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Abstract- This paper addresses the problem of hand-eye
coordination and, more specifically, tool-eye recalibration of
humanoid robots. Inspired by results from neuroscience, a
novel method to learn the forward kinematics model as part
of the body schema of humanoid robots is presented. By
making extensive use of techniques borrowed from the field
of computer-aided geometry, the proposed Kinematic Bezier
Maps (KB-Maps) permit reducing this complex problem to a
linearly-solvable, although high-dimensional, one. Therefore, in
the absence of noise, an exact kinematic model is obtained. This
leads to rapid learning which, unlike in other approaches, is
combined with good extrapolation capabilities. These promising
theoretical advantages have been validated through simulation,
and the applicability of the method to real hardware has been
demonstrated through experiments on the humanoid robot
ARMAR-IIIa.

I. INTRODUCTION

With increasingly complex robots --especially humanoids­
the calibration process of the arms and other kinematic
chains, and hence the prediction of the effects of joint
movements, becomes a difficult, time-consuming and often
expensive task. This process has to be repeated every time the
tool center point (TCP) of the robot changes, e.g. if the robot
accidently suffers deformation or --even more important- if
the robot intends to interact with its environment with a tool.
The hand-eye calibration by traditional means then becomes
nearly impossible. Humans solve the problem successfully
by pure self-observation, which has led to the adaptation of
biologically-inspired mechanisms to the field of robotics.

In neuroscience, it is common knowledge that there exists
a body schema that correlates proprioceptive sensor informa­
tion, e.g. joint configurations, with the visible shape of the
body [10]. It also represents an unconscious awareness of
the current body state [11]. Experiments with both macaque
monkeys and humans showed that the body schema is neither
congenital nor rigid but rather learnable and adaptable, as

The work described in this paper was partially conducted within the EU
Cognitive Systems projects GRASP (FP7- 215821) and PACO-PLUS (FP6­
027657) funded by the European Commission.

The authors acknowledge support from the Generalitat de Catalunya
under the consolidated Robotics group, and from the Spanish Ministry of
Science and Education, under the project DPI2007-60858.

shown by Maraviata et al [9]. For instance, an experiment
examines the proximal visual receptive field (the area in
cartesian space where stimuli activate the neurons associated
to grasping) of the macaque monkeys. It was shown that this
field was enlarged by the length of a tool that the monkeys
used once they had been trained to do so. This leads to
the conclusion that the tool itself became incorporated into
the monkey's own body schema. Similar conclusions were
drawn from experiments with human patients who suffered
from brain damage or phantom pain after having lost a limb.
This leads to the assumption that in the human brain similar
processes exist as in the monkey's. Further observations by
Stamenov [14] showed that the body schema is not a well­
formed pattern but rather a set of several connected groups
of neurons that represent opportunistically learned manifolds
and that are distributed over regions in the brain.

As a consequence of these results, there is a great inter­
est among robotics researchers to emulate this adaptability
with techniques from machine learning. In most robotics
works, the term 'learning of the body schema' is restricted
to the sub-symbolic learning of the relation between the
proprioceptive sensors for the joint configuration 8 and the
visual position x of the end-effector. Therefore, it is basically
limited to the approximation of the forward kinematics (FK),
the inverse and local inverse kinematics (IK) from pairs of
joint angles and cartesian coordinates:

f(8) =x, f- 1(x) = 8 and f- 1(x) = 8. (1)

In general, the approximation of the latter two functions
(with a high number of DoF) is an ill-posed problem as the
same position can be generated by different joint configura­
tions. However, the approximation of the FK can be used to
solve the IK problem in a flexible way via techniques such as
resolved motion rate control (RMRC) [16]. Thus, the current
paper focuses on learning the FK mapping from tuples (8, x),
which will be referred to as training experiences, samples or
training data.

The main difficulty of the approximation of the FK lies
in the fact that it is a highly non-linear function with
non-redundant input variables, each of them significantly
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II. FORWARD KINEMATICS REPRESENTATION IN BEZIER

FORM

can be obtained easily by the construction of the forward
differences Sb, with

(3)

(6)

(5)b(s) = Eb;. Bi(s)
t

n-l
h(s) =n· Eilbi ·B7-1(s)

i=O

are the products of all Bernstein polynomials within each
summand. In total, the control net of the tensor product
Bezier representation is formed by (n+ l)d control points.

obtained results are discussed. The paper concludes with a
brief account of the contributions and an outlook on future
work.

where i:= (i1, ia, ... , id) represents a vector of indices going
through the set f n = {(il,i2, ... ,id) s.t, ik E {O, ... ,n}} of
index vectors addressing the points of the control net , s:=
(Sl,S2, ... ,Sd) is the parameter vector, and

d

B;(s) := ITBik(Sk)
k=l

The net of (n+ 1)2 points bi1,i2 forms the control net. In
general, a d-dimensional tensor product Bezier of degree n
can be represented as

where every point b(s) on the curve is the result of an affine
combination of a set of n + 1 control points b, weighted by
the well-known Bernstein polynomials Bi(s) that serve as a
basis for all polynomial curves of degree n. The Bezier form
of the curve's derivative

2) Tensor Product Bezier Surfaces: Polynomial surfaces
and higher multivariate functions can also be expressed in
Bezier form. If they are polynomial of degree n in their
main directions (when only one parameter is variable), the
function can be expressed as a tensor product of two or more
Bezier curves. For example, a polynomial surface of degree
n, bts«,S2), has the tensor product Bezier form

A. Mathematical Fundamentals

1) Bezier Curves: In affine space, every polynomial spa­
tial curve b(s) of degree n has an unique Bezier form
[13] [6]:

b(s) = tbi·B'/(s), with B7(s):= (~) .si.(I-s)n-i, (2)
~o l

influencing the result. Hence, it requires a large amount
of training experiences that grows exponentially with the
number of DoF of the kinematic chain. This complexity can
be reduced by decomposing the robot into kinematic sub­
chains as proposed by Ruiz et al. [2][3], but at the expense
of increasing the demands on the robot's perceptive abilities
or limiting the applicability to a family of robots.

Parametrized Self-Organizing Maps (PSOMs) [15] have
been often used to learn kinematics problems because of its
versatility and interpolation abilities. However, they require
that the training samples are distributed in a regular grid
(although this is mitigated in [8]) and, specially, they are
not well suited to on-line learning. High-dimensional kine­
matic chains have been handled by using locally weighted
projection regression (LWPR) [4]. This algorithm creates
linear models locally valid for the training data, which are
combined into a weighted sum that eventually approximates
the FK or local IK. PSOM has in common with the LWPR
approach that they quickly produce locally valid approxima­
tions but again require a large amount of training data for a
complete model, as they lack good extrapolation capabilities.
An exact encoding of the FK of robots with rotational joints
is not possible as both approaches use approximations that
are not capable of describing the product space of rotations
with a finite number of samples. However, both can be used
to learn a local IK approximation and are thus capable of
solving the IK problem directly.

A different approach was recently proposed by Hersch et
al [7], where the parameters of the FK in Denavit-Hartenberg
convention are learned directly by an optimization algorithm.
This optimization eventually leads to the creation of a body
schema with good extrapolation capabilities and even con­
verges to an exact model in simulation. However, this method
suffers from a low learning speed --even in simulation.

To the best of our knowledge, there is not yet an algorithm
that can learn a FK mapping exactly and in an efficient
way. This is the aim of this work, where we use techniques
from the field of Computational Geometry -namely, rational
Bezier tensor-product functions. Derived from these func­
tions the Kinematic Bezier Maps (KB-Maps) were created.
In contrast to all other approaches, this representation permits
an exact encoding of the FK, which is robust to sensor
noise, and it allows the learning algorithm to keep the same
complexity regardless of the number of training experiences.
Moreover, it exhibits good extrapolation capabilities even
when only a relatively small number of experiences can be
provided that lie close to one another. The key aspect of the
KB-Maps is that they transform a highly non-linear problem
into a higher-dimensional, but linearly solvable, equation
system.

The paper is structured as follows. In the next section, a
brief introduction to the underlying geometrical techniques
is provided. Section 3 describes their application in the KB­
Maps to encode FK. Two algorithms suitable to perform the
learning are presented in Section 4. Then, in Section 5, the
proposed method is applied to the humanoid robot ARMAR­
IlIa [1] in both real experiments and simulation, and the
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B. Forward Kinematics Representation.' The One-
dimensional Case

In this section, we show how to use the techniques
presented above to come up with the Bezier representation
of the forward kinematics of a robot with rotational joints.

The end-effector of a single-joint ideal robot moves along
a circular trajectory when the value B of its joint changes.
In general, the FK of a robot with d degrees of freedom
is simply a composition of d circles. Therefore, the basic
geometric objects that we need to represent are circles and
more generally their deformations. The only deformation of
circles that we consider are ellipses. We expect that this
flexibility contributes to a better conformation to the real
function that has to be learned, that may be biased by the
sensorial system or gravity.

To explain more clearly our representation of FK, we begin
by showing it for a single degree of freedom. As declared

3) Rational Polynomials and Rational Bezier Form:
Although FK can be approximated by polynomials, an exact
representation of the FK requires a more complex class of
functions, e.g. rational polynomials [5]. Rational polynomial
functions are similar to affine polynomial functions except
for the fact that they are defined in the projective space f!lJ.
Simplifying, f!lJ is a space with an additional dimension and
elements of the form

IP= [Y:] or short p e- y-p, YEIR \O,

where p is an affine point and Y is called homogeneous
coordinate or weight of IP. Any projective point IP E f!lJ can
be understood as a ray that originates from the the projective
center (0, .. . ,0) and intersects the affine space at p when
Y= 1. The intersection point is called the affine image of IP
and division by Yis called projection (onto the affine space).

On projection into the affine space , rational polynomials
generally become more complex functions and may loose
their polynomial characteristics (see Fig . 1). Still, in homoge­
neous space , there does exist the same previously introduced
unique Bezier form for curves and surfaces

and, after affine projection, the rational Bezier form

b(s) = b(s) = LYi ·bj ·Bj(s)
y(s) L.i Yi ' Bi(S) .

d··················:.·.:::·········)
o<~..::::: .

o~

Fig. 1. The projection of a parabola in :?l' onto a circle.

(7)

before, our model is able to represent a family of ellipses
including the circle.

Homogeneous polynomials of degree two become con­
ics when projected onto the affine space and, for every
conic, there exists a rational Bezier representations of degree
two [5]. In particular, a rational Bezier curve

b(s) = L.f=~Yi ·bi .Bf(s) (8)

L.i=O Yi ' Bf(s)
is an ellipse if

1) the weights /i) and 'Y2 are equal , and
2) n//i) = n/'Y2 < 1.
To be a circle, in addition it has to satisfy that a) the

control points form an isosceles triangle with a common
angle a , and b) n//i) = cos a. Note that all conditions refer
to proportions between weights because multiplying every
weight by a constant leaves (8) unchanged.

Imposing /i) = 'Y2 = 1 and fixing n to an arbitrary constant
smaller than one, the ellipse conditions are satisfied . At the
same time, doing this, the circle is not excluded from the
family of ellipses potentially represented by the Bezier form,
since for any n it is possible to find a set of control points
forming an isosceles triangle with a common angle whose
cosine is n. Thus, if learning data comes from a circle
and we have enough points to constrain the model , we will
obtain a circle. By imposing /i) = 1, the redundancy in the
representation induced by proportionality in the weights is
eliminated. Imposing /i) = 'Y2 and fixing n to a constant has
the effect of limiting the kind of ellipses that can be used to
fit the FK data.

The joint effect of these constraints is that the number
of sample points required to determine the Bezier form is
greatly reduced (see Section III): in the one-dimensional
case, it is reduced from 5 (required in general for an ellipse)
to 3. Note that this is also the minimum number of sample
points required if we would have assumed a model based
only on circles. As a consequence, we have a more flexible
model without having to pay a tribute in increased number
of required data.

Our model is still incomplete. For b(s) to represent a
complete ellipse, s must go from - 00 to 00. Instead, the data
samples and the robot commands are joint encoder values
B, ranging from -n to n. We must transform B before
being used as input to the Bezier form. We have chosen
the following transformation

r : [-n,n] I-' IR, -r(B) = tan(?~)) +~ . (9)
2·tana22

where a = arccosfjt ), see Fig. 2(a). In fact, it is more
practical to fix indirectly n by choosing first an arbitrary
a and setting n = cos( a). The sense of this transformation
is that, when b(s) becomes exactly a circle , a becomes the
common angle in the isosceles triangle formed by the control
points , see Fig. 2(b). In this case, it can be proven that B
becomes the angular parameterization of the circle measured
in radian units in b( -r(B)) , which is the final form of the
one-dimensional KB-Maps.
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Fig. 2. Transformation from a joint angle to the corresponding parameter
of the Bezier form.

(b) The parameterization(a) The t transformation

.:
I =±:x;
9 = ±;r

-,

'.
1 = 0
0 =-0

'lO
, 0

1 = 1
0 = 0.

where i goes through .Jf2 in the summands in both (10) and
(11). G is the 3d x 3 matrix of parameters of the model, in
which each row i is b1il(i) '

In many applications, not only the position of the end­
effector is of interest but also its orientation. The easiest
way to also represent the orientation using the KB-Maps
is to represent the kinematics of the unit vectors eI, ez
and e3 of the end-effector coordinate system separately in
different KB-Maps. If f : IRd ---. 1R4 x4 maps joint values to
the transformation matrix associated to the end-effector, the
complete Bezier representation is

where IB : IRd ---. 1R4x4 is the composed KB-Map, and el (8) ,
ez(8) and e3(8) denote the KB-Maps of the kinematics of
unit vectors.

b(-r(8))]
1 '

.) z ·) . i) y,- .B?(r(8 J) )
where yJ = Li Yi .Bi (-r(8J )) and Wi = I I yJ) The

quantity yj) is common for all summands in sample j ,
and can be computed only once. It corresponds to the
homogeneous coordinate that must be associated to pj) to
belong to the surface in projective space (11), hence the
notation. Clearly, the selection of the best fitting parameters
G by means of the minimization of E( ·) is a linear least
squares problem:

III. LEARNING

Let us define a square cost function for a training set
{(eo,pj))} j=I ,.·· ,m:

E(G) = EEj(G) = EII/(8j );G) - pj)ll z. (12)
j j

The minimization of E(·) can be used to fit f to the set
of training points. We can highlight the linearity of 1 by
rewriting (10)

C. Forward Kinematics Representation: The Multidimen­
sional Case

We like to represent a composition of d ellipses with
a Bezier form, understood in the same sense that a pure
FK is a composition of d circles: when all variables but
one are fixed the resulting curve must be an ellipse , i.e.,
the isoparametric curves of the Bezier form are ellipses . To
accomplish this, we set the weights '}11 ,iz,...,id of control points
lb · . to ,,ones(i .. ...,id) where ones() returns the number ofIt "" l'd I ,
ones in the arguments and y is an arbitrary constant minor
than one. The proof is in the Appendix. The value y can be
selected like in the one-dimensional case, via the cosine of
an arbitrary angle , y = cos a.

With arguments similar to those for the one-dimensional
case, we can state that each of the ellipses defined by the
isoparametric curves in the main directions can take the
shape of a circle . Therefore, if we have enough data points
to determine the surface (3d , see Section III) coming from
an exact FK, the Bezier form will reproduce exactly the
robot kinematics. In that case, the implicit control points
(named «1k in the Appendix) appearing in the expression of
the isoparametric curves in the main directions will form an
isosceles triangle. In fact, the triangles will be congruent for
all main directions, having all the same common angle a.
But, of course , the circles in the main directions are anyway
unrelated and can be completely different.

Finally, to complete the model we must include the trans­
formation -r(8) of the input encoder vector, 8 = (01, . . . , Od)'
The rationale is, as in the one-dimensional case, to establish
a correspondence between the encoder values that are given
in uniform angular units (radians) and the Bezier parameters
s that yield the adequate Bezier surface points in the context
of an exact FK. In sum, this is the KB-Maps model for FK:

1(8;G) :=b(-r(8)) = LiYi·bi·Bf(-r(8))
LiYi .Bf (-r(8))

Yi = yones(i) , y < 1

which is the projection onto the affine space of

f(8;G):= 1b(-r(8)) = E [Yi~i] .Bf (-r(8 )),
i 11

(10)

(11)

G:= arg~in E(G) = ~II (Eiw1)' bi ) - ~)llz . (16)

We can use two kinds of methods to solve this problem :
exact methods and gradient methods.

Both are able to cope with irregular distributions of data in
the training set, in contrast to some models like the original
PSOM's that require a grid arrangement of the data. Besides ,
the gradient methods are naturally suited to deal with non­
stationary data, a feature that is not available to PSOM's or
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even to PSOM+ [8]. And since the cost function is purely
quadratic, it does so without risk of failing, because there is
only one global minimum.

A. Exact methods

The linear system being fitted in the least squares sense
by (16) is:

where W is a m x 3d matrix composed of columns wj) =
( j) w'.)) d P . 3·· h· h
WIi I ( l ) ' · · · ' IiI (3d) an rs an m x matnx m wtuc

row j is pj). This system has enough data to determine
a solution for G if m 2 3d • In this case, the linear least
squares problem has a unique solution (if the columns of
Ware linearly independent) obtained by solving the normal
equation:

Gcan be determined by some standard method, such as QR­
decomposition. If the data {(8 j ) , p j ) ) } j = 1,... ,m comes from
noise-free FK, because any FK of d degrees of freedom can
be expressed with /(8; G), equation (17) will be satisfied
exactly, i.e, E(G) = O. Since the solution is unique, /(8;G)
is the only FK function satisfying the data and, thus, the
one that generated them. Consequently, generalization (both
interpolation and extrapolation) will be perfect.

Of course, this happens in the absence of noise, but as
it will be shown in the experimental Section IV, even with
noisy data, we need a low number of samples to get a good
approximation of the underlying FK.

In case there is no possibility to acquire enough data, i.e.
the system of linear equations is underdetermined, it is still
possible to find the solution that lies closest to an a priori
estimate of the model (e.g. as a result of simulations). This
can be done using, for instance, the Moore-Penrose pseudo
inverse [12]. Finally, these exact learning techniques can be
used repeatedly when some new data are acquired to generate
successively improved models. Optionally, old data could be
discarded when new ones are acquired, leading to an adaptive
model.

IV. EXPERIMENTS

In this section, the KB-Maps presented earlier in this work
are evaluated on the humanoid platform ARMAR-IIIa [1]
(see Fig. 3(a)), both in experiments on the real hardware
and in simulation. The ARMAR-Illa robot contains seven
independent degrees of freedom (DoF) in each arm, one
in the hip and three in the head. Each arm contains a 6
DoF force sensor in its wrist. The number of joints actively
used during the experiments varied, as the complexity of
the learning process grows exponentially with this number.
This is the reason why a smaller number was used in the
experiments on real hardware than in the simulations. As
our approach aims at hand-eye coordination, all experiments
include joints of both the head and one arm. This way,
the camera could always point in the direction of the end­
effector during the experiments. On the real robot, samples
were generated by manually moving the robot arm via zero­
force control (see Fig. 3(a)), while an estimated FK model
obtained from the geometrical model was used to fix the head
looking at the hand. Joint values were then read directly from
the motor encoders in order to deal with a realistic amount
of sensor noise. An optical marker (a red ball signaling the
end of a tool) attached to the end-effector was tracked by the
built-in stereo camera system (see Fig. 3(b)), and all training
samples obtained had a distance of at least 1° and maximal
3° in parameter space to their predecessors. In simulation,
joint values were generated randomly in parameter space
--either normally distributed or sampled through a random
walk. Artificial noise was added to the positions of the end­
effector in some experiments.

minimizes the mean squared error of the linear fit. It is a
common practice to set J.l = Jlo / II wj) 11

2, 0 < Jlo ~ 1, variation
denoted as Normalized LMS.

Learning by gradient methods is notoriously slower than
with exact methods if a high precision is required. However,
it has some advantages. The more important one is that,
computationally, it is considerably lighter than exact meth­
ods. Besides, it quickly responds to dynamically changing
conditions, such as easily deformable systems or the appli­
cation of different tools. In general, it is naturally suited to
approximate a non-stationary function.

(18)

(17)W·G=P,

This permits the application of an on-line implementation
of linear regression, by ufa~ing each bi after the presenta­
tion of a new sample (8J ,pJ)):

where J.l is the learning rate parameter. This update rule has
been called Widrow-Hoff rule [Widrow & Hoff, 1960], delta
rule, or LMS (Least Mean Squares) algorithm. Its application

B. Gradient methods

The derivative of Ej(G) with respect to hi (a row of G)
is easily obtained:

A. Exact Method

In the first place, simulations that show the performance of
the exact learning algorithm with six DoF are presented. For
training and test, two sets with 13.000 and 6.000 training
experiences, respectively, and with joint angles uniformly
distributed over ±80° were used. The associated positions
in euclidean space were created by the FK constructed from
the CAD description of the kinematics. In addition to that,
an artificial noise with standard deviation C1noise = 10mm
was applied only to the training data. For the evaluation
of the extrapolation capabilities other 6.000 independent
samples from a space more than ten times larger (with
angles between ±1200) were created. In the first experiment,
subsets of the training data with different sizes were used

(19)
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These two experiments show that the exact learning
method is robust to sensor noise, and it can produce an
acceptable estimation even for extrapolation points if enough
training samples are provided.

B. Gradient method

In this section, the presented gradient method is integrated
in a learning process that is divided into an online and an
offline part. The order in which training samples are learnt is
very important in the case of the gradient method. The best
learning effect results from randomly generated data where
consecutive samples have a larger distance in parameter
space. In reality, however, this is not the case and samples
that belong to the same trajectory will usually lie close to
one another. This is why, in the first part of the learning
process, points are learned online as they are generated. After
a certain number of experiences have been acquired, these
samples are randomly permuted and again learned by the net
in the second stage. In this way, the accuracy of the net can
be improved without the need to create new data.

As in the previous subsection, experiments were first per­
formed on a simulated robot again. Joint values were created
by a random walk in parameter space with a distance of at
least 1° and a maximum of 3° between each angle vector.
All joints values are normally distributed with G = 22° in
order to create realistic trajectories. The robot now uses 7
active DoF and instead of learning the FK from scratch,
this experiment simulates learning the application of a tool.
Therefore, the initial KB-Map is an exact representation of
the FK obtained from the CAD model. Then the training
and test data were produced with a modified FK where the

to have a direct comparison, a second KB-Map was trained
using exactly the same joint angles, but with the associated
CAD-generated positions with an added noise of Gnoise =
20mm, which is approximately of the same magnitude as
the one in the perception system. Fig. 5 shows the outcome
of this experiment. As one can see from the similarity of
both curves, the algorithm acted on real hardware as it had
been predicted by the simulation.

Fig. 5. Exact learning on real data recorded with 5DOF and a training
set of 1000 samples and test set with 500 samples. The measured errors
(violet) are compared to simulated values with noise (Jerr = 20 mm (red).

12000ioooo
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Maxerroron test data _.....

Mean error on t rain ing data -
Max error on tr aining data .

Mean error on ext rapo latio n _
Noise (standard derivati on) -

(b) Close-up of the optical
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i"
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~
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,/

0
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(a) Generation of training sam­
ples using zero-force con­
trol.

Fig. 3. The humanoid ARMAR-Illa robot.

for learning. It is investigated how the error over the test,
training and extrapolation data is related to the number of
training experiences used for learning. In Fig. 4, the results of
this experiment can be seen. The error on the training data
(green) increases until it reaches the level of the artificial
noise (grey), while the errors on the test data (blue) and the
extrapolation (orange) decrease with a growing number of
training data. After around 2.200 samples, the mean error
on the unknown test data falls below the standard deviation
of the artificial noise. Remember that the test set (unlike the
training set) comes without noise, which explains why the
test error becomes smaller than the training error. This means
that the algorithm is capable of compensating for the sensor
noise.

Subsequently, the applicability on the real robot was ex­
amined. For this task, training experiences with five joints of
the robot actively moved were produced as described in the
beginning of this section. A training set with 1.000 samples
and a training set with 500 samples were generated. In order

Fig. 4. Plot of a batch-learning with simulated data on the Armar-Illa.
Training samples (13.000) were generated equally distributed over [±800j
and with added noise of (Jerr = 10 mm applied to the position x of the end­
effector. A similarly generated test set with 6.000 samples and another set
for extrapolation (equally distributed over [±120°j) with 6.000 samples are
included in this experiment. The figure shows the error over the learned data
(green), the test data (blue) and the extrapolation data (orange) in relation
to a varying number of learned samples without online learning. Thick lines
represent mean errors and dotted lines maximal errors.

436

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on February 11, 2010 at 13:00 from IEEE Xplore.  Restrictions apply. 



1500

TCP Movement
Mean error on real test data __

Max error on real test data .
Mean error on sim ulated test data __

Max error on sim ulate d test data .
Mean error on sim ulated trai ning data __

500

Ir-< ~~
~ I,J• . r.'II"':'.... ...~. ........ .. _ _ _ ~••• " __ _ • •••

-----t-"4.0,,-..J. I ·i.L•..._.._.._~__._ __ __ _ __ .
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TCP was moved by a distance of 250mm. In a variation of
the experiment, artificial noise of CTnoise = 20 mm was added
to the shifted TCP. The results are presented in Fig. 6. The
light blue lines indicate the distance between the TCP taught
positions in two consecutive learning iterations and increases
as soon as the training data is permuted. As one can see, the
mean error of the test data (red) and the data with artificial
noise (orange) both drop very quickly. After 1.800 cycles the
mean errors are about 50 mm. This shows the speed of this
learning technique as well as the robustness to noise.

500 ,------,----~~~-~-~-_,_,_~~

Fig. 6. Diagram of the learning progress of the incremental learning
while learning a 7 DoF kinematic chain. It shows the actual error between
estimation and experienced position in each iteration (green) , the error on
the test data of learning without noise (red) and noise with C1 = 20mm
(orange). Thick lines represent mean errors and dotted lines maximal errors.
The distance between the particular TCP positions is shown (light blue). It
increases dramatically after 1700 iterations, when the algorithm enters the
second stage and the acquired experience is learnt again in random order.

V. CONCLUSIONS

In the present paper, a novel approach for learning the
FK mapping as part of the body schema of humanoid robots
was presented. Inspired by PSOMs, we wanted to overcome
the large number of robot movements required to get a good
approximation of FK.

First, since FK is a composition of circles, models based
on polynomials (as PSOM) cannot exactly represent a FK.
Thus, we have chosen a model based on rational Bezier
polynomials -the Kinematic Bezier Maps-, which are a

In the last experiment, the learning behavior of the gradient
method with simulated data and on real hardware is directly
compared. The robot uses 6 active joints, and a number
of 2.200 training experiences were created by moving the
end-effector as described earlier in this section. The same
joint values of these experiences were used in simulation to
generate training samples. The outcome of the comparison
of the two KB-Maps can be seen in Fig. 7. From the
similarity of the two curves, it follows that the learning on
real hardware succeeds as predicted by the simulation.

As a consequence from these two experiments, it can be
seen that the gradient-based learning can be used to refine
a crude FK model very rapidly. Thus, the obtained results
proved the robustness of this learning to noise, as well as its
applicability to a real humanoid robot.

Fig. 7. Comparison of the incrementalleaming progress when processing
real data from marker tracking (orange) and simulation w/o noise (red).
Thick lines represent mean errors and dotted lines maximal errors. After 600
training experiences no new data is acquired but previously learnt data is
processed anew in arbitrary order. The difference between the TCP positions
is shown (light blue).

family of functions that includes the description of any
FK. Besides, these functions have an important advantage:
adjusting the model to a set of a sample points is a linear
least squares problem.

Second, we have introduced a priori knowledge of the
function to be learnt in the model which is the key to
reducing the number of samples. This has been achieved
by restricting the model to represent only compositions
of a certain family of ellipses which always includes the
circle. The constraints implied by this restriction are easily
integrated in the linear least square problem. The approach
can be summarized as reformulating the problem in a larger
space -the positions of the Bezier control points-, where it
becomes linearly solvable.

This higher-dimensional problem can be easily solved
with any standard linear least-squares method, yielding our
exact learning method. Alternatively, the least squares cost
has a simple derivative, encouraging alternative algorithms,
the so-called gradient learning methods, which are well
suited for online-learning. Using the exact method, in the
absence of noise, it is possible to learn exactly a FK with
only 3d samples, where d is the number of DoF, which
none of the previous works was able to accomplish. And
so, with an arbitrary sample distribution. This means that,
even if samples are grouped in a very reduced zone of the
workspace, interpolation and extrapolation are perfect.

We have carried out experiments, both simulated and in
real hardware, with a humanoid robot under noisy conditions,
proving that our algorithms are able to quickly learn a good
approximation of the kinematics of the robot from inaccurate
measures.

Our learning algorithm performs very well if enough noisy
samples from the whole workspace are provided. Even if the
noisy samples are restricted to a local zone of the workspace,
we obtain good interpolation and extrapolation, although the
last one requires more samples. But, if the samples are noisy,
few and local, the algorithm performs poorly, especially in
extrapolation, where it can exhibit very large errors. This

3000
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Max test erro r w/o noise .

Mean test erro r wit h noise -­
Max test error wit h noise

2000

# samples

100 -

400

437

Authorized licensed use limited to: UNIVERSITAT POLIT?CNICA DE CATALUNYA. Downloaded on February 11, 2010 at 13:00 from IEEE Xplore.  Restrictions apply. 



is due to the fact that with noise and scarce data, the
isoparametric curves of the model become often strongly
elliptical.

This provides an idea about how to improve our system in
these conditions, although there do not exist any easy solu­
tion because the constraints to enforce complete circularity
are non-linear. Finally, a less challenging future work is to
deal not only with rotational joints, but to generalize the
model for robots having any combination of prismatic and
rotational joints.

ApPENDIX

A. Isoparametric Curves of the Multidimensional Model

A d-dimensional tensor product Bezier form of degree 2
in which the vector i is spelled out for convenience, has the
form:

2

[b(Sl, ... ,Sd)= E [bil,...,id·B?l,...,id(Sl, ... ,Sd). (21)
il,···,id=O

Without loss of generality, we show the isoparametric
curve of this Bezier form when Sl is the free variable. The
above equation can be rewritten as:

2 2

EB~(Sl)( E B?2,...,id(S2, ... ,Sd)·[bk,i2,...,id)· (22)
k=O i2,...,id=O

We can define a new function <r1k(S2, ... ,Sd) to rename the
expression in the big parenthesis; when S2, ... , Sd are fixed,
<r1k is a constant and (22) becomes a single-variable Bezier
curve defined by the control points <r1o, <r11 and <r12 :

2

EB~(Sl)· <r1k(S2, ... ,Sd). (23)
k=O

Let the homogeneous coordinates of <r1o, q 1 and <r12 be
liJo, liJl and liJ2, respectively. To be an ellipse, liJO=liJ2 and
liJl / liJo < 1 must be satisfied. Remind that we set the weights
~. . of control points [b. . to ",flnes(il,···,id) whereIll,12,···,ld 'l"",'d I ,
ones() returns the number of ones in the arguments and y is
an arbitrary constant minor than one.

The values of the ar« are then
2

liJo = E B?2,...,id(S2, ... ,Sd)· YO,i2, ...,id
i2,···,id=O

2

liJl = E B?2,...,id(S2, ... ,Sd)· Yl,i2, ...,id
i2,···,id=O

2

liJ2 = E B?2,...,id(S2, ... ,Sd)· 'Y2,i2, ...,id
i2,···,id=O
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Everything in the development of liJo is the same as that in
liJ2, except the first index in the weights, which is 0 for liJo
and 2 for (iJ2. Since '\40 . . = ",flnes(i2,...,id) and '1A • • =1\ ,12,···,ld I 1L.,12,···,ld
yones(i2,...,id), we conclude that liJO=liJ2. Similarly, liJo and
liJl differ only in the first index of all involved weights.
Those in liJl are Yl . . = ",flnes(i2,···,id)+1 which means that,12,···,ld I ,

they correspond to those involved in liJo multiplied by y.
Therefore, the conditions liJl = liJoY and liJl / liJo = Y< 1 are
met, which concludes the proof that, with the chosen weights
for control points [bil ,...,id' the isoparametric curves of (21)
are ellipses.
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