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Abstract: This paper proposes an automatic model decomposition approach for decentralized
model predictive control (DMPC) of drinking water networks (DWNs). For a given DWN,
the proposed algorithm partitions the network in a set of subnetworks by taking advantage
of the topology of the network, of the information about the use of actuators, and of system
management heuristics. The derived suboptimal DMPC strategy results in a hierarchical solution
with a set of MPC controllers used for each partition. A comparative study between centralized
MPC (CMPC) and DMPC approaches is described for the considered case study, which consists
of an aggregate version of the Barcelona DWN. Results on several simulation scenarios show
the effectiveness of the proposed DMPC approach in terms of the reduced computation burden
and, at the same time, of the admissible lost of performance.

Keywords: Model predictive control, networked systems partitioning, hierarchical control,
decentralized control, drinking water networks

1. INTRODUCTION

Optimization of drinking water networks (DWN) has
gained much attention in the last few decades, as drinking
water management in growing urban areas became an in-
creasing concern. Limited water supplies, conservation and
sustainability policies, infrastructure complexity, and con-
sumer demand satisfaction by appropriate flow, pressure
and quality levels make water management a very chal-
lenging control problem. Decision support systems provide
useful guidance for human operators in complex networks,
where “best” actions in resource management are not in-
tuitive. Optimization and optimal/predictive control tech-
niques provide important quantitative strategies for smart
management of DWNs, see Brdys and Ulanicki (1994), Tu
et al. (2005), among others.

Research in this field is spurred by the complexities asso-
ciated with the connection management of multiple inter-
connected reservoirs in case of large-scale networks, which

1 This work has been partialy supported by the CICYT Ref.
DPI2009-13744 of the Spanish Science and Technology Ministry,
the Juan de la Cierva Research Programme (ref. JCI-2008-
2438), the DGR of Generalitat de Catalunya (SAC group Ref.
2009/SGR/1491), and the European project WIDE, contract number
FP7-IST-224168.

still exceeds the capabilities of existing optimization tools
in finding optimal actions in a sufficiently small computa-
tion time. Mathematical programming techniques are one
of the many available tools and most widely used. Their
main objective consists in generating control strategies
ahead in time, using techniques such as model predictive
control (MPC), to guarantee a competent network service
and a certain degree of reliability in probability, while si-
multaneously achieving certain objectives as minimization
of supply and pumping costs, maximisation of water qual-
ity and leak prevention, among others. This optimization
problem is usually large and nonlinear, because of the char-
acteristics of pumps, pipeline pressure, and performances
indices. So far, the aforementioned control methods for
water systems based on MPC and dynamic optimization
techniques have been implemented in a centralized man-
ner over SCADA systems using a traditional hierarchical
management architecture placed above the process instru-
mentation and basic regulatory control layers. However,
such a centralized architecture leads to implementation
problems because of dimensionality, multi-time scales, and
spatial distribution of DWNs. The complexity of the un-
derlying optimization problem is not the only obstacle
to the implementation of centralized architectures. The
main hurdle for plant-wide centralized control is that it



is not scalable: it requires a huge model, which needs
to be maintained at every change (even tiny) of the
topological configuration. As a consequence, the overall
complex controller may require a complete re-tuning, due
to dynamical interactions. Very frequently, the costs of
setting up and maintaining such a monolithic solution
are prohibitive. Moreover, any maintenance operation over
even a single controlled element, which of course implies
turning off that element, would require a change in the
complex centralized model. Then, either one ignores the
element under maintenance (or simply that is temporary
unavailable) with all consequent implications, or switches
off the whole control system considering the availability of
several control configurations.

A way of circumventing these issues is to look into decen-
tralized model predictive control (DMPC) or distributed
MPC techniques, where networked local MPC controllers
are in charge of the control of actuators relative to a part
of the entire water network. A few works have recently
been published in the field of decentralized and distributed
MPC, see Negenborn et al. (2008), Scattolini (2009),
among others. The main difference between decentralized
and distributed MPC is that the latter requires negotia-
tions and re-computations of local control actions within
the sampling period to increase the level of cooperation.
In Barcelli and Bemporad (2009) and references therein,
a decentralized MPC approach with sufficient stability
criteria was proposed, which also handles the case of in-
termittent feedback due for instance to unreliable wireless
communication.

The main contribution of this paper is an automatic sub-
system decomposition approach for DMPC of DWNs. The
resulting decentralized MPC controller reduces the compu-
tation burden with respect to the centralized counterpart,
still maintaining a convenient level of suboptimality with
respect to the control objectives. A real case study based
on the Barcelona DWN is used in this paper to test the
proposed methodology, showing very promising results.
Theoretical investigations of stability and feasibility issues
of the proposed DMPC control scheme will be addressed
in future research.

2. DWN CONTROL-ORIENTED MODELLING
PRINCIPLES

Control-oriented modelling principles for DWNs have been
widely presented in the literature, see Brdys and Ulanicki
(1994); Ocampo-Martinez et al. (2009). In order to obtain
a control-oriented model of the DWN, the constitutive
network elements as well as their basic relationships should
be discussed.

Let us consider the main physical constraints of a DWN
system related to the tank volumes and manipulated flows.
For the case of tank volumes, the physical constraint
related to the range of volume capacities for the i-th tank
is expressed as

xmin
i ≤ xi(k) ≤ xmax

i , (1)

where xmin
i and xmax

i denote the minimum and the max-
imum volume capacity, respectively, given in m3. On the
other hand, the physical constraints related to manipu-
lated flows through the system actuators are expressed as

umin
i ≤ ui(k) ≤ umax

i , (2)

where umin
i and umax

i denote the minimum and the maxi-
mum flow capacity, respectively, given in m3/s.

By considering the mass balance in the tanks, the control-
oriented model of a DWN in discrete-time state-space form
can be written as

x(k + 1) = Ax(k) + B u(k) + Bp d(k), (3)

where x ∈ R
n is the state vector corresponding to the

water volumes of the n tanks, u ∈ R
m represents the vector

of manipulated flows through the m actuators (pumps and
valves), and d ∈ R

p corresponds to the vector of the p
water demands (sectors of consume). A, B, and Bp are
system matrices of suitable dimensions. Since the demands
can be forecasted and they are assumed to be known, d
is a known vector containing the measured disturbances
affecting the system. By also including static relations at
network nodes, model (3) can be further rewritten as

x(k + 1) = Ax(k) + Γ υ(k), (4a)

E1 υ(k) = E2, (4b)

where Γ = [B Bp], υ(k) = [u(k)T d(k)T ]T , and E1,
E2 are matrices of suitable dimensions dictated by the
network topology.

3. MODEL PREDICTIVE CONTROL OF DWN

MPC is one of the most effective and accepted strategies
for control of large-scale multivariable systems (see, e.g.,
Maciejowski (2002)). In control of DWNs, MPC is required
to compute, in a predictive way, the proper water flows
that achieve the optimal performance of the network ac-
cording to a given set of control objectives. MPC strategies
have some important features to deal with DWNs such as
the amenability for including disturbance forecasts (water
demands), physical constraints, and multivariable system
dynamics and objectiveswithin the control problem in a
relatively simple fashion. This section describes the main
ideas of the DWN control within the MPC framework,
in accordance with the following operational objectives
(Ocampo-Martinez et al., 2009, 2010):

Minimizing water production and transport cost. The
main economic costs associated with drinking water pro-
duction (treatment) are due to chemicals, legal canons,
and electricity costs. The corresponding performance fig-
ure to be minimized is expressed as

f1(k) = Wα (α1u(k) + α2(k)u(k)) , (5)

where α1 corresponds to a known vector related to the eco-
nomic costs of the water according to the selected source
(treatment plant, dwell, etc.), and α2(k) is associated with
the economic cost of the flow through certain actuators
(pumps only) and their control cost (pumping). Note the
time-variance of α2, due to the fact that pumping efforts
have different values according to the time of the day
(electricity costs). Wα is the associated weight matrix of
suitable dimensions.

Safety storage term. The satisfaction of water demands
should be fulfilled at every time instant. However, some
risk prevention mechanisms should be introduced in the



tank management so that, additionally, the stored volume
is preferably maintained around a given safety value in
case of unpredicted emergency, and to guarantee future
water availability in case of inaccurate demand forecasts.
A quadratic expression for this concept is used and written
as follows:

f2(k) = (x(k) − β xmax)T Wx (x(k) − β xmax), (6)

where β is a term which determines the security volume to
be considered for the control law computation and matrix
Wx defines the weight of the objective in the cost function.

Smoothness of control actions. To smooth out the con-
trol action of MPC, we include the following third term
in the objective function to penalize variations ∆u(k) =
u(k) − u(k − 1) of the control signal between consecutive
sampling intervals

f3(k) = ∆u(k)T Wu ∆u(k), (7)

where Wu is a m × m weight matrix.

In conclusion, the overall performance function J(k) merg-
ing the above multiple objectives is defined as

J(k) =

Hu−1
∑

i=0

f1(k + i|k) +

Hp
∑

i=1

f2(k + i|k) +

Hu−1
∑

i=0

f3(k + i|k), (8)

where Hp and Hu correspond to the prediction and con-
trol horizons, respectively. In (8), index k represents the
current time instant while index i represents the predicted
time along the horizon.

The weights are chosen in a way that the highest priority
objective is the economic cost, which should be minimized
while obtaining acceptable satisfaction of security and
stability objectives. Collecting the parts described in pre-
vious subsections, the MPC design follows the traditional
methodology (see, e.g., Maciejowski (2002)), consisting in
an optimization problem where the cost function (8) is
minimized subject to (1), (2) and (4). Once the mini-
mization is performed, a vector of control actions over a
given horizon is obtained. Only the first component of that
vector is applied to the plant. The procedure is repeated
at the next time instant, taking into account the feedback
measurements coming from the system.

4. DWN PARTITIONING APPROACH

The application of DMPC to DWN depends crucially on
how the network is decomposed into subsystems. Identify-
ing subsystems is not an easy task in a large-scale network.
The partitioning algorithm proposed in this paper aims to
do this decomposition automatically by identifying clus-
ters of elements that are weakly interconnected, in order
to represent the whole network as a set of loosely coupled
subsystems (see Barcelli (2008)).

4.1 Partitioning algorithm

As a starting point, the partitioning algorithm requires the
following information of the DWN:

(i) The interconnection structure characterized by the
following matrix

M = [ Asp Bsp ] (9a)

where

Asp =

[

A 0
0 0

]

, Bsp =

[

B
E

]

. (9b)

In (9), A and B are the system matrices in (3), subscript
sp identifies the matrices used for system decomposition,
and E , [E1 E2] is the matrix related to the equality
constraints (4b). In order to take into account different
bounds on the inputs, new normalized inputs are intro-
duced ū , u/umax such that the bounds range in the
interval [0, 1]. Thus, new matrices B̄ and Ē are introduced
in (9b) to take into the rescaling. From matrix M , the
adjacency matrix E of the network graph can be obtained
by replacing the non-zero elements by ones, leaving the
zero elements unchanged.

(ii) A threshold value ε that takes into account the
actuator capacity of linking two tanks / nodes that,
together with the actuator usage level, are used by the
partitioning algorithm in order to neglect some actuators
that have less effect on the behaviour of the entire system.

The partitioning algorithm proceeds by decomposing ma-
trix M into a set of submatrices, named as partitions,
Pε =

{

M1, · · · , Mnp

}

such that the edges intercon-
necting the subsystems correspond to elements of M with
magnitude no larger than ε. That is, the idea behind the
partitioning approach is to neglect less important elements
(i.e., links) in matrix M such that the resulting M̃ is less

coupled. Ideally, M̃ should lead to a permutation matrix
P such that P ′M̃P is block-diagonal. This procedure is
repeated iteratively by reducing ε until all tanks and nodes
have been assigned to a partition. Algorithm 1 summarizes
the steps of the proposed partitioning algorithm.

In the first iteration, Algorithm 1 neglects a high number
of elements of M , considerably reducing the matrix con-
nectivity degree and obtaining a subsystem decomposition
via finding a suitable P that block-diagonalizes the matrix
P ′M̃P . Every subsystem is composed by sets of state and
input variables that are linked, meaning that are in the
same block in the diagonal of P ′M̃P . Let X

i and U
i be

respectively the sets of state and input variables assigned
to subsystem i, while L(Xi) and L(Ui) determine the
number of variables for each set. A subsystem is created if
both numbers are different than zero. All state and input
variables that are not assigned to any of the currently
created subsystems, i.e., that does not belong to X

i or U
i,

respectively, are available for the next iteration. Otherwise,
variables already assigned to a subsystem, in the current
or in a previous iteration, are masked 2 to prevent their
reassignment to other subsystem.

Then, a new iteration of the algorithm starts by decreasing
ε (e.g., halving ε). Algorithm 1 iterates until all state
variables are assigned to a subsystem. Note that at the
next iteration the threshold decrease the set of non zero
elements of M̃ is increased implying the new partitions to
comprehend the old ones in case those were not masked.

A few remarks on the above algorithm. At any iteration of
Algorithm 1, the numerical value of ε is a crucial tuning

2 Let us consider a variable to be masked when it does not belong
to any set since it has already been classified in a previous iteration,
i.e. it is not considered in the ongoing partitioning iteration.



Algorithm 1 Automatic partitioning algorithm

1: Initialize masks to a neutral value
2: Initialize the sets of unassigned variables X and U with

all state and input variables, respectively
3: Determine the number of unassigned states: Nx =

L(X);
4: Init ε
5: while Nx > 1 do
6: Apply masks to Asp and Bsp

7: M = [Asp Bspū]
8: For all elements of M
9: if Mi,j < ε then

10: M̃i,j = 0;
11: else
12: M̃i,j = 1;
13: end if
14: Find P such that P ′M̃P is block diagonal
15: Identify subsystems that satisfy Nxi = L(Xi) > 0

and Nui = L(Ui) > 0 and add to previous ones
16: Update Nx

17: Update masks with newly assigned states and inputs
18: Update ε
19: end while

knob of the approach. A guideline is that the larger is
the decreasing step, the larger is the size of the obtained
subsystems. Ways for automatically determining the step
size are a subject of current research.

Matrix E in (9b) defines a constraint among actuators that
can be easily taken into account if all the actuators belong
to the same subsystem. Otherwise, since each controller
manipulates every partition independently of the others,
negotiations between controllers would be required to
guarantee the fulfillment of node constraints.

The use of masks to prevent state reassignment avoids
that submodels have overlapping states and inputs: if a
state variable is used in a model by a controller, no other
controller can use it. The main benefit of this choice is the
very low level of coupling between partitions, but the price
to pay is a potential decrease of closed-loop performance.

The current structure of the algorithm is unsuitable to
handle state overlaps because it relies on links between
elements that present different degree of coupling. Hence,
once the stronger couplings are eliminated (using mask-
ing), the weaker ones gain relative importance. State over-
laps may be introduced a posteriori based on engineering
insight, in order to let the assembling of the partitions be-
have more likely the original centralized model. Handling
overlapping in an automatic way is also a current research
topic.

In some cases even relatively small connections, i.e., capa-
ble of carrying a minor amount of water per time, are very
important for demand satisfaction. A way of accounting
for such an issue is to perform a simulation using, for
instance, a centralized MPC controller, and compute the
average percentage of use for each actuator. Thus, this
information could be used to weight ū component-wise.
The main drawback of this approach is the need of (and
dependence on) simulation.

Note that the proposed algorithm can be customized by
setting different importance levels of states vs. inputs, by
weighting the related components in M . By defining

M = [W ′
AAspWA W ′

BBspWB W ′
uūWu],

where WA, WB and Wu are weights respectively of A, B
and u, it is possible to affect the resulting partitioning
outcome.

The decomposition process of matrix M reported here
is similar to the one proposed by the ε-decomposition
method in Sezer and Siljak (1986). The underlying idea in
both cases is to disconnect those actuators corresponding
to interconnections with strength smaller than the pre-
scribed ε, identifying the disconnected subsystems. Ac-
cording to Sezer and Siljak (1986), there are s different ε-
decompositions Pε that can be obtained for different values
of ε satisfying

max
i6=j

|mij | = ε1 < ε2 < · · · < εK = 0,

with K ≤ s, where s = dim(M). Moreover, such de-
compositions are nested, that is, the partitions obtained
satisfy: Pε1

⊂ Pε2
· · ·PεK

with Pε1
being the finest and

Pε1
the coarsest. The main novelty of the algorithm pre-

sented in this paper is the matrix normalization taking
into account actuator physical/operative limits, and the
iterative threshold updating that allows one to take into
account weaker coupling without being influenced by the
stronger ones.

5. APPLICATION DESCRIPTION AND RESULTS

5.1 Case-study description

This paper considers an aggregate version of the Barcelona
DWN, which is a representative version of the entire
network. Here, some consumer demand sectors of the
network are concentrated in a single point. Similarly, some
tanks are aggregated in a single element and the respective
actuators are considered as a single pumping station or
valve. The complete description of this case study can be
found in Ocampo-Martinez et al. (2009).

5.2 Simulation scenarios and MPC tuning

Demand data correspond to the consumption of drinking
water of the city of Barcelona during the year 2007.
Using this information, some scenarios are considered by
modifying some controller parameters presented in Section
3. They are the safety volume, denoted as β, and the
weight matrices in the cost function (8). Regarding β, this
parameter has been set in the following values:

(i) the 80% of xmax, that is denoted as µ = 0.8 xmax. This
value is purely illustrative to show the effectiveness of the
MPC controller;

(ii) the minimum tank volumes requested to satisfy the
demands (except for tanks x5, x6 and x8 in Figure 1,
since they are considered as sources due to their strategical
management requirements and network location). This
second vector of safety volumes, denoted as η, is more
convenient since it keeps the volumes of the tanks as low
as possible, satisfying the demands at each time instant.
These minimum volumes are taken from previous studies
reported in Caini et al. (2009).

Let (ωx, ω∆u) be the pair of weights associated with the
weight matrices Wx = ωx I and W∆u = ω∆u I used in (6)
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Fig. 1. Aggregate model of the Barcelona Drinking Water Network

and in (7), respectively 3 . We use here two pairs of weights:
(1, 1) and (1, 0.1). These particular values of the weights
are carefully selected, according to a previous study based
on trial and error tuning procedure (Caini et al., 2009),
and correspond to a couple of different prioritization of
the control objectives for the particular case study.

Hence, the following scenarios have been defined:

• Scenario 1: β = µ and (ωx, ω∆u) = (1, 1);
• Scenario 2: β = µ and (ωx, ω∆u) = (1, 0.1);
• Scenario 3: β = η and (ωx, ω∆u) = (1, 1);
• Scenario 4: β = η and (ωx, ω∆u) = (1, 0.1).

5.3 Partitioning of the Barcelona DWN

Using the partitioning algorithm presented in Section 4,
the Barcelona DWN is partitioned in three subsystems,
as depicted in Figure 1 in different colours. The partition
follows the scheme shown in Figure 2. The sizes of the
resultant subsystems are defined in Table 1. Those sub-
systems are composed by the following elements:

(1) Subsystem 1: composed by tanks xi, i ∈ {1, 2},
inputs uj , j ∈ {1, . . . , 5}, demands dl, l ∈ {1, 2, 3},
and nodes nq, q ∈ {1, 2}. It is represented in Figure
1 with red colour.

(2) Subsystem 2: composed by tanks xi, i ∈ {3, 4, 5, 12,
17}, inputs uj , j ∈ {7, . . . , 16, 18, 19, 25, 26, 32, 34, 40,
41, 47, 48, 56, 60}, demands dl, l ∈ {4, . . . , 7, 15, 18, 22},
and nodes nq, q ∈ {3, 4, 7}. It is represented in Figure
1 with green colour.

3 Note that the MPC controllers designed in the case study of
this paper does not include the economic costs (f1) in the control
objective (8). In any case, this will not change the results of the
partitioning algorithm

Table 1. Dimension comparison of subystems

Elements Subsys 1 Subsys 2 Subsys 3 Whole Network

Tanks 2 5 10 17
Actuators 5 22 34 61

Demands 4 9 22 25
Nodes 2 3 6 11

(3) Subsystem 3: composed by tanks xi, i ∈ {6, . . . , 11,
13, . . . , 16}, the inputs uj , j ∈ {6, 17, 20, . . . , 24, 27, . . . ,
31, 33, 35, . . . , 39, 42, . . . , 46, 49, . . . , 55, 57, 58, 59, 61},
demands dl, l ∈ {8, . . . , 14, 16, 17, 19, 20, 21, 23, 24, 25},
and nodes nq, q ∈ {5, 6, 8, . . . , 11}. It is represented
in Figure 1 with blue colour.

Subsystem 1

Subsystem 3

Subsystem 2

ua

ub
uc

Fig. 2. Conceptual scheme of the case study partitioned in
three sub-networks.

According also to the scheme in Figure 2, vectors ua, ub

and uc with the shared control variables are defined as

ua = u6, ub = [u20, u21]
T ,

uc = [u18, u32, u34, u40, u47, u56, u60]
T .



Table 2. Cost results obtained for the consid-
ered control objective and scenarios

Scenario Centralized MPC Decentralized MPC
∑

fi Cost
∑

fi Cost

Scenario 1 58.0787 220.08 59.9548 223.49 (1.55%)
Scenario 2 57.5404 219.73 59.1040 223.90 (1.90%)
Scenario 3 74.0044 197.85 76.1662 220.21 (11.30%)
Scenario 4 74.3957 199.12 78.4981 200.43 (0.66%)

Table 3. Time results obtained for the consid-
ered control objective and scenarios (all in s)

Scenario Centralized MPC Decentralized MPC
Total time Max time Total time Max time

Scenario 1 207.12 6.0866 128.2828 3.2086
Scenario 2 206.27 7.0348 130.888 3.3209
Scenario 3 210.57 4.9057 125.5362 4.7260
Scenario 4 211.18 5.5524 126.0275 2.8945

5.4 Application of a hierarchical DMPC approach

Since the obtained Barcelona DWN partitions share some
control variables, the hierarchical DMPC approach de-
scribed in Ocampo-Martinez et al. (2010) is applied. This
hierarchical-based approach consists in defining sets of
shared variables (control inputs) depending on their con-
nection direction, i.e., if the control flow goes from a
Partition A to a Partition B or vice versa. Once these
sets are defined, it is necessary to determine the parti-
tion with the higher amount of incoming and out-coming
connections. This fact locates that partition at the top of
the hierarchical pyramid. Next, other partitions with less
connections with respect to the latter are defined and the
criterion is again applied for the following partition. Notice
that, from now on, two or more partitions can be located
below the one in the top, fact that defines the hierarchical
pyramid.

5.5 Results discussion

The proposed hierarchical DMPC approach is compared
with a CMPC scheme employing the simulation scenarios
described in Section 5.2. The control objectives values
obtained using both controllers as well as the computa-
tional times are presented in Tables 2 and 3. Moreover, the
economical cost has been evaluated even if both controllers
do not optimize this term. This cost has been evaluated
using a water network simulation environment developed
in MATLAB/SIMULINKr in Caini et al. (2009). The first
column of these tables indicate the name of the considered
scenario. Table 2 shows that the loss of performance is
small in all scenarios. Moreover, it can be noticed from
Table 3 that the DMPC controller requires about half
the computation time of the CMPC controller to solve
one iteration in the worst case. Thus, despite the DMPC
approach leads inevitably to a small loss of performance,
the benefits in terms of time and computational load are
remarkable. Because of confidentiality reasons, Tables 2
and 3 show economical costs expressed in economical units
(e.u.) instead of real values (Euro).

6. CONCLUDING REMARKS

This paper has proposed an automatic subsystem de-
composition approach for decentralized model predictive
control (DMPC) of drinking water networks (DWN). A
hierarchical structure related to the order of execution
of the DMPC controllers allows one to take into account
global network constraints. A comparative study between
the CMPC and DMPC approaches has been developed
using as case study the aggregate model of the Barcelona
DWN. Results have shown that the partition algorithm,
helped by an analysis of the system topology and heuris-
tics, yields a proper segmentation of the whole network
without overlapping models. The performances of CMPC
and DMPC schemes were compared in terms of economical
benefits and computation demand. Results have shown
the effectiveness of the DMPC strategy in the important
reduction of the computation burden despite the lost of
performance of the control scheme, which in turn, has
resulted to be quite small.
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