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Abstract

Local invariant feature extraction methods are

widely used for image-features matching. There exist

a number of approaches aimed at the refinement of the

matches between image-features. It is a common strat-

egy among these approaches to use geometrical crite-

ria to reject a subset of outliers. One limitation of the

outlier rejection design is that it is unable to add new

useful matches. We present a new model that integrates

the local information of the SIFT descriptors along with

global geometrical information to estimate a new ro-

bust set of feature-matches. Our approach encodes the

geometrical information by means of graph structures

while posing the estimation of the feature-matches as

a graph matching problem. Some comparative experi-

mental results are presented.

1. Introduction

Image-featuresmatching based on local stable repre-

sentations has become a topic of increasing interest over

the last decade. Mikolajczyk and Schmid [6] evaluated

a number of approaches and identified Lowe’s SIFT de-

scriptors [4] as the most stable representations.

SIFT features (keypoints) are located at the salient

points of the scale-space. Each SIFT feature provides

local texture information invariant, at a considerable ex-

tent, to image distortions.

A number of approaches have been presented aimed

at enhancing the SIFT matching between two images

with the use of higher-level information. To cite some

examples, RANSAC [3] has been successfully applied

to outlier rejection by fitting a geometrical model. More

in the topic of the present paper, Aguilar et al. [2]

have recently presented an approach that use a graph

transformation to select a subset of structurally robust

matches.

One drawback of the two mentioned approaches, and

all the outlier rejectors in general, is that they cannot

add additional useful matches but only remove incor-

rect ones. To overcome this limitation we face the en-

hancement of the SIFT matches as an attributed graph

matching problem. We propose a new model for the as-

signment probabilities based on both the local descrip-

tors and the surrounding matches. We use a discrete

labelling scheme in order to update the configuration of

matches according to our new model.

We have evaluated the matching precision and recall

of our method, which is described in section 2, under

different sources of noise. We present in section 3 com-

parative results with Aguilar et al.’s outlier rejector [2],

RANSAC used to fit a fundamental matrix [1], and Luo

and Hancock’s structural graph matching approach [5].

In section 4 some conclusions are drawn.

2 Attributed Graph Matching with SIFTs

We define a graph G0 representing a set of SIFT

keypoints from an image I0 as a three tuple G0 =
(V0, B, Y ) where v ∈ V0 is a node associated to a SIFT

keypoint, B is the adjacency matrix (thus, Bv,v′ = 1
indicates that nodes v and v′ are adjacent and Bv,v′ = 0
otherwise) and, yv ∈ Y is the SIFT descriptor associ-

ated to node v (a column-vector of length 128).

Consider another image I1 showing the same scene

as I0 but with some random changes in the viewing con-

ditions such as viewpoint, position, illumination, etc ...

Consider the graph G1 = (V1, A, X) to represent a set

of keypoints from I1.

Our approach to attributed graph matching aims to

estimate an assignment function f : V1 → V0 with the

use of SIFT descriptors as attributes. Therefore, f(u) =
v means that node u ∈ V1 is matched to node v ∈ V0,

and f(u) = ∅ means that it is not matched to any node.
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2.1 A Discrete Labelling Scheme

We want to maximise the joint probability of a graph

given the assignment function f . To do so, our itera-

tive algorithm visits all the nodes of the graph at each

iteration, and updates f in order to increase this joint

probability

P (G1|f) =
∏

u∈V1

P (u|f(u)) (1)

The update equation of the assignment function is

f (n+1)(u) = arg max
{f(n)(u)∈V0}S

{∅}

P
(
u|f (n)(u)

)
(2)

We have designed our matching criterion as a prod-

uct of two quantities:

P (u|f(u)) = PuQu (3)

where Pu and Qu stand for the matching probability ac-

cording to the current node attributes and its adjacency

relations, respectively.

2.2 Matching probability according to the
current node attributes

This measure represents the likelihood of a node as-

sociation regardless of the adjacency relations. We want

our algorithm to behave the same as SIFT matching

when no graph structure is present.

Consider two sets of SIFT keypoints X, Y from two

images I1 and I0. According to SIFT matching, a key-

point i from I1 with descritpor (column) vector xi is

matched to a keypoint i′ from I0 iff: i′ = arg min
bi′

||xi−

ybi′ ||, and
||xi−yi′ ||

||xi−yi,2min|| < ρ, where ||x|| =
√

x⊤x

is the Euclidean length (L2 norm), yi,2min is the de-

scriptor with the second smallest distance from xi, and

0 < ρ ≤ 1 is a parameter defining the ratio of accep-

tance of candidates. If these conditions are not met, then

keypoint i is leaved unmatched.

Our model for the matching probability according to

the node attributes between nodes u ∈ V1 and f(u) ∈
V0 is

Pu = N
(
||xu − yf(u)|| ; 0, σ

)
(4)

where xu and yf(u) are the SIFT descriptors of nodes

u ∈ V1 and f(u) ∈ V0, and N (• ; 0, σ) is the normal

probability function with zero mean and sample stan-

dard deviation

σ =
1

|V1||V0|
∑

u∈V1

∑

v∈V0

||xu − yv|| . (5)

The SIFT matching criterion states that a keypoint

i can only be matched to another keypoint when the

distance between their descriptors is below ρ ||xi −
yi,2min||. Accordingly, we define the threshold prob-

ability for sending a node u → ∅ as

Pu∅ = N (ρ ||xu − yu,2min|| ; 0, σ) . (6)

2.3 Matching probability according to the ad-
jacency relations

Our aim is to define a model that takes into account

the matching quality of the adjacent nodes.

We define the assignment variable S such as su,v ∈
S and su,v = 1 if f(u) = v and su,v = 0 otherwise.

Luo and Hancock [5] showed how to factorise, using

the Bayesian theory, the hard-to-model matching prob-

ability given the entire state of the assignments S into

easy-to-model unary assignment probability terms:

P (u|f(u), S) = gu

∏

u′∈V1

∏

v′∈V0

p (u|f(u), su′,v′) (7)

where gu = [1/p(u)]
|V1||V0|−1

is a constant depending

on the identity of node u.
It is a well-known strategy to state that a match from

a node u ∈ V1 to a node f(u) ∈ V0 is more likely to

occur as more nodes adjacent to u are assigned to nodes

adjacent to f(u) [5].
We define a hit as a node u′ ∈ V1 adjacent to u that

is matched to a node f(u′) ∈ V0 adjacent to f(u). The
model for the unary assignment probabilities presented

in [5] used the Bernoulli distribution in order to acco-

modate hits and no hitswith fixed probabilities (1 − Pe)
and Pe (being Pe the probability of error). We present a

new model aimed at giving a more fine-grainedmeasure

by assessing the hits according with their quality, while

giving room for possible structural errors in the case of

no hit. The proposed expression is

p (u|f(u), su′v′) = P
Auu′Bf(u)v′su′v′

u′

[ξPu′∅]
(1−Auu′Bf(u)v′su′v′)

(8)

where A and B are the adjacency matrices of G1 and

G0, respectively; Pu′ is the quality term of matching

node u′ ∈ V1 according to eq. (4) and, [ξPu′∅] is the
gound-level contribution in the case of no hit expressed

in reference to Pu′∅ (eq. (6)). The parameter 0 < ξ ≤ 1
regulates the ground-level contribution. When ξ → 0,
there is small room for structural errors and then, the up-

date equation (3) relies mostly on the structural model.

On the other hand, when ξ → 1, the ground-level ap-

proaches the quality term and the structural model be-

comes ambiguous.
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In a similar manner that is done in [5], we state equa-

tions (7) and (8) in the exponential form, obtaining the

following expression

Qu = hu exp

[
∑

u′

∑

v′

log
“

P
u′

ξP
u′∅

”
Auu′Bf(u)v′ su′v′

]

(9)

where hu = exp
"

P
u′

P
v′

log(ξPu′∅)

#
gu is a constant that

does not depend on either the graph structure or the state

of the correspondences.

Finally, we define the threshold probability for send-

ing a node u ∈ V1 to null as

Qu∅ = hu exp
[
K∅ log

(
1
ξ

)]
= hu exp [−K∅ log (ξ)]

(10)

where K∅ ≥ 0, K∅ ∈ ℜ is a parameter defining the

minimum number of hits with quality term Pu′ ≥ Pu′∅

required for the match u → f(u) to be more structurally

likely than u → ∅.

3 Experiments and Results

We have compared our attributed graph match-

ing method (AGM) to the following approaches:

Graph Transformation Matching (GTM) [2], RANSAC

used to fit a fundamental matrix [1] and, Structural

Graph Matching with the EM Algorithm (GM-EM)

[5]. We have evaluated the matching Precision and

Recall scores of each method under the following

types of perturbations: image distortions, geomet-

rical noise and clutter (point contamination). We

have used the F-measure to plot the results. F-

measure is defined as the weighted harmonic mean

of Precision and Recall and its expression is: F =
(2 × Precision× Recall) / (Precision + Recall).

Graph structures have been generated using a K-

nearest-neighbours approach with K = 4 in all the

methods needed (i.e., edges are placed joining a key-

point with its K nearest neighbours in space). Addition-

ally, in the case of our method (AGM) we have included

the SIFT descriptors as attributes of the nodes. All the

methods have been initialized with the configuration of

matches returned by a classical SIFT matching using a

ratio ρ = 1 (the best value possible for the outlier re-

jectors). The keypoint-sets size used in the experiments

has been N = 20. Our method (AGM) has done 20 it-

erations, and we have used ξ = 0.5 and ρ = 1. We have

empirically set K∅ = 1.6 in the clutter experiments,

and K∅ = 0 in the others. The tolerance threshold for

RANSAC has been set to 0.01, and the number of iter-

ations to 1000 (as suggested in [1]). The probability of

error Pe for the GM-EMmethod has been set to 0.0003,
and the number of iterations to 100.

For each experiment we have arbitrarly chosen a

grayscale image I0 from the Camera Movements and

Deformable Objects’ databases used in [2].

In the image distortion experiments, we generate I1

by simultaneously applying the following types of per-

turbations to I0: image resizing, to simulate changes in

the distance from the objects in the image; image ro-

tation, to simulate changes in viewpoint; image inten-

sity adjustement, to simulate illumination changes and;

gaussian white noise addition to pixel intensity values,

to simulate deterioration in the viewing conditions.

We extract the SIFT keypoints from images I1 and

I0, obtaining coordinate vector-setsP and Q, and SIFT

descriptor-sets X and Y , respectively. We define P̃

as the result of the mapping from points in P back to

the reference of I0. We compute P̃ by applying to

P the inverse resizing and rotation from the perturba-

tion. We set the ground truth assignments on the ba-

sis of the proximity between the points in Q and P̃.

Then, for a given qi ∈ Q, we select as its ground

truth assignment the most salient p̃j ∈ P̃ among the

ones falling inside a certain radius r from qi. Saliency

is decided according to the gradient magnitude of the

SIFT features [4]. The proximity radius has been set to

r = 0.03 × l, where l is the diagonal-length of the im-

age. The keypoints that are not involved in any ground

truth assignment are discarded. So, at the end of this

step we end up with keypoint-setsQ′ = (q′
1, . . . ,q

′
N )

and P′ = (p′
1, . . . ,p

′
N ), and a bijective mapping

fgtr : P′ → Q′ of ground truth assignments.

Once the N ground truth assignments have been es-

tablished, we implement the clutter by adding a certain

amount of the remaining points in both P and Q to

P′ and Q′. Clutter points are carefully selected not to

fall inside the radius of proximity r of any pre-existent

point. Thus, we can safely assume that they have no

correspondence in the other point-set.

Finally, geometrical noise consists on adding ran-

dom gaussian noise with zero mean and a certain stan-

dard deviation σg to the point positions pi = (px, py).
This type of noise simulates nonrigid deformations in

the position of the features.

Each plot is the average of the experiments on 10
images. Due to the random nature of the noise, we have

run 10 experiments for each image.

Figure 1 shows the F-measure plots for an increasing

amount of image distortions. Both geometrical noise

and clutter have been set to zero.

Figure 2 shows the results for geometrical noise with

σg ranging from 0% to 5% of µd (where µd is the mean

of the pairwise distances between the points). Neither

image distortions nor clutter have been introduced.

Figure 3 shows the results for an increasing num-
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Figure 1. Image distortions.
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Figure 2. Geometrical noise.

ber of clutter points. The amount of point contamina-

tion has ranged from 0% to 80% of the total N points.

Neither background geometrical noise nor image distor-

tions have been introduced.

4 Conclusions

We have presented a graph matching model that

combines both SIFT features and structural relations.

Unlike outlier rejectors, our method faces the enhance-

ment of the SIFT matches as a graph matching problem.

In the image distortion experiments, the methods that

are not based on outlier rejection (AGM, GM-EM) re-

cover better than the others from matching misplace-

ments. Specifically our combined approach (AGM) per-

forms better than a purely structural one (GM-EM). In

the experiments with geometrical noise, the methods

that only use structural information (GTM, GM-EM)

experience a considerable decreasing in performance.
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Figure 3. Point contamination.

Our approach (AGM) remains the most stable even in

severe noise conditions. In the point contamination ex-

periments, outlier rejectors (GTM, RANSAC) show the

best performance. Results suggest us to work towards

the achievement of a better stability in front of point

contamination.
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