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Abstract: A planning framework is proposed for the task of cleaning a table and stack an unknown number of objects
of different size on a tray. We propose to divide this problem in two, and combine two different planning
algorithms. One, plan hand motions in the euclidean space to be able to move the hand in a noisy scenario
using a novel Time-of-Flight camera (ToF) to perform the perception of the environment. The other one,
chooses the strategy to effectively clean the table, considering the symbolic position of the objects, and also
its size for stacking considerations. Our formulation does not use information about the number of objects
available, and thus is general in this sense. Also, it can deal with different object sizes, planning adequately
to stack them. The special definition of the possible actions allows a simple and elegant way of characterizing
the problem, and is one of the key ingredients of the proposed solution. Some experiments are provided in
simulated and real scenarios that validate our approach.

1 INTRODUCTION

Algorithms for planning explicitly considering uncer-
tainty have been widely used in the field of mobile
robots (LaValle, 2004; Thrun et al., 2005), but are
less common in robotic-arm manipulation and grasp-
ing (Hsiao et al., 2007). In that scenario uncertainty
is especially important and should be carefully con-
sidered because contact takes place between the robot
and the world. In this interaction, the position of the
object and the robot in the world cannot be precisely
known, even more if we consider uncertainty in sen-
sors we use to sense this world.

In this paper we want to explore object grasping
and stacking tasks, as they are interesting and chal-
lenging skills (Kemp et al., 2007).In order to deal with
these problems the partially observable Markov deci-
sion process paradigm will be used, specifically the
discrete model based POMDP. It provides the capac-
ity of dealing with uncertainty in observations and ac-
tions, usually a robot will have an approximation of
reality when is sensing the environment and evaluat-
ing the results of the actions completed. POMDP have
been used before in the context arm motion control for

fig. 22 Robot WAM agafant un got

L'entorn en el que es desplaça s'ha basat en les simulacions fetes situant un objecte a sobre d'una 
plataforma com a objectiu i deixant la resta d'espai lliure, és a dir, sense obstacles que dificultin el 
moviment del robot.

La càmera de temps de vol tipus SwissRanger ofereix la possibilitat de rebre en una sola imatge 
informació en 3 dimensions, per a cada píxel de la imatge afegeix informació sobre la profunditat del 
mateix donant com a resultat una superfície enlloc d'una fotografia plana.

Per a mesurar aquesta distància utilitza raigs infraroigs, aquests després de rebotar contra 
l'entorn tornen a ser mesurats per la càmera. El desfasament d'ona que detecta dóna la informació sobre 
la profunditat a què es troba l'objecte en qüestió, amb un límit màxim de 5 metres. Aquest tipus de 
tecnologia dóna informació amb molt soroll i que es veu influenciat per les condicions de il·luminació 
de l'entorn.
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Figure 1: The robotic arm used in the experiments executing
the policy computed by the planner

grasping, however perceptions used are simpler than
here, i.e. on/off signals from pressure sensors on the
fingers of the hand (Glashan et al., 2007).

The system uncertainty is modeled by measuring
it in the real system and providing the values to the
system, so it can take into account the various difficult
situations it could face according to the chosen action.
One interesting characteristic of our approach is that
two different POMDPs are combined and one of them



can control the other one and get feedback from it. We
will apply this approach to solve a real situation: to
clean a table and stack an unknown number of objects
of different size on a tray.

The first POMDP will control robotic arm tra-
jectory to prepare the grasping task, planning in the
space state formed by the relative coordinates to the
target state. This approach is extensively reported
in (Trilla, 2009). Here will be briefly introduced. A
naive approach to avoid the POMDP complex mecha-
nism is a simple reactive algorithm. However, within
this approach is difficult to take into account the un-
certainty in the number of stacked objects and the
probability of stacks falling down.

The second POMDP will plan symbolically the
strategy of the cleaning task and the actions chosen
for the target of the first POMDP. The objective of the
second POMDP is either to completely clean the table
or fill the tray. The planification is symbolic because
it does not rely on the coordinates of the objects or its
interaction with the world, but on an abstraction layer.
Two main considerations are important. First, obser-
vations are partial: the number of objects on the table
is unknown, i.e. because of possible occlusions, and
some objects maybe are pre-stacked on the table and
this is difficult to observe. Second, the tray surface is
limited so it has to stack objects. Here the planning
has to deal with objects of different size.

Perception in grasping applications is gener-
ally performed using artificial vision to recognize
some object characteristics, and then plan a correct
grasp (Saxena et al., 2008). Here we will use a rel-
atively new sensor, a ToF (Time of Flight) camera.
This camera delivers 3D images at 25fps, potentially
allowing fast perception algorithms and, contrarily to
stereo systems, it does not rely on computing depth on
texture or other object surface characteristics. Depth
information will be used to identify the position of the
robot hand in the space, and to easily separate objects
from background.

This article is structured as follows. POMDP
background is introduced in Section 2. The planifi-
cation strategy is introduced in Section 3, and in par-
ticular the planification of the symbolic steps that are
involved in the container-content manipulation (Sec-
tion 3.1). In Section 4 some experiments are pre-
sented, validating our approach in a general stacking
case, in the case of different object sizes, and with
occlusions between objects. Finally, Section 5 is de-
voted to the conclusions and future work.

2 POMDP BACKGROUND

A POMDP models a sequence of events in discrete
states and time where the agent chooses actions to
perform. It is represented by the tuple (S,A,T,R,O)
where S is the finite set of states and A is a discrete set
of actions. The transition model T (s,a,s′) describes
the probability of a transition from a state s to s′ when
the action a is performed. The reward model R(s,a)
defines the numeric reward given to the agent when
it executes an action a being in state s. Observation
model O(z,a,s) describes the probability of an obser-
vation z when the action a is performed, and the state
is s. A POMDP handles partially observable environ-
ments, there is only an indirect representation of the
state of the world. The belief state b is the probability
distribution over all states in the model. At each time
step the belief state is updated by Bayesian forward-
filtering.

A decision about which action is most applicable
is given by the policy function which contains the in-
formation about the best action to perform for any
possible belief distribution. The policy balances the
probabilities of a future sequence of events with the
expected accumulated reward which has to maximize.
Computing a policy is highly intractable with clas-
sic exact methods like value iteration or policy iter-
ation. However, some recent work has been devoted
to find approximated solutions (Hsu et al., 2007), as
point based value iteration (Hsu et al., 2008), discrete
Perseus or HSVI are quite fast and yield good results.

3 PLANNING AND EXECUTING
THE MANIPULATION
OPERATIONS

We divide the high level task of cleaning a table of
several objects in two different levels. First, it is
important to decide which object to first manipulate.
Then, the next issue is to know the exact position of
the object and effectively manipulate it. Here we will
present our development for the planning algorithm
which deals symbolically with the problem and per-
forms high level task.

The effective manipulation of the objects can be
solved by means of a classical control algorithms. Al-
ternatively, we have recently proposed to solve the
low level task defining also a POMDP in the space
of discretized hand positions (Trilla, 2009). With this
approach we are able to deal with robots with low pre-
cision or repeatability, and also with mobile robot ma-
nipulators that naturally are not exactly placed equally



Figure 2: General schema of the working space, detailing
the different labeled areas. Table can be divided in several
regions in general. Here is divided in two, like in the exper-
iments.

in front of a table.

3.1 Planning the strategy

We define the problem as follows. The working area
is divided in zones: one for the tray and the rest for
the table (see Fig 2). Each zone is divided in posi-
tions where the objects can be placed. Space state is
defined as the set (zo, p,sn, t), where zo (zone) and
p (position) identify the object location symbolically,
sn indicates the number of objects stacked in the same
place, and t is the type of the objects in that place.

The actions are defined to move the objects in the
following order:
1. move from the table to the first position on the tray
2. move from the table to the second position of the

tray
3. stack the objects on the table freeing up a position.

Using only these three actions is possible to suc-
cessfully complete the cleaning table task. When two
objects are of the same size the system not needs to
specify which one of the objects on the table is go-
ing to be stacked first. The transition model can be
designed including any previous criteria so can be
moved first the larger objects or those which are in
a certain zone (the closest to the tray for instance).

We want to consider an unknown number of ob-
jects into the table. This is appropriate for modelling
two different situations: when the point of view of the
observer doesn’t allow to view completely the whole
scene, and when occlusions shadow the correct num-
ber of objects.

To take into account an unknown number of ob-
jects on the table we propose to only consider two of
them at each time. The approach can be extended to
take into account more objects/positions, but then the
complexity of the solution also increases. Once a po-
sition on the table is empty that position is assigned to
the next object. This assignment could be done by any
criteria, proximity, size of the object (first the larger
ones then the smaller ones), or randomly as in our
experiments. This represents the action uncertainty:
when an action is performed the next state can have an
empty position or the transition can go to a different
state with objects in that position. The objects can be
found already stacked on the table, but the probability
of success in such a situation decreases, reflecting that
is easier to manipulate a unique object that a stack of
two or more objects. In this way planning can be done
with no previous knowledge about the number of the
objects on the table, and lets the planner to adapt to
different situations.

Observations indicate the number and type of ob-
jects stacked. The uncertainty of the observations
is the number of objects stacked in each position
and is modeled as a Gaussian probability distribution
over the belief state. The container-content problem
(which objects can be or not stacked) is related to the
type of object and the symbolic POMDP has to chose
the proper stacking actions maximizing the available
space on the tray.

Finally, the rewards are defined as positive when
the objects are placed on the tray, move objects have a
cost and stacking movements have a higher cost. The
aim is reached when the table is clean or the tray is
full. A great advantage of this model is the versatility
of its policy so it can adapt to different situations in
order to reach the aim for many scenarios.

Observe that our proposal is not assuming neither
implicitly nor explicitly the success in the motion op-
eration. As usual, after the execution of each transfer
action the state is observed and the appropriate pocily
is chosen in accordance. Failed grasping operations
are naturally handled, as the state will not change.
However, if the object accidentally falls down in the
middle of the operation and its position is outside the
table area this particular object will not be recovered
with the presented approach.

4 EXPERIMENTS

4.1 The observation model

For the observations we want to model a SR3000
SwissRanger camera. This sensor delivers images of



Situant la càmera enfront del braç robot i l'objecte entre els dos de manera que la càmera pot 
aportar informació de la distància relativa entre l'objecte i la mà, cosa que serà l'estat en què es troba 
l'agent i que li permetrà actuar segons la política òptima.

Així s'obtenen imatges com la següent:

fig. 27 Exemple visió WAM desde càmera 3D
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Figure 3: Depth image provided by the ToF camera and
used to compute the perceptions. Colors correspond to dif-
ferent depths. Observe the robot horizontally centered in
the image, and the hand with its three fingers in the center.

160×120 pixels with depth information for each pixel
at 25fps using ToF (time-of-flight) principle. ToF
cameras emit modulated light, and depth computa-
tion is based on measures on the reflected light using
the well known time-of-flight principle (Kolb et al.,
2008). Fig. 3 shows our testing scenario as perceived
by the ToF camera. We use depth to easily segment
the robot and the object from the background, but
depth information is an important cue that allows to
compute also several of the required grasping param-
eters (Kuehnle et al., 2008).

Depth measures from a ToF camera are noisy,
and systematical errors are present and depend on the
computed depth and on the position of the pixel onto
the sensor. To obtain precise measures some cali-
bration procedures have to be performed (Kahlmann
et al., 2006; Lindner and Kolb, 2006). Also, some
other non-systematic errors affect the camera read-
ings, i.e. surface orientation, irregular illuminated
zones. ToF camera calibration is still an active field
of research and a lot of work has been done to com-
pletely understand the source of errors and compen-
sate them.

This sensor is very interesting as offers the ca-
pability of measuring the 3D position of the robot
hand as well as the position of the different objects
on the table (Fig. 3). It is possible without calibrating
the camera-robot system to control the motion of the
robot (Trilla, 2009). However, the resolution of the
sensor is quite small, so it is justifiable to state that it
is difficult to determine in our scenario if one glass is
alone or it is stacked with other glasses.

The required uncertainties are measured using this
scenario.

4.2 Symbolic planification

Once it is defined with proper values, the symbolic
POMDP has been tested with simulations facing it
with several scenarios and checking its decisions and
the sequence of actions. This experiment is defined
with two zones and two positions in each zone. There
are two types of glasses: big ones and little ones. The
transitions are restricted to stack big glasses with big
glasses, the little glasses can be stacked inside the
big or the little glasses indifferently. The number of
glasses stacked in the same position is restricted to
four and only is defined the type of the top and bottom
of the glass because they are involved in the container-
content problem. The states are determined by all the
possible combinations of this variables.

As explained before, choosing this state space the
planner becomes able to deal with any quantity of ob-
jects on the table. It will not perform the optimal se-
quence of actions because it has not previous informa-
tion about the total number of the objects. However,
using this method is not necessary to recalculate the
policy for different amount of objects and is not lim-
ited to a maximum number of them.

The probability of reaching any of the possible
states after performing an action is defined as uni-
formly distributed in the transition model. Conse-
quently, after moving a glass there is the same prob-
ability of reaching a state with an empty position or
a full one. This transition is decided randomly and
it gives the uncertainty over the actions results. Ob-
servations give a probability distribution for the be-
lief state over the quantity of objects stacked in the
same position, there is uncertainty about the number
of glasses.

The rewards are defined as follows, stacking oper-
ations have a cost because the pile becomes more un-
stable, place the glasses on the tray is rewarded posi-
tively and reach the aim has a positive reward as well.
Stack four or more glasses has a penalty (more than
four glasses is considered the same state) because it
is a too unstable pile and it has a high risk of falling
over.

Some results of the carried out experiments are
shown in Figs. 4(a) and 4(b), that describe how
POMDP-S solves the proposed task. In this diagrams,
boxes marked with B represent big glasses and boxes
with S are the small ones; empty positions are repre-
sented by a circle and the action to perform with an
arrow; the top side is the table and the bottom side
is the tray; states are indicated as s i; between two
states there is a transition T; objects placed together
mean that they are stacked vertically.

The first diagram (Fig. 4(a)) represents a simple



(a) Simple example, where two big objects are cleaned from the table. Observe that planner decides
to create a stack. This is right solution considering that only one object is observed in each zone, as
new objects can be observed, i.e. due to occlusions.
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(b) A complex example to demonstrate our algorithm capabilities. Regions with several objects are discovered in
states s2 and s3, before the translations of objects to the tray. The restriction on the size of the object for stacking
is correctly handled in transitions s3 to s4 and also s4 to s5 where big objects are not stacked onto a small one

Figure 4: Diagram of two experiments results. Boxes marked with B represent big glasses and boxes with S are the small
ones. Empty positions are represented by a circle and the action to perform with an arrow. The top side is the table and the
bottom side is the tray. States are indicated as si. Between two states there is a transition T. Objects placed together mean that
they are stacked vertically.

situation where there are only two big glasses on the
table. It is worth noting how the planner decides, on
the last action s3, to stack them on the tray instead
of placing them separately, even knowing that this ac-
tion has a higher cost. The explanation is that, as the
number of objects is unknown, exists the possibility
that more objects appear after the last movement (due
to an occlusion), so planner decides that it is safer to
keep a free space available on the tray.

In the second diagram (Fig. 4(b)) there is a more
complex situation, with several objects on the table,
several of them already stacked and occluded. An ex-
ample of this occlusion fact can be seen in the transi-
tion from s1 to s2. The agent is moving two stacked
objects to an empty position on the tray, but in the po-
sition that represents this table zone two new stacked
objects appear. Note that this is happens also in tran-
sition from s2 to s3, with a big objects appearing when

a small on is moved.

The correct planification using the size of the ob-
jects in the stacking strategy can be seen in th transi-
tion from s3 to s4. Only big objects are present, but
in the top of the stack there is a small object, so the
empty tray position is preferred. The situation is sim-
ilar in transition from s4 to s5.

In our approach, if the agent reaches a state with
no possible action (i.e. there exists no transition) the
algorithm ends. This could happen prematurely if the
objects are not stacked properly. In the next section
we will envisage some possible improvements to han-
dle this behavior.



5 CONCLUSIONS AND FUTURE
WORK

We have presented a planning framework, combin-
ing two different POMDP approaches, that effectively
solve the task of cleaning a table and stack an un-
known number of objects of different size on a tray

The symbolic POMDP chooses the adequate com-
bination of actions to clean the table. Here the state
space design is crucial as we have some restrictions.
First, we assumed explicitly that the number of ob-
jects on the table was not observable, i.e. due to oc-
clusions between objects, because it is hard to esti-
mate the number of objects when they are stacked, or
purely by noise in the observations. Second, the solu-
tion to the problem implies stacking objects of differ-
ent size with some restrictions, i.e, a big object cannot
be stacked onto a small one.

Thanks to the proposed space state and action
space, the codification of the different positions and
sizes of the glasses lets the planner generate a pol-
icy able to deal with the container-contents problem
stacking the glasses in the best way, maximizing the
free space on the tray. The solution we propose to
be able to handle the unknown number of objects is
based on focus the attention on only one of the ob-
jects present in the each one of the different regions
on the table, and it has turned out to be particularly
adequate and powerful.

5.1 Future work

Here we have considered that the objects can be al-
ready stacked on the table, and that the the robot can
perform stacking actions on the table. However this
condition has hardly raised in our experiments. One
challenge we are facing now is to incentive object
stacking actions on the table, before putting them in
the tray. A new variable is needed here to balance
the cost between two transportation actions and one
stacking plus a transportation operation. In the com-
putation of this cost the trajectory from the table to the
tray in the transportation action becomes important,
as we want to stack closer objects, or more important,
stack objects that are in the transportation trajectory
to the tray. Our formulation is general in the number
defined zones on the table, so we face this new condi-
tion as a natural extent of the presented algorithm.

We have considered to add an additional action
when observations are not enough to decide for one
action, i.e. in order to gather information about
the number of glasses stacked on each position. A
promising option is an asking action to an opera-
tor where the answer could modify the agent’s belief

state (Armstrong-Crews and Veloso, 2007).
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