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Abstract

We present a new approach for building an efficient and

robust classifier for the two class problem, that localizes

objects that may appear in the image under different orien-

tations. In contrast to other works that address this problem

using multiple classifiers, each one specialized for a specific

orientation, we propose a simple two-step approach with an

estimation stage and a classification stage. The estimator

yields an initial set of potential object poses that are then

validated by the classifier. This methodology allows reduc-

ing the time complexity of the algorithm while classification

results remain high.

The classifier we use in both stages is based on a boosted

combination of Random Ferns over local histograms of ori-

ented gradients (HOGs), which we compute during a pre-

processing step. Both the use of supervised learning and

working on the gradient space makes our approach robust

while being efficient at run-time. We show these properties

by thorough testing on standard databases and on a new

database made of motorbikes under planar rotations, and

with challenging conditions such as cluttered backgrounds,

changing illumination conditions and partial occlusions.

1. Introduction

We present a novel approach for detecting objects of a

specific category that may appear in images under different

planar rotations, as shown in Figure 1. This problem has

been traditionally addressed from a multi-class perspective

by using classifiers specifically trained at different orienta-

tions [8]. These methods however, suffer from two limita-

tions. First, the computational cost for both the training and

test stages increases with the number of classifiers, and sec-
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Figure 1. The proposed two-step rotation invariant object detection

approach. (a) First, the estimator yields an initial set of potential

object poses (location, scale and orientation). (b) Each hypothe-

sis is steered back to a canonical orientation and validated by the

classifier. (c) The hypotheses that remain after non-maxima sup-

pression are considered object instances.

ond, the use of multiple classifiers increases the number of

false positives.

In this paper, we introduce an approach that overcomes

both these limitations. We achieve this by splitting the ob-

ject detection task in two different steps: pose estimation

and classification. We initially train an estimator using im-

ages under all orientations. This estimator can be very ef-

ficiently computed over the whole image, yielding a large

number of candidates, many of them false positives, along

with estimates of their location, orientation and scale. The

second step learns an orientation-specific classifier that, by

means of a simple steering procedure, can be efficiently

tested on each hypothesis according to its estimated pose.

Results of this detection are shown in Figure 1.

In addition, and in contrast to other works that use code-

book appearance techniques [5, 9, 13, 18], our method is

based on Random Ferns [17], densely computed over local

HOGs. These Random Ferns are probabilistically computed

using a boosting algorithm, and as shown in the results Sec-

tion, allow for the computation of robust features in a very

simple and efficient manner.

The rest of paper is organized as follows. Section 2,

places our contribution in context with related work. In Sec-
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tion 3 we describe all the elements of our approach, includ-

ing the computation of the binary features over HOGs, the

Random Ferns, and the object pose estimator and classifier.

In Section 4 we present the results over several datasets, and

we discuss some implementation and computational cost

details in Section 5.

2. Related Work and Contributions

The problem of detecting object categories in images is

known to be very challenging and needs to address several

issues such as large intra-class object variations, changes in

object pose, cluttered backgrounds or illumination changes.

Yet, many recent methods have shown a remarkable suc-

cess when are used in conjunction with machine learning

techniques such as boosting[10, 14, 22, 26, 28] or Sup-

port Vector Machines (SVMs) [2, 4, 9, 15, 18]. However,

these methods have been effectively used mostly for stan-

dard datasets [1, 3, 5, 11] for which the objects only appear

in a relatively reduced number of poses [7, 20, 24].

In this paper, we are interested in object categorization

under general in-plane rotations. We show that the problem

can be solved by splitting it in two stages. A pose estimation

step, followed by a classification step. In fact this is similar

to what was done in [18] for detecting cars under general

3D poses, although estimator they use requires from several

and relatively complex steps.

The simplest strategy for dealing with in-plane rotations

would be to rotate the image or steer the object classifier to

multiple orientations. However, this approach would have

a high computational cost, because it would require to test

the classifier several times over the image, one for each dis-

cretized orientation. In addition, it would produce a large

number of false positives because the classifier would have

to be evaluated significantly more times.

In [13] objects at different orientations are detected by

means of an Implicit Shape Model and rotation invariant

features. Yet, the method is computationally expensive, as

it requires to compute SIFT descriptor over edges, and ap-

ply a PCA analysis followed by a voting strategy. Other

approaches address the problem as a multi-class one using

different boosting versions [8, 25]. However, since they de-

compose the problem into several classes it requires from

more features and a higher computational effort. In [25],

features are shared among classes also through a hierarchi-

cal structure, also requiring an expensive learning step.

In this paper we show that decoupling the orientation

estimation from object classification allows to reduce the

computation time both for learning and testing, while the

detection results remain high. The estimation step is used

as a pre-filter that generates object hypotheses. Given these

hypotheses an orientation-specific classifier is appropriately

steered and verifyied according to the estimated orientation

Figure 2. Local Binary Feature. Our features are computed from

binary comparisons between different bins of the HOG.

in a similar way as was done in [19] for all the pixels in the

image.

An additional contribution of our approach is the use

Fern-based [17] binary features over local histograms of ori-

ented gradients, exploiting their simplicity, rapid computa-

tion, and the robustness they offer to illumination changes.

Local binary features have been traditionally computed in

the intensity domain, for specific object detection and seg-

mentation tasks [16, 17, 23]. And finally, another contribu-

tion is the use of a boosting step to learn the most discrim-

inative set of Ferns. In contrast to the original work [17]

where these features were randomly chosen, we incorporate

a Real Adaboost algorithm [21] to select the most meaning-

ful Ferns according to their classification power over train-

ing samples.

3. Two-Step Orientation Invariant Object

Detection

In this section we describe each of the individual ingre-

dients of our two-step approach. Section 3.1 explains how

local binary features over HOGs are computed. In Section

3.2 we describe the Random Ferns using the likelihood-ratio

between classes. The object pose estimator and classifier

are presented in Sections 3.3 and 3.4.

3.1. HOG­based Features

A Local Binary Feature (LBF) maps an image sample x
to a boolean space in the form,

f : x → {0, 1} , x ∈ X, (1)

by simple comparison between a pair of image values (e.g

pixel intensities). Traditionally, LBFs are computed in the

image intensity domain yielding successful detection results

for specific objects. We extend the same idea and propose

to compute LBFs in the HOG domain instead, since HOG-

based features have demonstrated remarkable results for ob-

ject categorization showing robustness to illumination and
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object appearance changes. Therefore, we define the HOG-

LBF as a signed comparison between two HOG cells,

f(x) =

{

1 xΩi
> xΩj

0 xΩi
≤ xΩj

, Ω ∈ IR3 (2)

where Ωi and Ωj are the feature component locations de-

fined by spatial and orientation bin coordinates (u, v, θ).
Figure 2 shows one LBF instance for a local HOG.

3.2. Random Ferns on the HOG Space

In order to compute object features, we use the Random

Ferns proposed in [17] for keypoint classification. However,

and in contrast to this original formulation of the Random

Ferns, we write the Ferns expression in terms of likelihood

ratios between classes. This allows us to seek for the fea-

ture combinations that maximize this ratio, by means of a

boosting algorithm.

Our goal is to model the posterior object class probability

given a set of n features (LBF). This can be expressed by the
Bayes rule as,

P (C|f1, f2, ..fn) =
P (f1, f2, ..fn|C)P (C)

P (f1, f2, ..fn)
, (3)

whereC refers to the category and fi is a feature. An equiv-

alent expression may be written for the background (B)

class. We seek to maximize the object class posterior proba-

bility ratio with respect to the background class. By remov-

ing the priors P (f1, f2, ..fn), common for all the classes,
assuming uniform prior probabilities P (C) = P (B), and
considering logarithms, the ratio of probabilities may be

written as,

log
P (C|f1, f2, ..fn)

P (B|f1, f2, ..fn)
= log

P (f1, f2, ..fn|C)

P (f1, f2, ..fn|B)
. (4)

Since computing the complete joint probability for a

large feature set is not feasible, we split the previous equa-

tion into m subsets (̥ = {f1, f2, ..fr}), with r = n/m.
These feature subsets are known as Ferns, and assuming

they are independent, their joint log-probability is computed

as,

log

∏m

i=1 P (̥i|C)
∏m

i=1 P (̥i|B)
=

m
∑

i=1

log
P (̥i|C)

P (̥i|B)
, (5)

Each Fern captures the co-occurrence of r binary fea-
tures computed on the HOG space, and encodes object local

appearances. Its response is represented by a combination

of boolean outputs. For instance, the observation zi of a

Fern ̥i made of r = 3 features with binary outputs 0, 1, 1,
would be (011)2 = 3. In other words, each Fern maps 2D
image samples to aK = 2r-dimensional space,

̥ : x → z, x ∈ X, z ∈ IR. (6)

Then, the probability of each Fern ̥i may be written

using its feature set observation zi conditioned to each class,

m
∑

i=1

log
P (zi = k|C, gi)

P (zi = k|B, gi)
, k = 1, 2, ...K, (7)

where k corresponds to the observation index and gi (g ∈
IR2) to image spatial location where the Fern ̥i is evalu-

ated, measured from the object image center (Figure 2).

3.3. Object Pose Estimator

We build a robust object pose estimator as a linear com-

bination of weak classifiers, where each of them is based on

a Random Fern with an associated spatial image location.

More formally, we want to build an object estimator clas-

sifier E(x), yielding the most discriminative Ferns ̥i and

locations gi, that is, the Ferns and locations that maximize

Eq. 7. This is achieved by means of a Real Adaboost al-

gorithm [21], that iteratively assembles weak classifiers and

adapts their weighting values. Then, the estimator is defined

as a sum of T weak classifiers,

E(x) =

T
∑

t=1

ht(x) > βe, (8)

where ht(x) is a weak classifier and βe is the estimator

threshold whose default value is zero. In practice, when

computing the pose estimator, each weak classifier incor-

porates an additional orientation parameter w that is a label
assigned to each training image sample indicating the object

orientation that has been applied by rotating training data to

L in-plane rotations. Therefore, a weak classifier is defined
by the co-occurrence of a Random Fern observation z and
an image orientation label w,

ht(x) =
1

2
log

(

P (zt, w|C, gt) + ǫ

P (zt, w|B, gt) + ǫ

)

, (9)

where ǫ is a smoothing factor.
The estimator seeks to maximize this co-occurrence dur-

ing the learning step by evaluating different Random Ferns

and keeping the most discriminative ones. This is done

at each iteration t of the boosting step by calling a weak
learner to compute and select the most discriminative clas-

sifier according to a sample weight distribution Dt(i),

P (zt = k,w = l|C, gt) =
∑

i:zt(xi)=k∧w(xi)=l

Dt(i), (10)

being l = 1, 2, ..L and k = 1, 2, ..K.
At each iteration, the weak classifier that maximized

the classification power in terms of the following Bhat-

tacharyya distance is selected

Qt = 2

L
X

l=1

K
X

k=1

p

P (zt = k, w = l|C, gt)P (zt = k, w = l|B, gt).

(11)
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Figure 3. Object estimation and classification. First row: Object hypotheses. Second row: Classification results. Each column corresponds

to a different value of the parameter βe = {0, 2, 4}.

Algorithm 1 Object Orientation Estimator

1: Given a number of weak classifiers T and a

dataset S consisting of N image samples labeled

(x1, y1, w1)...(xn, yn, wn), where yi ∈ {+1,−1} is
the label for category and background classes, respec-

tively; and wi = {w1, w2, ..., wL} the orientation label.
2: Construct a pool of M Random Ferns densely com-

puted over the whole image.

3: Initialize sample weights D1(i) = 1
N
.

4: for t = 1 to T do
5: form = 1 toM do
6: Under current distribution Dt(i), calculate hm(x)

and its Bhattacharyya distance Qm.

7: end for

8: Select the ht that minimizes Qm.

9: Update sample weights.

Dt+1(i) = Dt(i) exp[−yiht(xi)]
P

N
i=1

Dt(i) exp[−yiht(xi)]

10: end for

11: Final strong classifier.

E(x) = sign
(

∑T

t=1 ht(x) − βe

)

The weak classifiers built using this methodology are

focused on Random Ferns that are both discriminative for

their observations and for their orientation distributions.

Thus, if one weak classifier tends to favor some orien-

tations, subsequent classifiers are forced to classify those

samples labelled as missclassified orientations. Details on

this methodology for computing the estimator are given in

the pseudocode of Algorithm 1.

Orientation Estimation

In order to compute the object orientation at runtime, the

estimator is evaluated according to the following expression

E(x) =
T

2

T
X

t=1

log
P (zt|C, gt)

P (zt|B, gt)
+

T

2

T
X

t=1

log
P (w|C, gt, zt)

P (w|B, gt, zt)
.

(12)

The left-hand side of this equation, is the root classifier Φ
and corresponds to the ratio of observation probability of

the T selected Random Ferns. Note that it does not con-
sider the orientation parameter w, and hence, this classifier
responds to object instances under multiple in-plane rota-

tions. By setting a threshold Φ > βe, we can choose a

large number of potential hypotheses at runtime. The right-

hand side of the Eq. 12, is the orientation estimation term,

which is made by the combination of local orientation esti-

mations given by the observations of the Boosted Random

Ferns. According to this distribution, the object orientation

is assigned to

φ = arg max
k

T
∑

t=1

log
P (w = k|C, gt, zt)

P (w = k|B, gt, zt)
. (13)

The method is exemplified in Figure 3. The upper row

shows the initial object hypotheses for different values of

the root detector threshold βe. The object pose (location,

scale and orientation) is represented by means of red lines.

The images in the second row show the object detection re-

sults after testing the steered object classifier over the initial

hypotheses. The βe parameter controls the number of false

positives of the estimator and, consequently, the computa-

tional cost of the algorithm, since the classification step is
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Figure 4. Boosted Random Ferns. Spatial locations of boosted

Random Ferns for motorbike and car categories, respectively.

only evaluated over the initial hypotheses. Therefore, the

choice of this parameter is a tradeoff between false posi-

tives and computational burden.

3.4. Object Classifier

The orientation-specific classifier is built in the same

way as the estimator E(x) but using training images ori-
ented to a canonical orientation. Furthermore, at runtime,

the classifier may be steered to each specific orientation

given by the estimator, which prevents from having to train

a different classifier for each possible orientation. We can

then write the orientation-specific classifier based on Ran-

dom Ferns as,

H(x) =
T

∑

t=1

ht(x) > βc, (14)

where βc is the classifier threshold and ht is a weak classi-

fier defined by

ht(x) =
1

2
log

(

P (zt = k|C, gt) + ǫ

P (zt = k|B, gt) + ǫ

)

. (15)

At iteration t, the probability P (zt|C, gt) is computed
under the distribution of sample weights Dt(i) by

P (zt = k|C, gt) =
∑

i:zt(xi)=k

Dt(i), k = 1, ..,K. (16)

Following the same idea as for the estimator, we choose

the weak classifier that minimizes the following Bhat-

tacharyya distance

Qt = 2

K
∑

k=1

√

P (zt = k|C, gt)P (zt = k|B, gt). (17)

Figure 4 shows how the boosting step extracts discrim-

inative Random Ferns for a given class (i.e., motorbikes).

For this case, features occur mainly in semantic object parts

like wheel and handlebars.

Steering the Object Classifier

For each object hypothesis made by the estimator E(x), the
classifier described above is steered and evaluated. This is

performed by simply rotating the coordinates of each Local

Method UIUC UIUC TUD

Multi-scale Single scale motorbikes

[1] 39.6% 76.5% -

[5] - 88.5% -

[6] 87.8% 88.6% -

[15] 90.6% 99.9% -

[22] - 92.8% -

[13] 94.7% - 89.0%

[11] 95.0% 97.5% 87.0%

[9] 98.6% 98.5% -

[12] - - 92.8%

* 98.5% 98.2% 89.3%

Table 1. Category detection rates for public datasets.

Binary Feature Ω in the HOG as follows,

Ω∗ =





cos(φ) − sin(φ) 0
sin(φ) cos(φ) 0

0 0 (1 + p)



Ω, (18)

where Ω = [u, v, θ]′, φ is the rotation angle and p is the
angular translation increment defined by φ∗L

πθ
.

4. Experiments

The proposed approach has been extensively validated

using different datasets. To test the orientation-specific

classifier and to compare its performance to other state-of-

the-art approaches, we initially evaluated it with standard

datasets without explicit in-plane rotations. For this pur-

pose, we used the well-known UIUC car dataset [1] and

the TUD motorbike dataset [6]. We also created a new

dataset containing motorbikes under planar rotations, which

allowed us to test the combined orientation estimation and

classification approach. In the following, we will denote

this dataset as Freestyle Motocross.

UIUC Car dataset - This dataset contains car-sides under

difficult imaging conditions such as illumination changes,

cluttered backgrounds and mild occlusions. This dataset has

two sets of images for testing. The first one has 170 images
containing 200 car instances with similar scale to that of
the training samples (40x100 pixels). The second one has
108 images consisting of 139 cars at different scales, vary-
ing from 36x89 to 85x212. Unlike the method presented
in [22], the proposed work does not need to test each image

twice, and the detector is able to simultaneously detect cars

facing to the left or to the right. The best achieved detection

rates for this dataset are 98.2% and 98.5% Equal Error Rate
(EER) for single and multi-scale tests, respectively. The top

two rows of Figure 8 show some samples of the detection

results.

TUDMotorbike Dataset - This dataset consists of 115 im-
ages containing 125 motorbike instances under occlusions
and different scales. For training, 400 motorbike images
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Figure 5. Detection performances. (a) Detection curves over UIUC car dataset for different LBP configurations. (b) Feature co-occurrence

evaluation over UIUC car dataset. (c) Detection performances for Freestyle Motocross dataset assessing different detector approaches.

from the Caltech motorbike dataset [5] have been used. The

achieved detection rate for this dataset is of 89.3% EER.
Table 1 shows some detection performances for this dataset

and in the middle row of Figure 8 we plot some detection

results.

Freestyle Motocross - This dataset has been built in order

to explicitly evaluate the proposed algorithm to rotations in

the plane. The images were extracted from the internet and

correspond to motorbikes with challenging conditions such

as extreme illumination, multiple scales and partial occlu-

sion. Moreover, some instances show some degree of out-

of-plane rotations (see the two bottom rows of Figure 8).

There are two sets of images for testing. The first set has

69 images with 78 motorbikes without in-plane rotations
while the second one has 100 images with 128 motorbikes
instances with multiple rotations in the plane. The learn-

ing was done using 800 images from the Caltech motorbike
dataset [5].

Two validate the orientation estimation-classification

method, two types of experiments were performed. In the

first experiment, two detection approaches are considered;

one that only uses the object classifier and another where the

classifier is tested in combination with the estimator. Both

methods show a similar detection performance achieving a

detection rate of 91.03% EER. In the second experiment,
two detection approaches are considered again. The first

one uses the estimator/classifier combination and the sec-

ond one tests the classifier to multiple orientations. The de-

tection rate for combining estimator and classifier is 93.75%
EER while for detection under multiple rotations is 85.94%.

4.1. Discussion

The proposed approach achieves remarkable results in

comparison to state-of-the-art methods (see Table 1), with

the advantage of being more efficient computationally, since

it does not require complex feature computation or the com-

bination of multiple cues [12].

To show how the layout of Random Fern features inside a

local HOG affects the detection performance, four different

types of LBF configurations have been evaluated. The first

(a) (b)

(c) (d)

Figure 6. HOG-based LBF configurations. (a) Spatial-LBF (b)

Orientation-LBF (c) Spatial/Orientation-LBF (d) Spread-LBF.

three have in common that feature comparisons are carried

out between adjacent HOG cells in spatial and orientation

directions, and in a combination of both. These LBF con-

figurations resemble to Haar-like features computed in the

HOG domain [27]. Finally, a spread configuration is pro-

posed in which features are distributed over the whole lo-

cal HOG (Figure 6). Detection performances for the UIUC

dataset are shown in Figure 5(a). Spread-LBF outperforms

others because this type of configuration does not constraint

feature locations. Therefore, in the rest of paper, spread fea-

tures are chosen to construct the object estimator and clas-

sifier.

Similarly, the number of features (LBF) per Fern has

been evaluated to measure the importance of feature co-

occurrence. Four orientation-specific classifiers have been

learned using the same number of LBF (2100) but with dif-
ferent number of features per Fern. The results are depicted

in Figure 5(b). It shows that feature co-occurrence improves

detection performance until a saturation point where there
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Figure 7. Orientation accuracy. Detection performances for differ-

ent values of orientation estimation.

are many features for such local HOG size.

With regard to the estimator evaluation, the test 1 in the
Freestyle Motocross dataset shows that incorporating the

estimator does not affect the detection performance for ob-

ject instances without rotations in the plane (see Figure 5c).

It is because even when many object candidates are given

by the estimator, the classification stage is still able to reject

false hypotheses. For test 2, the combination of estimator
and classifier shows better results than the classifier tested

to multiple orientations since the latter has to be evaluated

N times, being N the number of orientations. Hypotheses
verification at multiple orientation increases the number of

false positives and the computational cost.

Another experiment to measure orientation estimation

accuracy is shown in Figure 7. For this experiment, a true

positive detection is considered when the difference be-

tween the estimated orientation and ground truth orientation

is below a given accuracy value. The figure shows differ-

ent detection curves for different accuracy values. The pro-

posed method provides good detection results, above 91%
EER, for an error margin of 15 degrees. The accuracy of
the orientation estimation could be improved if we consider

more object orientations in the learning step. However, this

is at the expense of increased computational cost and train-

ing time. For this experiment, we used 16 orientations.

5. Implementation Details

For computing gradients, Prewitt masks have been se-

lected and their signs omitted to have unsigned gradients

(0◦ - 180◦). Since filter response is affected by the scale of
image, just as image derivatives are, a HOG pyramid is built

where in each level an integral histogram is computed in or-

der to have an efficient estimator/classifier testbed. In this

work, two scale levels per octave are used, being a good

tradeoff between computational cost and detection perfor-

mance [10]. For HOG computation, the cell size and local

HOG size (block size) are set to 3x3 pixels and 3x3 cells,
respectively. The number of gradient orientation bins for

the classifier is set to 4 while for the estimator is set to 8.
For orientation computation, the training image data is arti-

ficially rotated to 16 orientations. In all experiments, about
2000 spread LBF have been used for computing the cate-
gory classifiers.

The most computationally expensive part of the algo-

rithm is the convolution of the boosted Random Ferns over

the whole image. That is, O(N ×M ×P ×S) whereN,M
is the image size, and P and S are the number of Random
Ferns and features per Fern, respectively. The decoupled

approach we propose allows to initially evaluate the estima-

tor and just consider the classifier when the estimator score

exceeds a certain parameter βe. In the worst case, the de-

tector cost will equal the cost of applying both the estimator

and classifier sequentially. This cost is of course lower than

testing multiple independent classifiers at different orienta-

tions.

6. Conclusions

The presented work addresses the robust detection of

specific categories that may appear in images under differ-

ent rotations in the plane. The proposed approach decouples

the problem in two stages, pose estimation and classifica-

tion, that allow to detect objects in images efficiently. Com-

putation of the pose estimator and the orientation-specific

classifier are based on the boosted combination of Random

Ferns which are evaluated densely over local HOGs.

The method has been validated in standard datasets con-

taining category instances under challenging imaging con-

ditions. Our detection results show the method to be com-

petitive with state-of-the-art methods, with the advantage of

being computationally more efficient.
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