatorial
search [12], including the WizWhy by A. Meiden [13], [14],
neuron models [15], [16], genetic algorithms [17]–[19], and
evolution programming [5], [20], [21]. The group method
of data handling [5], [20], [21], employed in this work, is
an evolutionary algorithm which successively selects and
tests models of functions according to a cross-validation
criterion, thus implementing the scheme of mass selection.
This method has advantages in case when rather complex
objects have no definite theory because object knowledge is
derived directly from data sampling.

The paper is structured as follows: In Section II, we intro-
duce the algorithm consisting of the segmentation algorithm
and the GMDH applied to the extracted segments. In Section
III the results for an abstract scenario of “cup filling” are
presented. A discussion of the results and an outlook are
given in Section IV.

II. ALGORITHMIC FRAMEWORK

In the following, we will create a scenario in which an
agent (or robot) repeatedly performs an action on objects
which are connected with the action space through a stable
set rules. Here, we choose a scenario dealing with the filling
of cups. In this scenario, a cup object can be in two different

states “full” or “empty”. Being empty further implies that it
can be filled via an action called “Filling”. After the action,
the cup object is in the state “full”. If the cup however is
already full, the action “Filling” will not lead to any change
in the state of the cup. Hence, potentially meaningful actions
(with respect to a particular object) are characterized by their
property of inducing characteristic reproducible changes in
the scene. The successful linking of the action “Filling” with
an “empty” cup object defines an OAC, capturing one of
the laws of the cup world. Note, we do not deal with a
continuous domain in this example, since cups are considered
to be either “full” or “empty”. Starting with a data set of
various sequences monitoring the application of the action
“Filling” on different initial configurations of cup objects
and non-cup objects, we suggest the following algorithm for
finding the relevant OACs:

1) Transfer the images of the experiments into a
discrete representation of segment labels via an n-d
segmentation algorithm [3]. A detailed description of
the algorithm can be found in Section IIA.

2) Ascertain the relational position of the segment
labels, e.g. relative distance of segments, and define
corresponding relational discrete descriptors.

3) Changes in the relational positions of the segments
from the start to end of the action provide a set of
potential OACs.

4) AI reasoning (see Section IIB) validates or dismisses
potential OACs based on statistical recurrence.

A. Creating symbolic temporally stable visual descriptors
from image data

We employ the method of superparamagnetic clustering to
find temporally stable image segments in the image sequence
as seen by the robot [3]. In this method, image pixels are
represented by a Potts model of spins, which can be in
different, discrete states. Neighboring spins interact such
that spins corresponding to pixels of similar gray values
tend to be in the same spin state [22]–[27]. Segments are
then defined as groups of correlated spins. To define this
joint process of simultaneous segmentation, the spin dynamic
is developed simultaneously in all frames, while spins in
adjacent frames are allowed to interact with each other only
if they belong to locally corresponding image points.

We further utilize a technique called energy-based cluster
updating (ECU) to accelerate the equilibration of the spin
system [26], [27]. The algorithm consists of the following
steps:

1. Initialization: A spin value σi between 1 and q is
assigned randomly to each spin i. Each spin represents
a pixel of the image sequence.

2. Definition of neighborhood: Within a single frame
(2D bonding), two spins i and k with coordinates

(xi, yi, zi) and (xk, yk, zk), respectively, are neighbors
if

|(xi − xk)| ≤ ε2D (1)
|(yi − yk)| ≤ ε2D (2)

zi = zk , (3)

where ε2D is the 2D-interaction range of the spins.
The coordinates x and y label the position within each
image, while z labels the frame number.
Across frames (n-D bonding), two spins i and j are
neighbors if

|(xi + dx
ij − xj)| ≤ εnD (4)

|(yi + dy
ij − yj)| ≤ εnD (5)

zi 6= zj (6)
aij > τ , (7)

where εnD is the n-D interaction range. The values
dx

ij and dy
ij are the shifts of the pixels between

frames zi and zj along the axis x and y, respectively,
obtained from the optic-flow map. The parameters aij

are the respective amplitudes (or confidences), and
τ is a threshold, removing all local correspondences
having a small amplitude. However, since the images
in the examples given in this paper are changing only
little from frame to frame, we will use a zero-flow
approximation of the optic-flow field in order to
simplify the computation.

3. Computing 2D-bond probabilities: If two spins i and
k are neighbors in 2D and are in the same spin state
σi = σk, then a bond between the two spins is created
with a probability

P 2D
ik = 1− exp(−0.5Jik/T) , (8)

where Jik = 1−|gi−gk|/4̄ is the interaction strength
of the spins and the parameter T represents a system
temperature. The function

4̄ =
∑

<ik>2D

|gi − gk|/
∑

<ik>2D

1 (9)

computes the averaged gray-level distance of all 2D
neighbors < ik >2D, where gi and gk are the gray
values of pixel i and k, respectively. The function 4̄ is
constant for a given set of parameters and gray values.
Negative probabilities are set to zero. This step is
identical to previous algorithms of superparamagnetic
clustering [26], [27]. It allows spins within each frame
to interact and form clusters. If using colored images,
the gray values gi have to be replaced by a color
vector gi, and gray-level differences are replaced by
the absolute differences between color vectors |gi−gj |.

4. Computing n-D bond probabilities: If two spins i
and j, which belong to different frames (zi 6= zj),
are neighbors in n-D and are in the same spin state

σi = σj , then a bond between the two spins is created
with a probability

PnD
ij = aij [1− exp(−0.5Jij/T)] , (10)

where

Jij = 1− |gi − gj |/4̄ (11)

is the interaction strength of the spins, and aij is
the amplitude (or confidence) that spin i and j
are neighbors. The amplitude map A, containing
the amplitude values aij , is provided by the stereo
algorithm or optic-flow algorithm together with the
respective disparity map D or optic-flow field O.
Negative probabilities are set to zero. This step is
added to the ECU algorithm to allow spins to interact
across frames, thus enabling the formation of n-D
clusters.

5. Cluster identification: Spins, which are connected by
bonds, define a cluster. A spin belonging to a cluster
u has by definition no bond to a spin belonging to a
different cluster v.

6. Cluster updating: We perform a Metropolis update [28]
that updates all spins of each cluster simultaneously to
a common new spin value. The new spin value for
a cluster c is computed considering the energy gain
obtained from a cluster update to a new spin value
wk. This is done by considering the interactions of all
spins in the cluster c with those outside the cluster,
assuming that all spins of the cluster are updated to
the new spin value wk, giving an energy

E(W c
k) =

X
i∈c

ˆ
Ki −

X
〈ij〉2D
ck 6=cj

ηJijδ(σi − σj)

−
X

〈ij〉nD
ck 6=cj

ηaijJijδ(σi − σj)
˜

(12)

where 〈ik〉2D, ck 6= cj and 〈ij〉nD, ck 6= cj are the
noncluster neighborhoods of spin i, and W c

k symbol-
izes the respective spin configuration. The function

Ki =
∑

j

κδ(σi − σj)/N (13)

is an optional global inhibitory term, ensuring that far-
away segments get different spin values, where κ is a
parameter and N is the total number of pixels of the
image sequence. The parameter κ can be set to zero,
since Ki does not have any influence in the clustering
process itself. The constant η is chosen to be 0.5.
Similar to a Gibbs sampler, the selecting probability
P (W c

k) for choosing the new spin value to be wk is
given by

P (W c
k) = exp(E(W c

k))/
q∑

l=1

exp(E(W c
l)) . (14)

The ECU algorithm has been shown to preserve the
concept of detailed balance, and is thus equivalent to

standard Metropolis-based simulations of spin systems
from a theoretical point of view [26].

7. Iteration: The new spin states are returned to step 3
of the algorithm, and steps 3-7 are repeated, until the
total number of clusters stabilizes.

In this paper, we segment always two consecutive frames
of the image sequence at the same time, i.e. frame i and
i + 1, then, we segment the next pair, i.e. i + 1 and i + 2,
where the last image of the first pair is identical with the
first image of the second pair. Then, the consecutive pairs
are connected by identifying the identical segments in the
overlapping images. This strategy is used in order to be able
to handle long motion image sequences.

We apply the algorithm to a realistic image sequence,
showing the filling of a cup (Fig. 1, left column). The
respective segmentation results are shown in the middle
column. Most of the segments can be tracked through the
sequence. We represent the results as graphs, where the nodes
are segment labels, plotted at the position of the segment
center. Two nodes are connected by an edge if they touch
each other. The resulting graph are rather complex. In order
to test and validate the main idea of this paper, we therefore
chose a simplified abstract example of this scenario (see
Fig. 2). In the future however, we aim to apply our method
to more realistic sequences.

B. AI reasoning

To extract the relevant objects and actions from the data
set depicted in Fig. 2, we pose the task as an induction
problem, where the actions are functions f(χ) which connect
between the input data χ and the output data ϕ such that
ϕ = f(χ). We solve the induction problem by applying
the group method of data handling (GMDH) [5], [20], [21],
which reproduces the evolutionary scheme of mass selection.
The GMDH finds the relevant functional dependencies of
a given data set. Initially, several candidate models, i.e.
functions, are proposed. The method tests these models and
selects the more interesting ones, which are then recombined
to allow more complex combinations. The algorithm consists
of the following steps:

1a. Representation of input data: For each experiment,
labeled with index i, we have an input data vector
χi = (χi,1, ..., χi,j , ...). The data set contains i = 1, N
experiments and j = 1,M attributes of objects, where
N ≥ M . The data set divides in two parts: NA

is used for learning, and NB for evaluation of the
created models and for decision making regarding
stopping the selection process. In the specific example
investigated in this paper, a data set is created for
each image segment, either before or after the action.
The input vector χi for a segment h contains the
relative distance of the center of segment h to the
other segments, labeled j, before the application of
the action. We omit the index h in the following for
reasons of readability.

Fig. 1. Filling-a-cup real action sequence. In the left column, several frames
of a motion sequence showing the process of filling a cup with sugar are
presented. The middle column shows the respective segmentation results. In
the future, we aim to apply our method to a set of experiments showing the
filling of real cups, defining a data set similar to the one given for the abstract
cup scenario. In the right column, the respective graph representations are
shown. The nodes of the graphs are plotted at the center of the respective
segment, together with its label. Two nodes are connected by an edge if
they are neighbors, i.e. if their boundaries touch each other. For reasons of
display, we omitted all labels which belong to temporally unstable segments.

1b. Representation of output data: For each experiment,
labeled with index i, an output value ϕi is created
from the output data by taking the mean of the output
data vector ϕi = (ϕi,1, ..., ϕi,j , ...) such that

ϕi =
∑

j

ϕi,j/M , (15)

where j is the object label, consistent with the input
data. Hence, if χi represents the values of the object
attributes before the action, then ϕi represents the
values of the object attributes after the action. The
such constructed output data ϕi is used to find the
function f(χi) for which ϕi = f(χi) is fulfilled best
considering all experiments i. The function f then
describes the action inducing the relevant changes in
the data set.

2. Choosing the particular description of the candidate
models, i.e. candidate functions: Almost all types
of functions f(χ) can be theoretically expressed by
Volterra functional series. Its discrete analogue is the
Kolmogorov-Gabor polynomial:

ϕ = a0 +
M∑

j=1

ajχj +
M∑

j=1

M∑
k=1

ajkχjχk

+
M∑

j=1

M∑
k=1

M∑
l=1

ajklχjχkχl , (16)

where (χ1, χ2, ..., χM) are taken from the input data,
and a = (a1, a2, ..., aM) is the vector of coefficients
or weights.
In the following, we choose a multilayered algorithm,
thus the iteration rule (particular description) remains
the same for all series. A linear particular description
of the form

ϕ1
1 = a1χ1 + a2χ2,

ϕ1
2 = a1χ1 + a3χ3,
...

ϕ1
r = atχt + alχl,
...

ϕ1
s = aM−1χM−1 + aMχM , (17)

is used for the first iteration, containing s = M2 can-
didate functions labeled r. The upper index represents
the iteration number u, here u = 1. In the second
iteration (u = 2), we get

ϕ2
1 = b1ϕ

1
1 + b2ϕ

1
2,

ϕ2
2 = b1ϕ

1
1 + b3ϕ

1
3,

...
ϕ2

r = btϕ
1
t + blϕ

1
l ,

...
ϕ2

p = bs−1ϕ
1
s−1 + bsϕ

1
s , (18)

with p = s2 and so on in the following iterations

3. Estimation of coefficients: At each iteration, the coef-
ficients of the candidate functions are computed using
a least-squares method

σ =
N∑

i=1

(ϕi −
M∑

j=1

χi,jaj)2 → min , (19)

taking all experiments into account. Thus, the initial
data transforms to the quadratic array of normal equa-
tions, which are solved using the Gauss method.

4. Estimation of regularity: At each iteration, we find the
candidate function for which the regularity minimizes

PRR(r) = 1/N

N∑
i=1

(ϕu
i − ϕi(Nb))2 → min , (20)

where ϕu
i is the model output data at the respective

iteration step, and ϕ(NB) is the output taken from the
test data.

5. Stopping of selection: The candidate functions are
passed to the next iteration step as long as the regular-
ity measure decreases. Practically it is recommended
to stop the iteration already when the regularity is
decreasing too slowly. Here, we stop the iteration if
the function

E = (PRRt−2(r)− PRRt−1(r))
− (PRRt−1(r)− PRRt(r))/
(PRRt−2(r)− PRRt−1(r))
+ (PRRt−1(r)− PRRt(r)) , (21)

is smaller than a given threshold. Then, the candidate
function with the smallest regularity measure is se-
lected.

III. RESULTS

We approach the task of finding the only existing OACs
of our cup world by creating a simplified abstract scenario,
in which paper shapes represent objects in a scene (see
Fig. 2A). The coloring of objects and the overall color
intensities have been varied from frame to frame using an
image manipulation program to simulate more realistic con-
ditions, providing additional challenges to the segmentation
algorithm. The large blue and red oval shapes represent cup
objects, while the black circle represents another object, here
a liquid, e.g. coffee, which can be filled into the cup objects.
If the liquid object is in the center of a cup object, the cup
is full. If there is no liquid object close to the center of
cup, the cup is considered empty. We simulate the action
of “Filling” by placing the liquid into the center of a cup.
The filling of the red cup object can be observed along the
consecutive frames of the sequence shown in Fig. 2A. The
color images are processed using the segmentation algorithm
described in Section 2A (see Fig. 2B). The segment labels
are color coded. Temporally stable segments can be tracked
from frame-to-frame, hence, changes in the configuration of
segments before and after the action can be determined. Here,
frame 1 shows the configuration of the segments before the
action, and frame 8 shows the configuration of segments after
the action. The respective graph representations are depicted
in Fig. 1C. The nodes of the graphs are plotted at the center
of the respective segment, together with its label. Two nodes
are connected by an edge if they are neighbors, i.e. if their
boundaries touch each other.

In Fig. 3, the segment configuration before and after the
action are shown for a total of eight experiments. From these
experiments, the OACs have to be extracted. Experiments 1,
2, 3, 5, 6, and 8 evidence the successfull application of the
“Filling” action to a cup object. Other non-cup objects and
non-liquid objects are occasionally visible in the scene, i.e.
the red square in the experiment 6. All the experiments are
linked by “reset” actions (images not shown) which allow the

Fig. 2. Abstract example of a “Filling” action. A. The process of filling
a cup is captured by a motion sequence containing eight color images. The
coloring of objects and the overall color intensities have been varied from
frame to frame using an image manipulation program to simulate more
realistic conditions. The large oval blue and red paper shapes represent
cups in this abstract scenario, while the black circle represents a liquid,
e.g. coffee, which can filled into the cups. If a cup is filled with the
liquid, the liquid object is placed close or at the center of the cup object,
otherwise the cup is considered empty. B. Visual processing. Applying a
segmentation algorithm [3] to the image sequence returns temporally stable
image segments. The segment labels are color coded. The light blue and
the dark red segment correspond to the blue cup and the red cup object,
respectively, while the yellow segment represents the liquid object. C The
respective graph representations are shown. The nodes of the graphs are
plotted at the center of the respective segment, together with its label. Two
nodes are connected by an edge if they are neighbors, i.e. if their boundaries
touch each other. The background has the label 1 and is not considered
further.

objects to be traced through the whole set of experiments.
Thus, we can assign the same cluster label to the paper
shapes in the images of the first sequence and of the last
sequence.

To extract the relevant OAC of the cup scenario, we apply
the group method of data handling (see Section IIB) to the
data set shown in Fig. 3. For each experiment i and for each
segment h, we compute the distance of the center of segment
h to each other segment j before the action. These distance
values dhj define the input vector χi to the GMDH, applied
independently to each segment h. The output values ϕi are

Before After

1

2

3

4

5

6

7

8

Fig. 3. Set of experiments in the cup scenario. The image segments
before and after the application of the “Filling” action for different initial
conditions are shown. The first experiment is identical to the example shown
in Fig. 1. Experiments 1, 2, 3, 5, 6, and 8 show the successful application
of the “Filling” action, i.e. after the action, one of the cups changed its
state from empty to full. In experiment 4, both cups are already filled
before application of the action, hence, applying the “Filling” action does
not induce any relevant changes in the scene. Sometimes other objects,
which are not relevant for the particular action, e.g. the rectangular shape
in experiment 6.

constructed by computing the mean of the segment distances
to segment h after the action. Hence, the task of finding the
relevant action from the data set can be posed as an induction
problem, i.e. finding the function f which fulfills ϕi = f(χi)
best, considering all experiments i.

Before applying the GMDH, the input data is normalized
to obtain scale invariance

d̃hj =
dhj

2/N2
∑

h

∑
j>h dhj

, (22)

where dhj is the distance between segments h and j, and N
is the total number of segments.

In Fig. 4, a generalized graph representation of the seg-
ments before and after the action is shown for illustration,
containing the relevant changes induced by the “Filling”
action. The nodes, representing the segments, are plotted
with respect to their relative position. Here, only the edges
connecting nodes 2,3, and 4 with all other nodes are plotted.
Neighborhood information is not explicitly used in this ex-
ample, since the GMDH uses the distances between segment

2

4

3

5

6

2

4

3
5

6

Before action After action

Fig. 4. Generalized graph representation of the segments before and after
the action. Here, only the edges connecting nodes 2,3, and 4 with all other
nodes are plotted. The edges connecting to segments far away of the scene
are indicated by an arc symbol. For reasons of proper display these nodes
could not be plotted at their true positions. Before the action, node 3 is
situated close to node 2 and at distance to node 4. However, after the action,
the node 3 is situated close to node 4 and at distance to node 2, constituting a
relevant change. Node 5 represents another liquid filled in the red cup which
only appears in experiment 4. Node 6 represents another object which has
however no influence on the action.

centers. Before the action, node 3 (liquid) is situated close
to node 2 (blue cup) and at distance to node 4 (red cup).
However, after the action, node 3 has moved close to node
4 and at distance to node 2, constituting a relevant change
in the scene, caused by our abstract “Filling” action.

The GMDH is applied two times to each segment. First,
the segment configuration before the action is used to predict
the segment configuration after the action, which we call the
forward process. Then, the segments after the action are used
to predict the segment configuration before the action, which
we call the inverse process. Through this, relevant causes in
the segment configuration before and after the action can be
extracted.

From the functions describing the forward and inverse
processes, we consider only the object attributes which have
non-zero weight coefficients. The relevant values of the
object attributes are computed by taking the mean over
all experiments. Mean object attributes together with the
associated action define the rule. Applying this method to
the blue cup (segment h = 2) returns the function

ϕ = −898.8χ3 + 1503.2χ4 + 0.2χ5 (23)

for the forward process, and the function

ϕ = 2988.8χ3 + 944.7χ4 + 0.4χ5 (24)

for the inverse process. The respective rule of the blue cup
is

if χ3 = 0.1 & χ4 = 2.2 & χ5 = 9000.2
then action = FILLING
result χ3 = 1.9 & χ4 = 2.2 & χ5 = 9000.

(25)

For the liquid (segment h = 3) we obtain the function

ϕ = −188.5χ2 + 1768.2χ4 + 0.1χ6 (26)

for the forward process, and the function

ϕ = 1426.4χ2 + 178χ4 + 0.2χ6 (27)

for the inverse process. The resulting rule for the liquid is

if χ2 = 0.1 & χ4 = 2.1 & χ6 = 9500
then action = FILLING
result χ2 = 2 & χ4 = 2.3 & χ6 = 9500.

(28)

For the red cup (segment h = 4) we obtain the function

ϕ = 1393.5χ2 + 0.1χ3 + 0.2χ5 (29)

for the forward process and the function

y = 1332.6χ2 + 123.6χ3 + 0.2χ5 (30)

for the inverse process. The resulting rule of the red cup is

if χ2 = 2.2 & χ3 = 2.2 & χ5 = 9000
then action = FILLING
result χ2 = 2.2 & χ3 = 0.2 & χ5 = 9000 .

(31)

The set of rules computed for the different segments repre-
sents an OAC of the cup scenario.

In Figs. 5-7 the extracted robot rules, presented as graphs,
with respect to segment h = 2 (the blue cup), h = 3 (the
liquid), and h = 4 (the red cup) are presented. The relevant
edges for initiating the “Filling” action and the relevant
resulting edges are plotted in red. In Fig. 5, the rule with
respect to segment h = 2 are shown. A short edge between
the blue cup and the liquid initiates the “Filling” action.
As a result the liquid is situated far away from the blue
cup. In Fig. 6, the rule with respect to segment h = 3, the
liquid, is shown. A small distance between the liquid and
the blue cup and a large distance between the liquid and the
red cup initiates the “Filling” action, which causes distances
between the liquid and the blue cup to increase largely and
the distance between the liquid and the red cup to decrease,
symbolizing the filling of the red cup. In Fig. 7, the rule
extracted for segment h = 4, the red cup, is shown. The
action has been initiated through the large distance between
the liquid and the red cup. As a result, the liquid is situated
close to the red cup.

IV. DISCUSSION

We proposed an algorithm for the computation of OACs
which applies AI reasoning to temporally stable image
segments to ascertain change in visual data. From a set of
experiments, relational attributes of segments could be asso-
ciated with a particular action, here the “Filling” of a cup in
an abstract scenario in which paper shapes represent “cups”
and “liquids”. Segment tracking results obtained for complex
image sequences however suggest that the proposed method
generalizes to more realistic scenarios. However, segment
tracking through n-d segmentation might fail in some cases
due to light reflexions or other changes in the images. Other

2

4

3

5

6

2

4

3
5

6

Before action After action

Fig. 5. Robot rule for the blue cup (segment 2). The most important
action-relevant edges are depicted in red.

2

4

3

5

6

2

4

3
5

6

Before action After action

Fig. 6. Graph representation of the robot rule obtained for the liquid
(segment 3). The most important action-relevant edges are depicted in red.

techniques or heuristics will have to be employed to bridge
these gaps, since the GMDH used in the reasoning process
requires a temporally stable labelling of objects. However, it
remains an open question whether the segment representation
is descriptive enough for scenes containing complex objects.
In real-world scenarios, simple segment relations, such as the
distance between segment centers used in this work, might
not suffice to capture all action-relevant object properties. In
this case, higher-level features would have to be included
in the scene description. In our future research, we aim
to provide answers to these questions using more realistic
scenarios and robot experiments.

We further wish to generalize the method such that the
relations between all segments can be used in the GMDH
simultaneously. As it its, the algorithm computes rules given
the configuration of a particular segment to all the other
segments.

The GMDH further relies on statistical recurrence requir-
ing the repetitive execution of an action. Such a strategy is
not always very efficient. Instead, we would like to augment
the GMDH by drawing conclusions at an early stage, so that
actions can be applied more efficiently during the exploratory
phase.

2

4

3

5

6

2

4

3
5

6

Before action After action

Fig. 7. Graph representation of the robot rule obtained for the yellow cup
(segment 4). The most important action-relevant edges are depicted in red.

V. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from the
EU Project Drivsco under Contract No. 016276-2, the EU
Project PACO-PLUS under Contract No. 027657, and the
BMBF funded BCCN Göttingen.

REFERENCES

[1] B. Hommel, J. Müsseler, G. Aschersleben, and W. Prinz, “The
theory of event coding (tec): A framework for perception and action
planning,” Behavioral and Brain Sciences, pp. 849–878, 2001.

[2] C. Geib, K. Mourao, R. Petrick, N. Pugeault, M. Steedman, N. Krüger,
and F. Wörgötter, “Object action complexes as an interface for
planning and robot control,” IEEE RAS Int. Conf. Humanoid Robots
(Genova), pp. Dec. 4–6, 2006, 2006.

[3] B. K. Dellen and F. Wörgötter, “Extraction of region correspondences
via an n-d conjoint spin relaxation process driving synchronous
segmentation of image sequences,” Submitted, 2008.

[4] J. W. Osborne, “Prediction in Multiple Regression,” World Wide Web,
urlhttp://www.pareonline.net/getvn.asp?v=7&n=2, 2000.

[5] F.Lemke and J. Muller, “Self-organizing data mining for a portfolio
trading system,” Journal of Computational Intelligence in Finance,
vol. 5, no. 3, pp. 12–26, May-June 1997.

[6] W. Raaymakers and A. Weijters, “Using regression models and neural
network models for makespan estimation in batch processing,” in
Proceedings of the 12th Belgium-Netherlands Conference on Artificial
Intelligence (BNAIC00), Kaatsheuvel, The Netherlands, November
2000, pp. 141–148.

[7] A. Aamodt and E. Plaza, “Case-Based Reasoning: Foundational Issues,
Methodological Variations, and System Approaches,” AI Communica-
tions, vol. 7, no. 1, pp. 39–59, March 1994.

[8] D. Aha, “The Omnipresence of Case-Based Reasoning in Science and
Application,” Knowledge-Based Systems, vol. 11, no. 5-6, pp. 261–
273, November 1998.

[9] A. Stahl and T. Gabel, “Optimizing similarity assessment in case-
based reasoning,” in Proceedings of the 21th National Conference on
Artificial Intelligence (AAAI-06), Boston, USA, Juli 2006, pp. 1667–
1670.

[10] S. Russel and P. Norvig, Artificial Intelligence : a modern approach.
Prentice Hall, 2003.

[11] M. Chen, “On the evaluation of attribute information for mining
classification rules,” in Tools with Artificial Intelligence. Proceedings
of the 10th IEEE International Conference, Taiwan, November 1998,
pp. 130–137.

[12] M. Bongard, Pattern Recognition. Spartan Books, 1970.
[13] “www.wizsoft.com,” World Wide Web, http://www.wizsoft.com.
[14] S. Barai, “Data mining application in transportation engineering,”

TRANSPORT, vol. 18, no. 5, pp. 216–2233, 2003.
[15] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice

Hall, 1999.
[16] P. J. G. Lisboa, B. Edisbury, and A. Vellido, Business Applications of

Neural Networks. World Scientific, 2000.
[17] M. Mitchell, An Introduction to Genetic Algorithms. MIT press, 1996.

[18] M. L. Raymer, W. F. Punch, E. D. Goodman, and L. A. Kuhn,
“Genetic programming for improved data mining: An application to
the biochemistry of protein interactions,” in Genetic Programming
1996: Proceedings of the First Annual Conference, Stanford, USA,
July 1996, pp. 375–380.

[19] L. Jourdan, C. Dhaenens, and E.-G. Talbi, “A genetic algorithm for
feature selection in data-mining for genetics,” in 4th Metaheuristics
International Conference, Porto, Portugal, July 2001, pp. 29–34.

[20] H. Madala and A. Ivakhnenko, Inductive Learning Algorithms for
Complex Systems Modeling. CRC Press, 1994.

[21] J. HowlandIII and M. Voss, “Natural gas prediction using the
group method of data handling,” in Artificial Intelligence and
Soft Computing (ASC 2003), Banff, Canada, July 2003. [Online].
Available: citeseer.ist.psu.edu/article/howland03natural.html

[22] R. B. Potts, “Some generalized order-disorder transformations,” Proc.
Cambridge Philos. Soc., vol. 48, pp. 106–109, 1952.

[23] M. Blatt, S. Wiseman, and E. Domany, “Superparametric clustering
of data,” Physical Review Letters, vol. 76, no. 18, 1996.

[24] R. Swendsen and S. Wang, “Nonuniversal critical dynamics in monte
carlo simulations,” Physical Review Letters, vol. 76, no. 18, pp. 86–88,
1987.

[25] U. Wolff, “Collective monte carlo updating for spin systems,” Physical
Review Letters, vol. 62, pp. 361–364, 1989.

[26] R. Opara and F. Wörgötter, “A fast and robust cluster update algorithm
for image segmentation in spin-lattice models without annealing –
visual latencies revisited,” Neural Computation, vol. 10, pp. 1547–
1566, 1998.

[27] C. von Ferber and F. Wörgötter, “Cluster update algorithm and
recognition,” Physical Review E, vol. 62, pp. 1461–1664, 2000.

[28] N. Metropolis, A. W. Rosenbluth, A. H. T. M. N. Rosenbluth,
and E. Teller, “Equations of state calculations by fast computing
machines,” J. Chem. Phys., vol. 21, pp. 1087–1091, 1953.

