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ABSTRACT

It will be shown how to generate under-actuated manipula-
tors by substituting non-holonomic spherical pairs (nS pairs) for
(holonomic) spherical pairs (S pairs) in fully-parallel manipula-
tors (FPMs). Through this pair substitution, an under-actuated
manipulator, previously proposed by one of the authors, will be
demonstrated to be generated from an inversion of the 6-3 FPM.
Moreover, the kinetostatic analysis of this manipulator will be re-
considered to obtain a simple and compact formulation. This re-
formulated analysis can be used both in the design of the under-
actuated manipulator, and in its control.

Keywords: kinetostatics, non-holonomic constraint, under-
actuated manipulator, parallel manipulator.

NOMENCLATURE

P prismatic pair.

U universal joint.

S spherical pair.

nS non-holonomic spherical pair.

SPU spherical-prismatic-universal kinematic chain (limb).

nSPU (non-holonomic spherical)-prismatic-universal kine-
matic chain (limb).

FPM fully parallel manipulator.

DPA direct position analysis.

dof degrees-of-freedom.
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RB rigid body.

1 INTRODUCTION

Non-holonomic constraints arise in many different areas of
robotics such as motion planning and control of mobile robots,
reorientation of free-flying space robots, rolling contacts of
multi-fingered hands, etc. In all these cases, the non-holonomic
constraints are inherent to the problem, but there are some cases
in which the artificial introduction of this kind of constraints can
provide important advantages.

In pick-and-place applications of manipulators, only the ini-
tial and the final poses (position and orientation) of the end ef-
fector are assigned by the task, whereas the end-effector path
between them is free. The ideal manipulator for these applica-
tions should be able to make the end effector reach any pose in
the six-dimensional operational space, and, by exploiting the free
fly of the end effector, it should be able to satisfy additional de-
sign conditions that reduce its hardware complexity. Joints with
non-holonomic constraints do not reduce the reachable relative
poses of the links connected by the joint since non-holonomic
constraints have the only effect of reducing the set of paths that
can be covered for moving between two reachable relative poses.
This reduction of practicable paths is accompanied by the ris-
ing of new reaction forces in the joint which can be usefully
exploited to eliminate actuators. Thus, designing a manipula-
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tor with fewer actuators than the degrees-of-freedom (dof)! of its
configuration space —to reduce bulk, weight and expense— be-
comes feasible by introducing mechanical elements that lead to
non-holonomic constraints.

The literature on the use of non-holonomic devices in the
design of manipulators is limited to few examples. In [3], Stam-
mers et al. presents a robot wrist that can attain any orientation
with two motors only. This is achieved by means of a friction
drive, using rollers on a spherical ball to which the end effector
is fixed, and by fixing the two motors to the arm. In [4], Peshkin
et al. present a passive spherical robot which can display pro-
grammable constraints. The device is based on a non-holonomic
element involving a sphere and three reorientable rollers. In [5],
Nakamura et al. describe an n-joint serial robot which can reach
any pose in its n-dimensional configuration space with only two
actuators. The joints of this manipulator are coupled by (n-1)
non-holonomic devices, based on spheres and rollers, so that it
reaches a desired pose by following a path whose computation is
algorithmically equivalent to maneuvering a car with n-trailers.
More recently, in [6], Ben-Horin and Thomas proposed a three-
legged parallel robot where each leg is connected to the base
through a sphere whose motion is constrained by a roller. This
latter parallel architecture permits to attain any position and ori-
entation for the platform using only three prismatic actuators.

Despite the difference of purpose, all mentioned examples
include at least one sphere whose motion is constrained by a
roller that can freely roll in contact with the sphere without slip-
ping laterally. This no-slip constraint is a non-holonomic con-
straint, a constraint relating the velocities of the sphere and the
roller. The kinematics of this sphere-roller assembly is equiva-
lent to that of a unicycle on a sphere whose equations of motion
can be represented by first-order differential equations [7].

Many research efforts have been made to clarify different
aspects of non-holonomic mechanical systems including its con-
trollability, stability, feedback stabilization, time-periodic con-
trol, chained form transformation, etc. but, in any case, achiev-
ing a formulation for the kinematics of the system, as compact
and simple as possible, is essential to explore the applicability of
all these results available in the literature.

Herein, the under-actuated parallel architecture presented
in [6] is reconsidered from a different point of view which allows
to see it a particular case of under-actuated manipulator obtained
through the substitution of a spherical pair (S pair) by a non-
holonomic pair (nS pair) in fully parallel manipulators (FPMs).
Moreover, its kinetostatic analysis is reformulated so that a sim-
ple and compact formulation necessary for its design and control
is obtained.

The degrees-of-freedom (dof) of the configuration space, also called con-
figuration (or finite) dof [1], are the minimum number of geometric parameters
necessary to uniquely identify the configuration of the mechanical system [2].
They may be different from the instantaneous dof, also called velocity dof [1], of
the same mechanical system.

This paper is structured as follows. Next section de-
scribes how to generate under-actuated parallel manipulators
from FPMs. Section 3 is devoted to the studied under-actuated
parallel architecture: a compact formulation for its instantaneous
kinematics and statics is obtained, and some clues for the char-
acterization of its singularities are provided. Eventually, section
4 offers the conclusions.

2 GENERATION OF UNDER-ACTUATED MANIPULA-

TORS

Two rigid bodies (RBs) connected by a spherical pair (S
pair) can assume any relative orientation, and can move from one
relative orientation to another by covering any spherical-motion
path that joins the two relative orientations. Actually, the possi-
bility of freely orientating two RBs with respect to one another
is not related to the possibility of performing relative rotations
around axes which pass through the center of spherical motion
and have any direction. In fact, a suitable sequence (at least
three) of finite rotations around coplanar axes that pass through
the spherical-motion center can freely orientate one RB with re-
spect to another. Thus, if the only free relative orientation of two
RBs is required, the use of an S pair will be redundant. The use
of a kinematic pair that allows only rotations around coplanar
axes that pass through a fixed point would be sufficient.

Due to frictional forces, the rolling contact between a sphere
and a roller forbids the sphere rotations around the axis through
the sphere center, and perpendicular to the plane defined by the
roller axis and the sphere center. By combining such a non-
holonomic constraint with other constraints that forbid the rel-
ative translation between the sphere center and the roller axis, a
non-holonomic joint will result. This joint constrains two RBs:
one fixed to the sphere and the other fixed to the plane, defined
by the roller axis and the sphere center. So that the resulting con-
strained motion permits only relative rotations around axes lying
on the above-mentioned plane and passing through the sphere
center. Hereafter, this type of joint will be called non-holonomic
spherical pair (nS pair).

The constraint forces, which two RBs, joined by a nS pair,
exert on one another through the joint, can be reduced to a resul-
tant force applied on the sphere center and a torque perpendicu-
lar to the plane defined by the roller axis and the sphere center.
The torque is the static effect of the non-holonomic constraint,
whereas the resultant force on the sphere center is the same static
effect that an S pair would have generated.

From a manufacturing point of view, it is worth noting that,
in a nS pair, the presence of any number of roller-sphere contacts
does not alter the kinetostatics of the nS pair, provided that all the
roller axes lie on a same plane passing through the sphere center?.

2In general, two rollers whose axes locate with the sphere center two different
planes constrains the sphere to rotate around the intersection line between the
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end effector

Figure 1. 6-3 FPM

Moreover, the maximum torque transmitted through the nS pair,
due to its frictional origin, can be fixed by suitably choosing the
number of roller-sphere contacts together with the normal force
transmitted through each contact.

The above discussion brings to the proposition: i) the sub-
stitution of a number of nS pairs for as many S pairs in a kine-
matic chain does not change the configuration space of that chain
(i.e., neither the degrees-of-freedom (dof)? of the configuration
space nor the reachable configurations change), it only reduces
the practicable paths for moving that chain from one configura-
tion to another.

Moreover, due to the torque that arises in a nS pair and to
proposition i), the following proposition holds, too: ii) in a ma-
nipulator, the substitution of a number of nS pairs for as many S
pairs does not change its workspace and allows the elimination
of a number of actuators equal to the number of introduced nS
pairs (i.e., generates an under-actuated manipulator).

Fully-parallel manipulators (FPMs) feature two platforms,
one mobile (end effector) and the other fixed (frame), con-
nected to each other by means of six universal(U)-prismatic(P)-
spherical(S) kinematic chains (UPS limbs) where the prismatic
pairs are the only actuated pairs [8]. In each limb, the centers
of the universal joint and of the spherical pair (limb’s attachment
points) are points, fixed either to the end effector or to the frame,
whose distance (limb length) is controlled by the actuated pris-
matic pair. Two or more attachment points, either in the end
effector or in the frame, can coalesce into a unique point. Ac-
cording to the number of attachment points (no matter if they
are multiple or not) in the end effector, say p, and in the frame,
say q, different FPM architectures, named p-q FPM, are distin-

two planes, whereas three rollers whose axes locate with the sphere center three
different planes lock the sphere

3The presence of non-holonomic constraints does not change the configura-
tion dof [1,2]. It only affects the instantaneous dof of the mechanism. Hereafter,
the acronym dof used alone will mean configuration dof.

Figure 2. UPnS LIMB (right) GENERATED BY SUBSTITUTING AN nS
PAIR FOR THE S PAIR IN THE TWO UPS LIMBS WITH COALESCED S
PAIRS (left)

guished [8].

Due to the high number of S pairs appearing in FPMs, the
substitutions of nS pairs for S pairs, accompanied by as many
eliminations of actuators in the prismatic pairs, can be operated
in many ways in all the FPM architectures. By exploiting all
the possible substitutions, a lot of new under-actuated parallel
manipulators can be generated. It is worth noting that a passive
UPS limb only affects the workspace borders since it has con-
nectivity six, and, if this effect is not necessary, the elimination
of the actuator in a prismatic pair could be accompanied by the
elimination of the whole resulting passive UPS limb.

3 CASE STUDY

In this section, an under-actuated parallel manipulator gen-
erated from the 6-3 FPM (Fig. 1) is studied.

The 6-3 FPM architecture features three couples of UPS
limbs with coalesced S pairs in the end effector. This architecture
was proposed first by Stewart [9], in the 1965, for a flight sim-
ulator. Successively, with the renewed interest for the parallel
architectures, started at the end of the eighties, it was diffusely
studied. In particular, regarding the direct position analysis of
the 6-3 FPM, Innocenti and Parenti-Castelli [10] demonstrated
that at most sixteen end-effector poses correspond to a given
set of limb lengths. Then, Parenti-Castelli and Di Gregorio [11]
demonstrated that the end-effector pose is uniquely determined
when the value of one passive joint variable is measured besides
the six limb lengths.

Starting from the 6-3 architecture, each couple of UPS limbs
with coalesced S pairs (Fig. 2(left)) can be transformed into
an UPnS limb, as shown in Fig 2(right), without affecting the
workspace of the manipulator (see proposition i)). By operating
this substitution in all the three couples of UPS limbs together
with the inversion of the end effector with the frame, the under-
actuated manipulator with topology 3-nSPU, shown in Fig. 3, is
obtained. This under-actuated manipulator is able to move the
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end effector

frame

Figure 3. UNDER-ACTUATED MANIPULATOR WITH TOPOLOGY 3-
nSPU

end effector in a six-dof workspace by changing only the three
limb lengths.

Regarding the direct position analysis (DPA) of the 3-nSPU,
since its configuration space has six dof, a number of closure
equations equals to the number of unknowns can be written if,
and only if, over the three limb lengths, three more passive joint
variables are assigned (measured). By assigning (measuring) the
three joint variables of the three revolute pairs* not adjacent to
the end effector, the closure equation system coincides with the
one of the 6-3 FPM for assigned limb lengths [11], and admits
at most sixteen solution for the end-effector pose. Moreover, if
the joint variable of a revolute pair adjacent to the end effector
is measured (or coherently assigned) too, only one end-effector
pose satisfies the closure equations [11].

3.1 Instantaneous Kinematics

Fig. 4 shows the i h limb, i = 1,2,3, together with the nota-
tion that will be used. wy; and wy; are two any mutually orthogo-
nal unit vectors fixed to the frame and lying on the plane defined
by the roller axis and the center, A;, of the sphere, in the roller-
sphere contact. wz; and wy; are the two mutually orthogonal unit
vectors of the axes of the two revolute pairs constituting the U
joint. B; is the center of the U joint. a; and b; are the two posi-
tion vectors which locate the points A; and B;, respectively, in a
generic Cartesian reference fixed to the frame, whereas p is the
position vector of an end-effector point, P, in the same Cartesian
reference. 0;, for j =1,...,4,is a joint variable denoting a rota-
tion angle around the joint-axis defined by wj;, for j =1,...,4,
and positive if counterclockwise with respect to w ;. The length
of the i limb is equal to ||b; — a;||, and it will be denoted ;.
Moreover, the limb-axis’ unit vector, g;, and the unit vector, h;
(r;) normal to the plane located by the U-joint’s revolute-pair
axes (by the roller axis together with the sphere center in the nS

#Each U joint is constituted by two revolute pairs: one adjacent to, and the
other not adjacent to the end effector.

Figure 4. i LIMB OF TYPE nSPU: NOTATIONS

joint) satisfy the following relationships:
ligi=b;—a;, hi=w3 xwy, and r;=w;;xwy. (1)
The time differentiation of the first of the relationships (1) yields
i gi+1i g =b;. (2
Since g = (01; Wi + 62 W2;) X g, and b; = p+ @ x (b; — p),

where @ denotes the end-effector angular velocity, equation (2)
can be rewritten as

i gi+1i [01i (Wi x &) + 02 (Wi x gi)] =p+@x (b;—p). (3)

The dot products of (3) by wy; and wy; yield the following
two scalar equations:

Ii (gi-wii) + 1 02 (Wai x g~ w1;) =p-wi;+@x (b; —p) - wy,
“4)

i (gi-w2i) +1i 01 (W1 X gi-Wai) = P-Wai+ @ x (b —p) - ;.
&)
On the other hand (see Fig. 4), the end-effector angular ve-
locity is equal to };_; 460;; Wj;, whose dot product by h; gives
the following expression

©-h; =0y; (wy;-h;) + 0y (W - hy).
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Solving (4) and (5) for 0,; and 0,;, respectively, and replac-
ing the result in the above equation, yields:

D Wai+ @ X (bi —p) - Wi — i gi- Wi
m-hi_{p Wi +@x (bj—p)-wa—1li g Wz}(Wh"hi)
li (Wi X gi- W)
p- Wi+ ®x (b;—p)-wi;—I; g - wy;
n [p (bi —p) g } (way - ).
li (Wai X gi-Wy;)
(6)
Taking into account the vector identities
h; X r; =h; X (Wi; X Wa;) = (Wo; - hy)wi; — (Wi -hy)woy,
i~ = Wi X W, -8 = —Wj; X &i-W = W2 Xgi-Wij,
relationship (6) can be rewritten as:
ligi-(hixr)=p-(hyxr)+o-[(bj—p)x (hxr) ... 7

....—l,’ (l‘i~g,')hi].

Since I; can also be obtained as the projection of b; on g
[see Eq. (2)], the following expression holds

i=bi-gi=p-gi+@-[(b—p)xg]. ®)
Replacing expression (8) for /; in (7), gives
p-si+ - [(bi—p) xs;—li(ri-gi)h] =0 ©)
where
si =h; xri—[g;- (h; x1;)]g (10)
is the component of h; x r; perpendicular to g;.

Eventually, rewriting equations (8) and (9), fori = 1,2,3, in
matrix form yields

133 G3x3 K33\ (D
1= 11
<03><3) <S3><3 J3><3> (0) (an
where 1343 and 0343 are the 3 x 3 identity and zero matrix, re-

spectively, 1 = (I1,l,13) is the vector collecting the joint rates of
the actuated joints, and

K'[i,:] = (b;—p) x g (12)
Glli;]=g (13)
J0i,:] = (b; —p) x si—Li(ri-g)h; (14)
ST[i,:] =s; (15)

Figure 5. i"" LIMB OF TYPE nSPU: FREE-BODY DIAGRAM

with the notation A’ [i, :] to mean the i-th column of matrix AZ__;.
Matrix relationship (11) is the sought-after input-output in-

stantaneous relationship necessary to implement the control al-
gorithms of the 3-nSPU.

3.2 Static Analysis

The only input-output static relationship can be immediately
deduced from (11) through the principle of virtual work. Never-
theless, in order to highlight how the loads act upon the limbs and
are transmitted through the joints, the complete static analysis of
the 3-nSPU will be developed here independently of (11).

Figure 5 shows the free-body diagram of the i  limb. With
reference to Fig. 5, the force fp; (f,;), applied on B; (A;), together
with the torque my; h; (m,; r;) are the resultants of constraint
forces exerted by the end effector (frame) on the i  limb through
the U joint (the nS joint). Moreover, the force —f,y, applied
on the end-effector point P, together with the torque —m,,; will
denote the resultants of the interaction forces exerted on the end
effector. The force —7; g; will denote the axial force exerted on
the upper part of the i limb by the actuator in the prismatic pair.
It is worth noting that the force equilibrium, along the limb axis,
of the upper part of the i " limb yields the following relationship
T = £ - gi.

With these notations, the equilibrium of the forces applied
on the i ™ limb yields f5; +f,; = 0; whereas, taking A; as refer-
ence point, the equilibrium of the moments applied on the same
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limb is:

mp; by +my; v+ 1 g < £, = 0. (16)

The dot product of Eq. (16) by g;, yields the relationship

h;-g;

Myj = —Mp; . 17)
ri-gi
whose substitution for m,; in (16) leads to
Mhpi
r; ~hg» [(ri-gi)hi — (hi-gi)ri] + 1 gi < B = ...
R (8)
g (B (X r)] g x B = 0.

where the vector identity g; X (h; X r;) = (r;-g;)h; — (h; - g;)r; has
been used.

The dot product of Eq. (18) by h; x r; yields the relationship:
(gi x f5;) - (h; x r;) = 0. Such a relationship is satisfied if, and
only if, fp; is a linear combination of g; and h; X r;. Subtracting
from h; X r; its component along g;, s; is obtained. Since g; and
s; are two orthogonal vectors that span the same subspace as g;
and h; x r;, f;; can be expressed as follows:

£ =T gi+T} si. (19)

Replacing expression (19) for fp; in (18), and taking into account
that g; x (h; x r;) = g; x s; yields

My
( il r#) (g x5) =0

which is satisfied if
mp = —1; T (ri-gi). (20)
Using equation (17), Eq. (20) can be rewritten as
my; =1; 7 (h; - g)). Q1)

Regarding the end-effector equilibrium, the equilibrium of
the forces is:

3 3 3
for ==Y fi=—Y tig—Y ts, (22)
i=1 i=1 i=1

and, taking the end-effector point P as reference point, the equi-
librium of the moments is:

3 3
m; =— Y myihi =Y (bi—p) x £ (23)
i=1 i=1

The substitution of fy;, according to (19), and of my,;, according
to (20), into (23) yields

3 3
m., =— Y Ti(b;—p)x gi— Y i [(bi—p) xsi— (r;-g)hy]
i=1 i=1

(24)
Finally, equations (22) and (24) can be rewritten in matrix
form as follows:

(fext ) L (G3><3 K3><3>T (T ) 25)
me; ) \S3x3 Jax3 Tt
where T = (T1,T2,73) is a vector collecting the signed magnitudes
of the forces applied by the actuators in the prismatic pairs, and
Tt = (11,15,75).

Matrix relationship (25) is the input-output static relation-
ship of the 3-nSPU. It is worth noting that, as expected, (11) and
(25) satisfy the instantaneous power balance: fo; - P +m,y - © =

—T-1

3.3 Singularity Analysis

Singularities are manipulator configurations where the re-
lationship (input-output instantaneous relationship) between the
rates of the actuated-joint variables and the end-effector twist,
(p, @), fails [12-14]. Three types of singularities can be distin-
guished [12]: (I) singularities of the inverse kinematic problem,
(II) singularities of the direct kinematic problem, and (III) singu-
larities both of the inverse and of the direct kinematic problems.
Type-I singularities occur when the actuated joint rates cannot
be uniquely computed for an assigned end-effector twist. Vice
versa, type-II singularities occur when the end-effector twist can-
not be uniquely determined for assigned actuated joint rates.

For the 3-nSPU, the input-output instantaneous relationship
is (11) where the actuated joint rates are collected in the vector
I. This relationship highlights that the 3-nSPU has only three
instantaneous dof. Therefore, its singularity analysis can be ad-
dressed by using the scheme proposed in [15].

Regarding type-I singularities, provided that the assigned
twist, (p,®), satisfies the last three equation of system (11), it
can be always solved®.

3System (11) does not model the mobility limitations due to the physical con-
stitution of the real joints, and to the real sizes of the links. Such limitations
bound the workspace and, when correctly modeled, yield type-I singularities.
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Regarding type-II singularities, the equation of the singular-
ity locus is

G3x3 Ksxs
det =0. 26
y (S3><3 J3><3) (26)

The geometric interpretation of the above algebraic condi-
tion is not straightforward.

Nevertheless, the last three equations of system (11) allows
the elimination of p provided that det(S3x3) = s; - sp X 83 is dif-
ferent from zero. In this case, system (11) becomes

I=Qo 27

where Q is the 3 x 3 matrix (Kzx3 — G3X3S§X13J3X3). Thus, the
analytic expression of the singularity locus becomes

det(Q)=qi-q2xq3=0 (28)

where the vectors q;, for i = 1,2, 3, are the column vectors of ma-
trix Q. In conclusion, if the mixed products; - s, X s3 is different
from zero (i.e., the three vectors s;, for i = 1,2,3, are neither
coplanar nor null vectors), the type-II singularities are geometri-
cally identified by either the coplanarity of the three vectors (;,
fori=1,2,3, or by the fact that at least one of the q; vectors is a
null vector.

If the mixed product s - sp X 83 is zero, the determinant of
the whole 6 x 6 matrix appearing in (26) must be considered,
and geometric interpretations of (26) are much more difficult to
provide.

The zeroing of s; - sy x s3 can be geometrically identified
since it occurs when either (a) at least one of the s; vectors is a
null vector, or (b) the three s; vectors are coplanar. Vector s; (see
definition (10)) is related to the configuration of the i'" limb, and
it is the component of h; X r; perpendicular to g; (i.e., to the limb
axis).

As a consequence, condition (a) occurs when, in at least
one limb, either (a.1) the two unit vectors h; and r; are paral-
lel (i.e., when, in a limb, the revolute pair axes in the U joint
are both parallel to the plane defined by the roller axis and the
sphere center in the nS pair), or (a.2) the limb axis is the inter-
section line between the plane, defined by the roller axis and the
sphere center in the nS pair, and the plane, defined by the rev-
olute pair axes of the U joint. Condition (a.2) is forbidden in
practice by the actual sizes of joints and links. Regarding con-
dition (a.1), a very special case occurs when h; and r; are par-
allel in all the limbs. This occurrence makes the matrix S3«3 a
null matrix and allows the determinant at the left-hand side of
(26) to be factorized as det(G3x3) det(J3x3) where det(G3x3) is

equal to g - @ X g3, whereas, in this case, det(J3x3) is equal to
—Libl (1'1 -gl)(rz . gz)(l'3 ~g3)h1 -hy x h3. Thus, in this case, a
type-1I singularity occurs when either the limb axes are all par-
allel to a unique plane, or the h; vectors are coplanar, or, finally,
in at least one limb, the limb axis lies on the plane defined by
the roller axis and the sphere center of the nS pair. Moreover,
it is worth noting that, in this case, the end effector performs an
instantaneous translation, if neither det(G3x3) nor det(J3x3) are
equal to zero (i.e., out of singularity).

Regarding condition (b) (i.e., the coplanarity of the s; vec-
tors), it occurs when the limb axes are all parallel, and in other
configurations more difficult to visualize.

4 CONCLUSIONS

If a number of non-holonomic spherical pairs replaces as
many spherical pairs in a manipulator, the same number of ac-
tuators can be eliminated. The resulting manipulator will keep
the same workspace of the generating manipulator, but it will be
under-actuated.

This technique for generating under-actuated manipulators
can be applied to fully-parallel manipulators, where many spher-
ical pairs are present, and the elimination of an actuator in an
UPS limb can be accompanied with the elimination of the whole
UPS limb.

Through this pair substitution, an under-actuated manipula-
tor, previously proposed by one of the authors, has been gener-
ated from an inversion of the 6-3 FPM. The kinetostatic analysis
of this manipulator has been reconsidered to obtain a simple and
compact formulation. This reformulated analysis can be used
both in the design of the under-actuated manipulator, and in its
control. Further works on this manipulators will present an ex-
haustive singularity analysis, and will provide design criteria for
increasing its useful workspace.
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