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Abstract. In this paper we propose the application of the generalized
median graph in a graph-based k-means clustering algorithm. In the
graph-based k-means algorithm, the centers of the clusters have been
traditionally represented using the set median graph. We propose an
approximate method for the generalized median graph computation that
allows to use it to represent the centers of the clusters. Experiments on
three databases show that using the generalized median graph as the
clusters representative yields better results than the set median graph.

1 Introduction

Clustering with graphs is a well studied topic in the literature, and various
approaches have been proposed up to now. The classical paradigm in those
approaches is to treat the entire clustering problem as a graph, that is, each
element to be clustered is represented as a node and the distance between two
elements is modeled by a certain weight on the edge linking the nodes [1]. Some
other recent approaches propose to perform clustering directly on graph-based
data. For instance in [2], the graph edit distance and the weighted mean of
a pair of graphs were used to cluster graph-based data under an extension of
self-organizing maps (SOMs). In [3], the authors investigated the clustering of
attributed graphs by means of Function-Described Graphs (FDGs) to obtain
representatives of clusters. Trees have also been used for clustering purposes.
For instance, in [4] the clustering of shock trees using the tree edit distance was
introduced. Finally, the extension of the k-means clustering algorithm to graph
based representations was introduced in [5].



In this later approach the set median graph [6] has been used to represent
the center of each cluster. Nevertheless, the concept of the generalized median
graph [6] seems to be more adequate to represent the data of each cluster. Given
a set of graphs, the generalized median graph [6] is defined as the graph that
has the minimum sum of distances to all graphs in the set. It can be seen as the
representative of the set. Thus it has a large number of potential applications
in many classical algorithms for learning, clustering and classification, usually
executed in the vector domain. However, its computation is exponential both
in the number of input graphs and their size [7]. A number of algorithms for
the generalized median graph computation have been reported in the past [6, 8,
9], but in general they suffer from either a large complexity or are restricted to
special types of graphs.

In this paper we propose, for the first time, the use of the generalized median
graph as the representative of a cluster in a graph-based version of the k-means
algorithm. To deal with the high time and space complexity of the median graph
computation, a new approximate method based on graph embedding in vector
spaces is also proposed. First, we map each graph into a vector space using
an approach similar to [10]. The median of the set of vectors obtained with this
mapping can be easily computed in the vector space. Then, using the two closest
points in the vector space and the weighted mean of a pair of graphs [11] we
obtain an approximation of the median graph as the final result.

The experiments reported in this paper focus on running the k-means al-
gorithm using the set median and the generalized median as the cluster repre-
sentatives and comparing the two approaches to each other. To this end, three
different databases (two of them containing real-world data) have been used. The
results are evaluated through two standard clustering performance measures (the
Rand index and the Dunn index). The results show that the generalized median
graph yields better results than the set median graph when it is taken as the
representative of a cluster. Furthermore, our procedure potentially allows us to
transfer any machine learning algorithm that uses a median from the vector to
the graph domain.

The rest of this paper is organized as follows. In the next section we introduce
the basic concepts used in the paper. Then in Section 3 the proposed method for
the median computation is described. Section 4 reports a number of experiments
and present results achieved with our method. Finally, in Section 5 we draw some
conclusions.

2 Background

2.1 The Graph-Based k-means Clustering Algorithm

The k-means clustering algorithm is one of the most simple and straightforward
methods for clustering data [12]. The usual way is to represent the data items
as a collection of n numeric values usually arranged into a vector form in the
space R™. Then, the Fuclidean distance in this space and the centroid of a set
of vectors are used to compute the mean of the data in the cluster.



A graph-based version of the classic k-means clustering algorithm has been
presented in [5]. The main differences consist in the distance and the centroid
computation. In the former, the graph edit distance [13] is used instead of the
Euclidean distance. In the latter, in order to obtain a representative of each clus-
ter, the set median graph (see definition below) is used instead of the centroid.

2.2 Median Graph

The median graph has been proposed as a useful tool to compute a representative
of a set of graphs [6]. Let U be the set of graphs that can be constructed using a
given set of labels L. Given S = {¢1, g2, ..., gn} C U, we can distiguish between
the set median graph g, and the generalized median graph g of S:

g=argmin Y _ d(g,g:), g=argmin»_ d(g,g)
geSs geu
gi€S gi€S
where d denotes a distance or a dissimilarity measure between graphs, in our
case the graph edit distance [13,14].

The set median graph § is a graph g belonging to the training set S that
suitably represents it. However, if we extend the search space to the whole set
U, it is natural to think that a better representative (the generalized median
graph) can be obtained.

The computation of the generalized median graph is a higly complex task, as
any graph in U is a potential candidate. This makes its computation exponential
in both the number and size of graphs [7]. The existing exact algorithms can only
be applied to small sets of graphs with a very small number of nodes. Approxi-
mate algorithms are therefore needed [6,9]. Thus, graph embedding techniques
have been recently used to solve graph matching problems more efficiently.

2.3 Graph Embedding

Graph embedding [15] aims to convert graphs into another structure, for ex-
ample, real vectors, and then operate in the associated space to make easier
some typical graph-based tasks, such as matching and clustering. A first group
of embedding techniques are based on spectral graph theory. For instance, a rel-
atively early approach based on the adjacency matrix of a graph is proposed in
[16]. Another similar approach has been presented in [17], where the authors use
the coefficients of some symmetric polynomials constructed from the spectral
features of the Laplacian matrix, to convert the graphs into a vectorial form.
Finally, in a recent approach [18], the idea is to embed the nodes of a graph
into a metric space and view the graph edge set as geodesics between pairs of
points on a Riemannian manifold. In this work we will use another class of graph
embedding procedures based on the selection of some prototypes and graph edit
distance computation. This approach, which we explain in more detail in the
next section, was first presented in [10], and it is based on the work proposed in
[19]. The basic intuition is that the description of the regularities in observations
of classes and objects is the basis to perform pattern classification. Thus, based
on the selection of a number of prototypes, each object is embedded into a vector
space by taking its distance to all these prototypes.



3 Median Graph via Embedding

In this section we propose a novel approach for the approximate computation
of the median graph based on graph embedding in a vector space. A similar
approach has been presented in [20]. Nevetheless in the present procedure, only
two graphs (instead of three as in [20]) are used to recover the median graph,
which simplifies this task. This new procedure consists of three steps.

In a first step, graphs are embedded into a vector space using a variation of
the novel approach proposed in [10]. In that work, a set T of prototypes is used to
embed each graph in a vector space. In our case, the set of prototypes is exactly
the same set S = {g1, 92, ..., gn } of training graphs that are used to compute the
median graph. We therefore compute the graph edit distance between every pair
of graphs in the set S. Since computing the graph edit distance is a NP-complete
problem, in this work we have used the suboptimal methods presented in [21, 22].
The resulting distances are arranged in a distance matrix. Each row (column)
of the matrix can be seen as an n-dimensional vector. Since each row (column)
of the distance matrix is assigned to one graph, such an n-dimensional vector is
the vectorial representation of the corresponding graph.

Once all the graphs have been embedded in the vector space, the median
vector is computed. To this end we use the concept of Euclidean Median. Given
a set X, the Fuclidean Median is a point y € R™ that minimizes the sum of
the Euclidean distances to all the points in the set. The Euclidean median has
been chosen as the representative in the vector domain for two reasons. The first
reason is that the median of a set of objects is one of the most promising ways
to obtain the representative of such a set. The second is that, since the median
graph is defined in a way very close to the median vector, we expect the median
vector to represent accurately the vectorial representation of the median graph,
and then, from the median vector to obtain a good approximation of the median
graph. In this work we have used the most common approximate algorithm for
the computation of the Euclidean median, that is, the Weiszfeld’s algorithm [23].

Finally, in order to obtain the median graph, the last step is to transform the
Euclidean median into a graph. Such a graph will be considered as an approx-
imation of the median graph of the set S. To this end we will use a procedure
based on the weighted mean of a pair of graphs [11].

The weighed mean of two graphs g and ¢’ is a graph ¢’ such that d(g, ") = a,
d(g"”,q') =b and d(g,¢') = a+ b for any two constants a and b with 0 < a,b <
d(g,¢'). That is, ¢ is a graph in between the graphs g and ¢’ along the edit
path between them. Figure 1 illustrates this idea.

To transform the median vector obtained in step 2 into a graph, we propose
a strategy that uses two points in the vector space. The idea is the following (see
Figure 2). Once the median vector v,, is computed, we choose its two closest
points (v; and vy in Figure 2). Then, we compute the median vector of these two
points obtaining v/,. This point v/, is used to obtain the approximate median
graph. To this end, we first compute the distance of v; and vy to v/, and
then, with these distances we apply the weighted mean of a pair of graphs,
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Fig. 1. Example of the weighted mean of a pair of graphs

between g; and go (which correspond to v; and v respectively), to obtain g/,
the approximate median graph.
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Fig. 2. Illustration of the two-point based procedure.

4 Application to Graph-Based k-means Clustering

In this section we propose to use the approximate method for the median graph
computation to obtain the representatives of the clusters in a graph-based k-
means algorithm.

4.1 Experimental Setup

To perform the clustering experiments, we used the Molecule, the Webpage and
the GREC datasets from [24]. For each dataset, the experiments consisted in
computing the centers of the clusters using the set median (SM) and the gen-
eralized median (GM) with the method introduced in Section 3. The number
k of clusters were set according to the number of classes in the dataset. Table
1 summarizes some basic parameters of each dataset. In order to evaluate the
obtained results we performed 10 repetitions of each experiment. The clustering
performance was evaluated using two standard clustering performance measures,
namely the Rand index and the Dunn indez.

The Rand inder R [25] measures how closely the clusters created by the
clustering algorithm match the ground truth. It produces measures with values
in the interval [0, 1], with 1 meaning a perfect match between the result of the
clustering algorithm and the ground truth.



Table 1. Number of classes and number of elements per class for each database.

Dataset #Classes Elements/Class

Molecules 2 100
Webpages 6 30
GREC 32 20

The Dunn index D [26] is a measure of the compactness and separation
of the clusters. It is not an accuracy measure like the Rand Indez. It is rather
based on the assumption that in a ”perfect” clustering, items in the same cluster
should be similar (i.e. should have a small distance) and items in different clusters
should be dissimilar (i.e. should have a large distance). Higher values of the Dunn
Index indicate a better clustering. Unlike the Rand Index, the Dunn Index is
not bounded in the interval [0, 1] but in the interval [0, 00).

4.2 Results

The results for this experiment are summarized in Tables 2 and 3. In each table
the minimum, mean and maximum values for the Rand Index (Table 2) and
the Dunn Index (Table 3) for each dataset are shown. In both tables, the best
results are marked in bold face.

Results based on the Rand Inder show that in almost all cases the GM
method obtains better results than the set median graph. More concretely, seven
out of the nine best results in Table 2 correspond to the GM method. Since
the Rand Inder is a measure of how similar the clusters are to the ground
truth, these overall results demonstrate the idea that the median graph is a
good representative of a given set, better than the set median graph.

Table 2. Minimum, average and maximum values of the Rand index for different
datasets.

Minimum Average Maximum

SM GM SM GM SM GM
Molecule 0.5072 0.5545 0.5620 0.5952 0.6205 0.6860
Webpages 0.6841 0.8332 0.8083 0.8773 0.8558 0.9133
GREC 0.9410 0.9340 0.9506 0.9513 0.9602 0.9566

Results based on the Dunn Index are shown in Table 3. Differently from the
Rand Indez, which is bound in between 0 and 1, the Dunn Index is not bounded.
Thus, for the Rand Index it is relatively easy to interpret the value, because 0
means a completely uncorrelated result with respect to the groundtruth and 1
means a perfect match between the result and the groundtruth independently
of the dataset used. However, the same reasoning is not possible for the Dunn
Indez. That is, we cannot say how good a result x for the Dunn Index is unless
the Dunn Index for the groundtruth is given. For this reason, we have also
computed the Dunn Index for the groundtruth (GT).

The results for each method are shown in Table 3. In this case the majority
of the best results correspond to the set median. At first glance, these results
could be interpreted in the sense that the set median reflects better the ideal



cluster. Actually, however, they show that the set median graph obtains a better
separation of the data into compact clusters. Yet, the results of the Dunn Index
for the groundtruth show very low values. That means that the original datasets
have low separability and compactness. In this sense, the GM method has more
similar results to the GT than the set median. That means that it is able to
better capture the original information of the clusters.

Table 3. Minimum, average and maximum values of the Dunn index for different
datasets.

Minimum Average Maximum

SM GM SM GM SM  GM GT
Molecule 0.0113 0.0272 0.034 0.0288 0.0909 0.0431 0.0182
Webpages 0.2039 0.1028 0.2448 0.2027 0.6046 0.5784 0.1835
GREC  0.0411 0.0423 0.0503 0.0507 0.0651 0.0569 0.0619

5 Conclusions
In this paper we have presented, for the first time, the use of the generalized

median graph to obtain the centers of the clusters in a graph-based k-means
algorithm using real-world data. To deal with the high computational require-
ments of the median graph computation, a new approximate method based on
graph embedding in vector spaces has also been presented.

We performed a series of clustering experiments using three different databases.
To evaluate the results, two standard clustering performance measures, namely
the Rand Inder and the Dunn Indexr have been used. Results in terms of the
Rand Index show that with the median graph we obtain clusters closer to the
groundtruth than using the set median graph. In addition, results given by the
Dunn Index show that, although the set median graph obtains higher scores,
the median graph obtains again results closer to the groundtruth.

With these results, we have shown that the median graph can be a better
representative of a set of graphs. Furthermore, this new approximate procedure
potentially allows the use of the median graph in other applications such as
classification using real data.
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