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Abstract—Recent approaches to Reinforcement Learning
(RL) with function approximation include Neural Fitted Q Itera-
tion and the use of Gaussian Processes. They belong to the class
of fitted value iteration algorithms, which use a set of support
points to fit the value-function in a batch iterative process.
These techniques make efficient use of a reduced number of
samples by reusing them as needed, and are appropriate for
applications where the cost of experiencing a new sample is
higher than storing and reusing it, but this is at the expense of
increasing the computational effort, since these algorithms are
not incremental. On the other hand, non-parametric models for
function approximation, like Gaussian Processes, are preferred
against parametric ones, due to their greater flexibility. A
further advantage of using Gaussian Processes for function
approximation is that they allow to quantify the uncertainty of
the estimation at each point. In this paper, we propose a new
approach for RL in continuous domains based on Probability
Density Estimations. Our method combines the best features
of the previous methods: it is non-parametric and provides
an estimation of the variance of the approximated function at
any point of the domain. In addition, our method is simple,
incremental, and computationally efficient. All these features
make this approach more appealing than Gaussian Processes
and fitted value iteration algorithms in general.

I. INTRODUCTION

A crucial issue in Reinforcement Learning (RL) is how
to deal with problems whose state and action spaces are
continuous, or discrete but very large. In these cases, the
application of classical tabular methods to store the Q-value
for each possible state-action pair (or the value of each state,
in model-based approaches) becomes infeasible. On the other
hand, if the number of states is too large, learning about them
by visiting them all turns out to be impossible, so that it is
necessary to infer the value of a state from the values of
similar ones for which experiences have been collected. To
achieve this, RL must be used with some form of function
approximation providing the necessary compactness in its
representation and appropriate generalization on states and
actions.
In general, function approximation methods can be clas-

sified as parametric and non-parametric [1]. Parametric
methods include neural nets, polynomials, and combina-
tions of radial basis functions, among others. They define
parameterized families of functions with a finite number
of parameters (which, in the discrete case, is much lesser
than the number of states), and try to find the values of
the parameters for which the function best represents the
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available data. Parametric methods have been extensively
used since they allow the application of gradient techniques
for parameter optimization. One difficulty with parametric
models resides in the selection of the parameterized family:
if it is too restrictive, it could not be able to model the data
with the necessary accuracy; if it is too general, there is a
risk of overfitting the data and provide poor generalization.
Non-parametric function approximators, instead, do not fix
in advance the number or the nature of the parameters
(despite their name, non-parametric approximators usually
have parameters, but their number is not upper bounded)
so that they can be endowed with unrestricted function
approximation capabilities. Some examples are Gaussian
Processes, tree-based methods, and Mixtures of Gaussians
with variable number of units. Since, in general, in a complex
RL problem it is not possible to guess what kind of function
representation will work, the more flexible non-parametric
methods are preferred.
In the last years, different non-parametric function ap-

proximators for RL have been proposed. In [2], Rasmussen
and Kuss proposed the use of Gaussian Processes (GP) for
RL: Using a model-based approach, a number of GPs (one
for each dimension of the state space) is used to model
the system dynamics, and a further GP represents the value
function. In [3], the approach is extended to online learning
using Bayesian active learning. An alternative application of
GPs to RL is that of Engel et al. [4], who use a GP to
directly represent the Q-function in a model-free approach.
One benefit of using GPs for function approximation is
that, besides providing the expected value of the function,
they also provide its variance, what allows to quantify the
uncertainty of the predicted value. As pointed out in [5], this
information may be very useful to direct the exploration in
RL.
All of these GP-based RL algorithms fall in the class of the

so-called fitted value iteration algorithms [6], which, in order
to approximate the desired function, take a finite number
of samples, or support points, and try to fit the function to
them in a batch iterative process. Fitted value iteration has
been used with both, parametric and non-parametric function
approximators. For example, Ernst et al. [7], based on the
previous work of Ormoneit and Sen [8] on kernel-based
RL, proposed the fitted Q Iteration algorithm using (non-
parametric) randomized trees for function approximation,
while Riedmiller [9], [10] proposed Neural Fitted Q Iteration
using a (parametric) multi-layer neural net. The main idea of
fitted value iteration is to reuse the set of samples as much
as needed to get all possible information from them. This
allows to learn with a minimal number of interactions with
the real system, but this does not imply a lesser number of
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function updates. Thus, it is appropriate when acquiring new
data is more costly than just storing them for future use.
However, assuming that data can be obtained at low cost,
as for example by simulation, this advantage disappears, and
can even become a disadvantage when the dynamics evolves
with time, since old data would be no more valid.

A key issue in fitted value iteration algorithms is the
generation of the set of representative samples of the function
to be approximated. When the model of the problem is
known, they can be obtained by uniform sampling through
the state-space as in [7]. When the model is not available,
samples can be generated by interacting with the system
with random actions, but this strategy may not work when
the complexity of the problem is such that reaching the
interesting regions of the state space requires a long chain of
lucky actions. For this reason, Riedmiller [9] uses a greedy
heuristic, which consists in exploiting the policy learned
in the previous learning stages to generate new samples
for the next iterations of the algorithm. Even so, when
the problem raises in complexity, he finds necessary to use
what he calls the hint-to-goal heuristic to provide specific
exemplars within the goal region. Note that, in principle,
fitted value iteration algorithms are not incremental, in the
sense that each time new samples are introduced, the function
approximation process must be repeated from scratch for the
new dataset, what is computationally inefficient.

In this paper, we propose an approach to RL for continuous
state-action spaces with a function approximation based on
probability density estimations. The idea is to represent the
density distribution of the observed samples in the joint space
of states, actions, and q-values. To represent this density
distribution we use a Gaussian Mixture Model with variable
number of units, so that the function approximation is non-
parametric, what makes it general. With this approach, it is
possible to obtain, for each given state and action, the prob-
ability distribution of q(s, a) as the conditional probability
p(q|s, a). From this distribution we can obtain the value of
Q(s, a) as the expected value of q(s, a). Furthermore, we can
obtain the variance of q(s, a) and estimate its confidence, so
that our approach also presents what has been argued to be
an important feature of GPs [4], [3]. The Gaussian Mixture
Model can be updated with an incremental, low complexity
version of the Expectation Maximization algorithm, what
makes this approach more appealing than GPs and fitted
value iteration algorithms in general. As a further benefit of
using density estimations, it is possible, by marginalization
on the state-action variables, to obtain the local sampling
density in a point (s, a), which, in stochastic problems, may
be used to evaluate how reliable is the estimation at this
point.

The rest of the paper is organized as follows: Section
II briefly resumes the basics of RL. Section III introduces
the GMM for multivariate density estimation and the EM
algorithm in its batch version. In Section IV we define the
on-line EM algorithm for the GMM. In Section V we develop
our RL algorithm using a density estimation of the Q-value

function. Section VI shows the feasibility of the approach
with an example, and Section VII concludes the paper.

II. REINFORCEMENT LEARNING

Reinforcement Learning is a paradigm in which an agent
has to learn an optimal action policy by interacting with
its environment [11]. The task is formally modelled as the
solution of a Markov decision process in which, at each time
step, the agent observes the current state of the environment,
st, and chooses an allowed action at using some action pol-
icy, at = π(st). In response to this action, the environment
changes to state st+1 and produces an instantaneous reward
rt = r(st, at). Using the information collected in this way,
the agent must find the policy that maximizes the expected
sum of discounted rewards, also called return, defined as:

R =
∞∑

t=0

γtrt, (1)

where γ is the discount rate, with values in [0,1], that
regulates the importance of future rewards with respect to
immediate ones.
One of the most popular algorithms used in RL is Q-

Learning [12], which uses an action-value functionQ(s, a) to
estimate the maximum expected return that can be obtained
by executing action a in situation s and acting optimally
thereafter. Q-learning uses the Bellman equation [13] to
estimate sample values for Q(s, a) that we denote by q(s, a):

q(st, at) = r(st, at) + γ max
a

Q(st+1, a) (2)

where max
a

Q(st+1, a) is the estimated maximum expected
return corresponding to the next observed situation st+1. At
a given stage of the learning, the temporary policy can be
derived from the estimated Q-function as

π(s) = argmax
a

Q(s, a) (3)

In actor/critic architectures, a policy function (called the
actor) is learned and explicitly stored, so that actions are
directly decided by the actor and do not need to be computed
through the maximization in (3). Despite this computational
advantage, the learning of an actor may slow down conver-
gence, since then the learning of theQ-function must be done
on-policy instead of off-policy, and both functions, actor and
critic, must adapt to each other to reach convergence. In our
implementation we avoid the use of an actor, and thus we
must face the problem of maximizing the Q(s, a) function
in (3).
The basic formulation of Q-learning assumes discrete

state-action spaces and the Q-function is stored in a tabular
representation. For continuous domains a function approxi-
mation is required to represent the Q-function and generalize
between similar situations. In next sections we present our
proposal for function approximation using density estima-
tions.



III. DENSITY ESTIMATION WITH A GAUSSIAN MIXTURE

MODEL

A Gaussian Mixture Model [14] is a weighted sum of
multivariate Gaussian probability density functions, and is
used to represent general probability density functions in
multidimensional spaces. It is assumed that the samples
of the distribution to be represented have been generated
through the following process: first, one Gaussian is ran-
domly selected with a priori given probabilities, and then,
a sample is randomly generated with the probability dis-
tribution of the selected Gaussian. According to this, the
probability density function of generating sample x is:

p(x;Θ) =
K∑

i=1

αiN (x; μi,Σi) (4)

where K is the number of Gaussians of the mixture;
αi, usually denoted as the mixing parameter, is the prior
probability, P (i), of Gaussian i to generate a sample;
N (x; μi,Σi) is the multidimensional Gaussian function with
mean vector μi and covariance matrix Σi; and Θ =
{{α1, μ1,Σ1}, ..., {αK , μK ,ΣK}} is the whole set of pa-
rameters of the mixture. By allowing the adaption of the
number K of Gaussians in the mixture, any smooth density
distribution can be approximated arbitrarily close [15]. The
parameters of the model can be estimated using a maximum-
likelihood estimator (MLE). Given a set of samples X =
{xt; t = 1, . . . , N}, the likelihood function is given by

L[X;Θ] =
N∏

t=1

p(xt;Θ). (5)

The maximum-likelihood estimation of the model parameters
is the Θ that maximizes the likelihood (5) for the data set
X. Direct computation of the MLE requires complete infor-
mation about which mixture component generated which in-
stance. Since this information is missing, the EM algorithm,
described in the next section, is often used.

A. The Expectation-Maximization algorithm

The Expectation-Maximization (EM) algorithm [16] is a
general tool that permits to estimate the parameters that
maximize the likelihood function (5) for a board class of
problems when there are some missing data. The EM method
first produces an estimation of the expected values of the
missing data using initial values of the parameters to be
estimated (E step), and then computes the MLE of the
parameters given the expected values of the missing data (M
step). This process is repeated iteratively until a convergence
criterion is fulfilled.
In this section we briefly describe how EM is applied to

the specific case of a GMM. The process starts with an ini-
tialization of the mean vectors and covariance matrices of the
Gaussians. The E step consists in obtaining the probability
P (i|xt) for each component i of generating instance xt, that

we denote by wt,i,

wt,i = P (i|xt) =
P (i)p(xt|i)

K∑
j=1

P (j)p(xt|j)
=

αiN (xt; μi,Σi)
K∑

j=1

αjN (xt; μj,Σj)

(6)
where t = 1, .., N and i = 1, .., K . The maximization step
consists in computing the MLE using the estimated wt,i. It
can be shown [17] that, for the case of a GMM, the mixing
parameters, means, and covariances are given by

αi =
1
N

N∑
t=1

wt,i (7)

μi =

N∑
t=1

wt,ixt

N∑
t=1

wt,i

(8)

Σi =

N∑
t=1

wt,i(xt − μi)(xt − μi)T

N∑
t=1

wt,i

(9)

IV. ON-LINE EM

Estimating a probability density function by means of
the EM algorithm involves the iteration of E and M steps
on the complete set of available data, that is, the mode of
operation of EM is in batch. However, in RL, sample data
are not all available at once: they arrive sequentially and
must be used online to improve the policy that will allow an
efficient exploration-exploitation strategy. This prevents the
use of the off-line EM algorithm, and requires an on-line,
incremental version of it. Several incremental EM algorithms
have been proposed for the Gaussian Mixture Model applied
to clustering or classification of stationary data [18], [19].
The approach proposed in [18] in not strictly an on-line

EM algorithm. It applies the conventional batch EM algo-
rithm onto separate data streams corresponding to successive
episodes. For each new stream, a new GMM model is trained
in batch mode and then merged with the previous model. The
number of components for each new GMM is defined using
the Bayesian Information Criterion, and the merging process
involves similarity comparisons between Gaussians. This
method involves many computationally expensive processes
at each episode and tends to generate more components
than actually needed. The applicability of this method to
RL seems limited, not only for its computational cost, but
also because, due to the non-stationarity of the Q-estimation,
old data should not be taken as equally valid during all the
process.
The work of [19] performs incremental updating of the

density model using no historical data and assuming that
consecutive data vary smoothly. The method maintains two
GMMs: the current GMM estimation, and a previous GMM
of the same complexity after which no model updating (i.e.
no change in the number of Gaussians) has been done.



By comparing the current GMM with the historical one, it
is determined if new Gaussians are generated or if some
Gaussians are merged together. Two observed shortcomings
of the algorithm are that the system fails when new data is
well explained by the historical GMM, and when consecutive
data violate the condition of smooth variation.
In [20], an on-line EM algorithm is presented for the

Normalized Gaussian Network (NGnet), a model closely
related to the GMM. This algorithm is based on the works
of [21], [22]. In [21] a method for the incremental adapta-
tion of the model parameters using a forgetting factor and
cumulative statistics is proposed, while in [22] the method
in [21] is evaluated and contrasted with an incremental
version which performs steps of EM over a fixed set of
samples in an incremental way. The method proposed in
[20] uses foundations of both works to elaborate an on-line
learning algorithm to train a NGnet for regression, where
weighted averages of the model parameters are calculated
using a learning rate that implicitly incorporates a forgetting
factor to deal with non-stationarities. Inspired by this work,
we developed an on-line EM algorithm for the GMM. Our
approach uses cumulative statistics whose updating involves
a forgetting factor explicitly.

A. On-line EM for the GMM

In the on-line EM approach, an E step and an M step are
performed after the observation of each individual sample.
The E step does not differ from the batch version (equation
(6)), except that it is only computed for the new sample.
For the M step, the parameters of all mixture components
are updated with the new sample. For this, we define the
following time-discounted weighted sums

Wt,i = [[1]]t,i (10)

Xt,i = [[x]]t,i (11)

(XX)t,i =
[[

xxT
]]

t,i
(12)

where we use the notation:

[[f(x)]]t,i =
t∑

τ=1

(
t∏

s=τ+1

λs

)
f(xτ )wτ,i (13)

where λt ∈ [0, 1] is a time dependent discount factor
introduced for forgetting the effect of old, possibly outdated
values. Observe that for low values of λt, the influence of
old data decreases progressively, so that they are forgotten
along time. This forgetting effect of old data is attenuated
when λt approaches 1: in this case, old and new data have
the same influence in the sum. As learning proceeds and
data values become more stable, forgetting them is no more
required and λt can be made to progressively approach 1 to
allow convergence.
The sum Wt,i can be interpreted as the accumulated

number of samples (composed of weights wt,i) attributed to
unit i along time, with forgetting. Similarly,Xt,i corresponds
to the weighted sum with forgetting of sample vectors xτ

attributed to unit i, which is used to derive the mean vector
μi. In the same way, (XX)t,i is the weighted sum with

forgetting of the matrices obtained as the products xτxT
τ of

sample vectors attributed to unit i, which will be used to find
the covariance matrix Σi.
From (13), we obtain the recursive formula:

[[f(x)]]t,i = λt [[f(x)]]t−1,i + f(xt)wt,i. (14)

When a new sample xt arrives, the accumulators (10), (11),
and (12) are updated with the incremental formula (14), and
new estimators for the GMM parameters are obtained as:

αi(t) =
Wt,i

K∑
j=1

Wt,j

(15)

μi(t) =
Xt,i

Wt,i
(16)

Σi(t) =
(XX)t,i

Wt,i
− μi(t)μi(t)T (17)

If the number K of Gaussians in the mixture is fixed, the
GMM is a parametric function approximation method whose
approximation capabilities are determined by K . Since we
can not determine the most appropriate K beforehand, we
allow the number of Gaussians to be incremented on-line by a
process of unit generation, so that the function approximation
method as a whole becomes non-parametric. The process of
unit generation is explained in Section V-B.

B. Weight-Dependent Forgetting

The factors λt in (13) were introduced by [20] with the
purpose of progressively replace (forget) old data by new,
more reliable values. The effect of this is clearly seen in the
incremental formula (14), which shows how, at each time
step, all past data are multiplied by λt, and this is done for
all units, no matter how much weight wt,i is attributed to
each of them. We observe that, the real effect of applying
(14) to units with low activation wt,i is not to replace their
past values by the new one but, essentially, to decrease their
values by a factor λt. It can be seen that this is exactly the
case when setting wt,i = 0 in equation (14), what yields:

[[f(x)]]t,i = λt [[f(x)]]t−1,i , (18)

showing that the accumulators of units that are seldom
activated will systematically decay to 0. This situation is
particularly annoying in the case of online RL, for which
it is very likely that highly valued regions of the state-
action space will be sampled much more frequently than
less promising ones, so that in the long term, units covering
low valued regions will get their statistics lost. This can be
avoided by modifying the updating formula (14) in this way:

[[f(x)]]t,i = λ
wt,i

t [[f(x)]]t−1,i + f(xt)wt,i. (19)

With this updating formula, the amount by which old data
are forgotten is regulated by the amount wt,i in which a new
value is added to the sum, so that data are always replaced,



instead of simply forgotten. Effectively, if now we make
wt,i = 0 in (19), what we get is:

[[f(x)]]t,i = [[f(x)]]t−1,i , (20)

so that the values of the statistics of the inactive units remain
unchanged. On the other hand, in the case of a full activation
of unit i, i.e., if wt,i = 1, the effect of the new updating
formula is exactly the same as that of (14).
Therefore, we will prefer the updating formula (19) to keep

better track of less sampled regions, noting that by doing this,
the definition given in (13) does no longer hold.

V. THE GMM FOR Q-LEARNING

In this Section, we describe how the GMM can be used
for function approximation to estimate the expected Q-value
as well as its variance at each point of the state-action space
by means of a single representation of the probability density
function in the joint space of states, actions and Q-values:

p(s, a, q) =
K∑

i=1

αiN (s, a, q; μi,Σi). (21)

In online Q-learning, each sample is of the form xt =
(st, at, q(st, at)), corresponding to the visited state st, the
executed action at, and the estimated value of q(st, at) as
given by eq. (2). To obtain this estimation we need to evaluate
max

a
Q(st+1, at), where Q(s, a) is defined as the expected

value of q given s and a for the joint probability distribution
(21) provided by the GMM:

Q(s, a) = E [q|s, a] = μ(q|s, a). (22)

To compute this, we must first obtain the distribution
p(q|s, a). Decomposing the covariances Σi and means μi

in the following way:

μi =
(

μ
(s,a)
i

μq
i

)
(23)

Σi =

(
Σ(s,a)(s,a)

i Σ(s,a),q
i

Σq,(s,a)
i Σqq

i

)
, (24)

the probability distribution of q, for a given state s and action
a, can then be expressed as:

p(q|s, a) =
K∑

i=1

βi(s, a)N (q; μi(q|s, a), σi(q)) (25)

where,

μi(q|s, a) = μq
i + Σq,(s,a)

i

(
Σ(s,a)(s,a)

i

)−1 (
(s, a) − μ

(s,a)
i

)
(26)

σ2
i (q) = Σqq

i − Σq,(s,a)
i

(
Σ(s,a)(s,a)

i

)−1

Σ(s,a),q
i (27)

βi(s, a) =
αiN (s, a; μ(s,a)

i ,Σ(s,a)(s,a)
i )

K∑
j=1

αjN (s, a; μ(s,a)
j ,Σ(s,a)(s,a)

j )
. (28)

From (25) we can obtain the conditional mean and covari-
ance, μ(q|s, a) and σ2(q|s, a), of the mixture at a point (s, a)
as:

μ(q|s, a) =
K∑

i=1

βi(s, a)μi(q|s, a) (29)

σ2(q|s, a) =
K∑

i=1

βi(s, a)(σ2
i (q) + (μi(q|s, a) − μ(q|s, a))2).

(30)
Equation (29) is the estimated Q value for a given state

and action, while (30) is its estimated variance. Our purpose
was to find the maximum for all actions and for a given
s of Q(s, a), in order to compute (2). Unfortunately, this
is hard to do analytically, but an approximated value can be
obtained by numerical techniques. In our implementation, we
take the simple approach of computing Q(s, a) for a finite
number of actions, and then taking the largest Q value as the
approximated maximum:

max
a

Q(s, a) ≈ max
a∈A

Q(s, a), (31)

where A is the set of actions that we take into consideration
to find the approximated maximum.

A. Action Selection with Exploration

Action selection in RL must address the explo-
ration/exploitation tradeoff. If we want just to exploit what
has been learnt so far, with no exploration, we must execute
the action ag corresponding to the greedy policy as given by
eq. (3), that in our case is computed as:

ag = πg(s) ≈ argmax
a∈A

Q(s, a). (32)

However, during learning, an exploration strategy is neces-
sary that guarantees that no action is excluded from execution
in any state. Two well-known ways to achieve this are the
ε-greedy and the Boltzmann exploration. According to [23],
these strategies are in the family of the undirected exploration
methods, meaning that exploration is based in randomness,
and no exploration-specific knowledge is used for guiding
exploration. It is claimed that directed exploration techniques
are often more efficient than undirected ones, so we propose
a more directed method of exploration that takes into account
the prediction error for each action, which is captured in the
variance of the Q-values. For this, we define:

Qrnd(s, a) = Q(s, a) + ΔQ(σ2(q|s, a)), (33)

where ΔQ(σ2(q|s, a)) is a value taken at random from a
normal probability distribution with 0 mean and variance
σ2(q|s, a). Then, the action selection with exploration is
made according to:

aexplr = argmax
a∈A

Qrnd(s, a) + arnd, (34)

where arnd is an appropriately sized random perturbation
of the action, introduced to allow the execution of arbitrary
actions and not just those contained in A.



With this form of exploration all the actions have always a
chance of getting a Qrnd above its competitors, and hence, a
probability to be selected. Usually, higher-valued actions will
have more chances of getting the highest Qrnd. However, a
low-valued action may eventually receive a high Qrnd that
surpasses the values of other actions. This provides a balance
between exploration and exploitation, that tends to take the
greedy action when we are rather certain that it will result in
a larger value, and increases the probability of exploring a
non-greedy action when its predicted outcome is uncertain.

B. Unit Generation

The GMM is initialized with a small number of units
that is selected according to the expected complexity of the
problem. However, if during training the model is found to
be insufficient to represent the sample distribution with the
required accuracy, it may be upgraded by generating new
units. Since our main interest is to accurately represent the
Q function, the generation of a new Gaussian is determined
by the failure of the current GMM to account for an actually
observed q value. Thus, a new Gaussian is generated when
the two following conditions are satisfied:
1) The estimation error of the observed q value is larger

than a predefined value δ:

(q(s, a) − μ(q|s, a))2 ≥ δ. (35)

2) Units close to the experienced point have been suffi-
ciently updated. We consider a unit i is close to a point x =
(s, a, q), if the Mahalanobis distance D

(i)
M , with covariance

matrix Σi, between the unit mean and the point is less than
1,

I = {1 ≤ i ≤ K|D(i)
M (x, μi) < 1}, (36)

and thus, the criterion can be expressed as:

t∑
τ=1

wτ,i > Nconf , ∀i ∈ I. (37)

The purpose of this condition is to avoid the premature
generation of new units in a region before the system has
had the opportunity to adapt to data in the given region.
Whenever both criteria are fulfilled, a Gaussian is gener-

ated with parameters given by:

WK+1 = 1 (38)

μK+1(s, a, q) = (st, at, q(st, at)) (39)

ΣK+1 = C diag{d1, ..., dD, da, dq}, (40)

where di is the total range size of variable i, D is the
dimension of the state space, and C is a positive value to
size the variances of the new Gaussian.

VI. EXPERIMENTS

A classical benchmark problem for RL, the control of an
inverted pendulumwith limited torque [24], has been selected
to test our algorithm. We addressed the problem of the swing
up and stabilization of the pendulum. The task consists in
swinging the pendulum until reaching the upright position
and then stay there indefinitely. The optimal policy for this
problem is not trivial to find since, due to the limited torques
available, the controller has to swing the pendulum several
times back and forth until its kinetic energy is large enough
to overcome the load torque and reach the upright position,
and then stabilize the pendulum there.
The state space of this problem is two-dimensional and

is formed by the angular position θ and angular velocity
θ̇: s = (θ, θ̇), where θ takes values in the interval [−π, π],
and θ̇ is limited to the interval [−8, 8]s−1. The Gaussians
of the mixture model are four-dimensional and the GMM
provides estimations of the probability densities in the joint
space x=(θ, θ̇, a, q). As the reward signal we simply take
the height of the tip of the pendulum h = cos(θ) which
ranges in the interval [−1, 1], and the discount coefficient γ
in equation (2) is set to 0.99. We initialize the model with
20 Gaussians with random initial means μi for all except
the q dimension, that is initialized to the maximum possible
Q value to favor exploration of unvisited regions. The initial
covariance matricesΣi are diagonal and the variance of each
variable is set to the range of that variable. The initial number
of samples Wi of each Gaussian is set to 0.1. This small
value makes the component i to have a small influence in
the estimation while there is no, or little, updating.
The discount factor λt for the weighted sums with forget-

ting (section IV) takes values from the equation,

λt = 1 − 1/(at + b) (41)

where b regulates the initial value λ0, and a determines its
growth rate toward 1. In our experiments we set a = 0.001
and b = 1000 in the case of using the updating formula (14),
and b = 10 in the case of using the updating formula (19)
to compensate for the effect of the exponent wt,i < 1.
For the experiments, we adopt the set-up of [25]: we

run episodes of 7 seconds with actuation intervals of 0.01
seconds. At the beginning of each episode the pendulum
is randomly placed inside an arch centered in the upright
position. This can be seen as a form of the hint-to-goal
heuristic used in [9] and also in [3]. The length of the arch
is steadily incremented with each episode until covering its
whole range, thus allowing any arbitrary initial position. To
evaluate the performance of the learning system, we run 10
independent experiments of 120 episodes each. At the end
of each episode, a 7 sec. test exploiting the policy learned so
far is done, and the total accumulated reward is computed.
Figure 1 shows the result of averaging the results of the
10 experiments using the updating formula (14). It can be
observed that, despite an acceptable control is reached, there
is some instability that persists even in the final episodes.
This is caused by sporadic periods in which, after having
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Fig. 1. Average of the accumulated reward per episode performed over 10
experiments, with uniform forgetting (λt).

learned to correctly swing-up and stabilize the pendulum,
the system “unlearns” it and must re-learn again to recover
the right policy. This effect is a consequence of the forgetting
of the function approximation in low valued regions caused
by the biased sampling that occurs when the system keeps
learning after the right policy has been already found. To
correct this effect is that we introduced the updating formula
(19) for weight-dependent forgetting. The results obtained
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Fig. 2. Average of the accumulated reward per episode performed over 10
experiments, with weight-dependent forgetting (λ

wt,i
t ).

using this formula are shown in Figure 2. It can be seen that
in this case convergence is much faster and with a much
more stable behavior, what demonstrates the effectiveness of
the approach.
To illustrate the performance reached, Figure 3 shows a

stroboscopic sequence of the pendulum starting from the
initial position of the pendulum hanging down. Figures 4 and

Fig. 3. A stroboscopic sequence obtained from placing the pendulum in
the downright position.
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Fig. 4. Projection of the Gaussians of the GMM into the state space.
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5 show two projections of the Gaussians of a typical GMM
obtained for this problem after training. It can be seen that
they are not equally distributed on the whole configuration
space, but concentrated in the most common trajectories of
the system, making an efficient use of resources.

VII. CONCLUSIONS

We have shown that estimating a probability density func-
tion in the joint space of states, actions and q-values, provides
a useful tool for RL in continuous domains. The probability
density function captures all the information available to the
RL agent: In the first place, it provides a function approxima-
tion for the action-value function Q(s, a) as the mean of the
sample values q(s, a); in second place, as in the case of using
GPs, the probability density function provides not only the
mean value of q(s, a), but a full probability distribution of
its possible values, and in particular, its variance. We use this
information to direct the exploration, a possibility suggested
in [5], [4], but that had not been implemented yet. Finally, the
probability density in the joint space can be marginalized to
obtain the density of samples in the state-action space, which
may be used to measure the confidence we may have in the
estimation at each point.
To represent the probability density function we use a

GMM with variable number of units. This provides a general,
non-parametric, function approximation tool. By using an on-
line version of the EM algorithm, the training of the GMM
can be done incrementally and, thanks to the simplicity of
the GMM, the update process is computationally efficient.
The feasibility of the method is demonstrated on a standard
benchmark for RL, the swing-up and balance of an inverted
pendulum with limited torque, with good results.
We believe that the simplicity and expressiveness of this

approach makes it a promising alternative for RL in contin-
uous domains.
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