
ARTICLE IN PRESS

Pattern Recognition 43 (2010) 1642–1655
Contents lists available at ScienceDirect
Pattern Recognition
0031-32

doi:10.1

� Corr

E-m

Ernest.V
journal homepage: www.elsevier.com/locate/pr
Generalized median graph computation by means of graph embedding in
vector spaces
M. Ferrer a,�, E. Valveny a , F. Serratosa b, K. Riesen c, H. Bunke c

a Centre de Visió per Computador, Departament de Ci�encies de la Computació, Universitat Aut�onoma de Barcelona, 08193 Bellaterra, Spain
b Departament d’Enginyeria Inform�atica i Matem �atiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
c Institute of Computer Science and Applied Mathematics, University of Bern, Neubrückstrasse, 10, CH-3012 Bern, Switzerland
a r t i c l e i n f o

Article history:

Received 7 July 2008

Received in revised form

8 October 2009

Accepted 16 October 2009

Keywords:

Graph matching

Weighted mean of graphs

Median graph

Graph embedding

Vector spaces
03/$ - see front matter & 2009 Elsevier Ltd. A

016/j.patcog.2009.10.013

esponding author. Tel.: +34 93 581 23 01; fax

ail addresses: mferrer@cvc.uab.cat, mferrer@i

alveny@uab.es (E. Valveny).
a b s t r a c t

The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its

computation is very complex and the existing algorithms are restricted to use limited amount of data. In

this paper we propose a new approach for the computation of the median graph based on graph

embedding. Graphs are embedded into a vector space and the median is computed in the vector

domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the

vector domain back to the graph domain in order to obtain a final approximation of the median graph.

Experiments on three different databases containing large graphs show that we succeed to compute

good approximations of the median graph. We have also applied the median graph to perform some

basic classification tasks achieving reasonable good results. These experiments on real data open the

door to the application of the median graph to a number of more complex machine learning algorithms

where a representative of a set of graphs is needed.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

One of the basic objectives of pattern recognition is to develop
systems for the analysis or classification of input patterns. A first
issue to be addressed in any pattern recognition system is how to
represent these input patterns. Feature vectors are one of the most
common and widely used data representations. That is, a set of
relevant properties, or features, are computed for each pattern
and arranged in a vector. The main advantage of this representa-
tion is that many operations needed in machine learning can be
easily executed on vectors, and a large number of algorithms for
pattern analysis and classification become immediately available.
However, a disadvantage of feature vectors arises from their
simple structure and the fact that they have the same length and
structure regardless of the complexity of the object. For a general
introduction to pattern recognition and classification the reader is
referred to [9,11].

Therefore, for the representation of complex patterns, graphs
appear as an appealing alternative. One of the main advantages of
graphs over feature vectors is that graphs can explicitly model the
relations between the different parts of the object, whereas
feature vectors are only able to describe an object as an
ll rights reserved.

.: +34 93 58116 70.

ri.upc.edu (M. Ferrer),
aggregation of numerical properties. In addition, graphs permit
to associate any kind of label (not only numbers) to both edges
and nodes. Furthermore, the dimensionality of graphs, that is, the
number of nodes and edges, can be different for every object.
Thus, the more complex an object, the larger can be the number of
nodes and edges used to represent it. An extensive work
comparing the representational power of both feature vectors
and graphs under the context of web content mining has been
presented in [28].

In spite of the strong mathematical foundation underlying
graphs and their high power of representation, working with
graphs is harder and more challenging than working with feature
vectors. They have two main drawbacks when they are intended
to be applied in conjunction with classical learning algorithms. On
one hand, the computational complexity of the algorithms related
to graphs is usually high. For instance, the simple task of
comparing two graphs, which is known as graph matching,
becomes exponential in the size of graphs [5]. In addition, basic
operations that are needed in many pattern recognition methods
and that might appear quite simple in the vector domain, such as
computing the sum or the mean, turn very difficult or even
impossible in the graph domain. Although the existence of labels
on both nodes and edges may simplify many problems in graph
matching because they restrict the number of possible corre-
spondences between two graphs, many of the available methods,
spectral-based methods for instance, are not able to deal with
labelled graphs. Therefore, the existence of particular labels

www.elsevier.de/pr
dx.doi.org/10.1016/j.patcog.2009.10.013
mailto:mferrer@cvc.uab.cat
mailto:mferrer@iri.upc.edu
mailto:Ernest.Valveny@uab.es

ARTICLE IN PRESS

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–1655 1643
makes the problem easier from the theoretical point of view, but it
restricts the kind of methods that can be applied.

One of the aforementioned operations is the mean of a set of
graphs that, in the graph domain, has been defined using the
concept of the median graph. Given a set of graphs, the median
graph [16] is defined as a graph that has the minimum sum of
distances (SOD) to all graphs in the set. It can be seen as the
representative of the set and, therefore, it has a large number of
potential applications including many classical algorithms for
learning, clustering and classification that are normally used in
the vector domain. As a matter of fact, it can be potentially applied
to any graph-based algorithm where a representative of a set of
graphs is needed. However, the computation of the median graph
is exponential both in the number of input graphs and their size
[16]. The only exact algorithm proposed up to now [19] is based on
an A� algorithm using a data structure called multimatch. As the
computational cost of this algorithm is very high, a set of
approximate algorithms have also been presented in the past
based on different approaches such as genetic search [16,19],
greedy algorithms [14] and spectral graph theory [10,30].
However, all these algorithms can only be applied to restricted
sets of graphs, regarding either the type or the size of the graphs.

In this paper we address the computation of the median graph
from a new point of view based on three main pillars: the graph
embedding in vector spaces [25], the graph edit distance [3], and
the weighted mean of a pair of graphs [4].

Graph embedding [15] aims to convert graphs into another
structure, such as real vectors, and then operate in the associated
space to make easier some typical graph-based tasks, such as
matching and clustering [12,7]. To this end, different graph
embedding procedures have been proposed in the literature so
far. Some of them are based on the spectral graph theory. Others
take advantage of typical similarity measures to perform the
embedding tasks. For instance, a relatively early approach based
on the adjacency matrix of a graph is proposed in [18]. In this
work, graphs are converted into a vector representation using
some spectral features extracted from the adjacency matrix of a
graph. Then, these vectors are embedded into eigenspaces with
the use of the eigenvectors of the covariance matrix of the vectors.
This approach is then used to perform graph clustering experi-
ments. Another similar approach have been presented in [31]. This
work is similar to the previous one, but in this case the authors
use the coefficients of some symmetric polynomials constructed
from the spectral features of the Laplacian matrix, to represent the
graphs into a vectorial form. Finally, in a recent approach [26], the
idea is to embed the nodes of a graph into a metric space and view
the graph edge set as geodesics between pairs of points in a
Riemannian manifold. Then, the problem of matching the nodes of
a pair of graphs is viewed as the alignment of the embedded point
sets. In this work we will use a new class of graph embedding
procedures based on the selection of some prototypes and graph
edit distance computation. This approach was first presented in
[25], and it is based on the work proposed in [22]. The basic
intuition of this work is that the description of the regularities in
observations of classes and objects is the basis to perform pattern
classification. Thus, based on the selection of concrete prototypes,
each point is embedded into a vector space by taking its distance
to all these prototypes. Assuming these prototypes have been
chosen appropriately, each class will form a compact zone in the
vector space.

Using the proposed embedding procedure, we can combine
advantages from both domains: we keep the representational
power of graphs while being able to operate in a vector space.
Thus, all the machinery for statistical pattern recognition can be
applied to graphs. In our approach we use a graph embedding
based on the computation of the graph edit distance among all
graphs in the learning set. The median of the set of vectors
obtained with this mapping can be easily computed in the vector
space. Then, using the weighted mean of a pair of graphs we have
designed a triangulation procedure that permits to go from the
vector domain back to the graph domain in order to finally obtain
an approximation of the median graph. This new three-step
procedure is the main contribution of the paper.

Although this procedure is based on three well-known
techniques, it provides some remarkable improvements over
other methods for the median graph computation. The use of
the edit distance makes this procedure applicable to graphs with
any kind of labels. In contrast, some of the existing methods can
only deal with labelled graphs, with no symbolic attributes in
neither the nodes nor the edges. From this point of view, our
contribution is not a simplification, but a generalization of
available methods in the sense that we can deal with any type
of labels. In addition, this new procedure makes the computation
of the median graph extendable to a large number of graphs with
large size as we will show later in the experiments. More
concretely we have applied the median graph to real classification
problems in the context of molecule categorization, web content
mining and symbol recognition. The underlying graphs have no
constraints regarding the number of nodes and edges. None of the
previous existing methods for the median graph computation is
able to operate under these hard conditions.

Thus, with this new approach we are able to bring the median
graph to the world of real applications in pattern recognition and
machine learning, where up to now, all reported works on the
median graph could only be evaluated using restricted sets of
graphs concerning either the number or the size of the graphs.
Therefore the proposed procedure allows us to transfer any
machine learning algorithm that uses a median, from the vector to
the graph domain.

The rest of this paper is organized as follows. In the next
section we define the basic concepts and we introduce the
notation we will use later in the paper. Then, in Section 3 we
introduce in detail the concept of the median graph. In Section 4
the proposed method for the median computation is described.
Section 5 reports a number of experiments and present results
achieved with our method. Also a comparison with a reference
system is provided. Finally, in Section 6 we draw some conclu-
sions and we point out to possible future work.
2. Basic definitions

This section introduces the basic terminology and notation we
will use throughout the paper.

2.1. Graph

Graphs can be defined in many ways. The definition of a graph
given below is sufficiently general to include the most important
classes of graphs.

Definition. Given L, a finite alphabet of labels for nodes and
edges, a graph g is defined by the four-tuple g ¼ ðV ;E;m; nÞ where:
�
 V is a finite set of nodes,

�
 EDV � V is the set of edges,

�
 m is the node labelling function (m : V�!L) and

�
 n is the edge labelling function (n : V � V�!L).
Notice that in this definition there is not any restriction about the
nature of the node and edge labels. That is, the alphabet of labels
is not constrained in any way. For example, L can be defined as a

ARTICLE IN PRESS

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–16551644
vector space (i.e. L¼Rn) or simply as a set of discrete labels (i.e.
L¼ fD;S;C; . . .g). Edges are defined as ordered pairs of nodes, that
is, an edge is defined by ðu; vÞ where u; vAV . The edges are
directed in the sense that if the edge is defined as ðu; vÞ then uAV

is the source node and vAV is the target node. Note that an edge
may connect a node uAV with itself. A graph is called undirected if
for each edge ðu; vÞAE there is an edge ðv;uÞAE such that
nðu; vÞ ¼ nðv;uÞ.

2.2. Graph distance

The process of evaluating the structural similarity of two
graphs is commonly referred to as graph matching. This issue has
been addressed by a large number of works. For an extensive
review of different graph matching methods and applications, the
reader is referred to [5]. In this paper, we will use the graph edit
distance [3,27], one of the most widely used methods to compute
the dissimilarity between two graphs.

The basic idea behind the graph edit distance is to define the
dissimilarity of two graphs as the minimum amount of distortion
required to transform one graph into the other [3]. To this end, a
number of distortion or edit operations e, consisting of the
insertion, deletion and substitution of both nodes and edges are
defined. Given these edit operations, for every pair of graphs, g1

and g2, there exists a sequence of edit operations, or edit path
pðg1; g2Þ ¼ ðe1; . . . ; ekÞ (where each ei denotes an edit operation)
that transforms g1 into g2. In Fig. 1 an example of an edit path
between two given graphs g1 and g2 is given. This edit path
consists of one edge deletion, one node substitution, one node
insertion and two edge insertions. In general, several edit paths
exist between two given graphs. This set of edit paths is denoted
by Yðg1; g2Þ. In order to quantitatively evaluate which edit path is
the best, edit costs are introduced. The basic idea is to assign a
penalty cost c to each edit operation according to the amount of
distortion it introduces in the transformation. The edit distance d

between two graphs g1 and g2, denoted by dðg1; g2Þ, is the cost of
the edit path with minimum cost that transforms one graph into
the other.

Definition. Given two graphs g1 ¼ ðV1; E1;m1; n1Þ and
g2 ¼ ðV2; E2;m2; n2Þ, the graph edit distance between g1 and g2 is
defined by

dðg1; g2Þ ¼ min
ðe1 ;...;ekÞAYðg1 ;g2Þ

Xk

i ¼ 1

cðeiÞ ð1Þ

where Yðg1; g2Þ denotes the set of edit paths that transform g1 into
g2 and cðeÞ denotes the cost of an edit operation e.

A number of optimal and approximate algorithms for the
computation of the graph edit distance have been proposed.
Optimal algorithms are usually based on combinatorial search
procedures that explore all the possible mappings of nodes and
edges of one graph to the nodes and edges of the second graph
[27]. The major drawback of such an approach is its computational
complexity, which is exponential in the number of nodes of the
involved graphs. Consequently, its application is restricted to
graphs of rather small size in practice. As an alternative, a number
g2g1

Fig. 1. A possible edit path between two graphs g1 and g2. Not that node labels are

indicated by different colors.
of suboptimal methods have been proposed to make the graph
edit distance computation less computationally demanding. Some
of these methods are based on local optimization [20]. A linear
programming method to compute the graph edit distance with
unlabelled edges is presented in [17]. Such method can be used to
obtain lower and upper edit distance bounds in polynomial time.
In [21] simple variants of the standard method are proposed to
derive two fast suboptimal algorithms for graph edit distance,
which make the computation substantially faster. Finally, in [24],
a new efficient algorithm is presented based on a fast suboptimal
bipartite optimization procedure.
3. Generalized median graph

The generalized median graph has been proposed to represent
a set of graphs.

Definition. Let U be the set of graphs that can be constructed
using labels from L. Given S¼ fg1; g2; . . . ; gngDU, the generalized

median graph g of S is defined as

g ¼ argmin
gAU

X

gi AS

dðg; giÞ ð2Þ

That is, the generalized median graph g of S is a graph gAU that
minimizes the sum of distances (SOD) to all the graphs in S. Notice
that g is usually not a member of S, and in general more than one
generalized median graph may exist for a given set S.

As shown in Eq. (2) some distance measure dðg; giÞ between the
candidate median g and every graph giAS must be computed.
However, since the computation of the graph edit distance is a
well-known NP-complete problem, the computation of the
generalized median graph can only be done in exponential time,
both in the number of graphs in S and their size (even in the
special case of strings, the time required is exponential in the
number of input strings [6]). As a consequence, in real applica-
tions we are forced to use suboptimal methods in order to obtain
approximate solutions for the generalized median graph in
reasonable time. Such approximate methods [10,14,16,19,30]
apply some heuristics in order to reduce the complexity of the
graph edit distance computation and the size of the search space.

Another alternative to reduce the computation time is to use
the set median graph instead of the generalized median graph.
The difference between the two concepts is only the search space
where the median is looked for. As it is shown in Eq. (2), the
search space for the generalized median graph is U, that is, the
whole universe of graphs. In contrast, the search space for the set
median graph is simply S, that is, the set of graphs in the given set.
It makes the computation of set median graph exponential in the
size of the graphs, due to the complexity of graph edit distance,
but polynomial with respect to the number of graphs in S, since it
is only necessary to compute pairwise distances between the
graphs in the set. The set median graph is usually not the best
representative of a set of graphs, but it is often a good starting
point towards the search of the generalized median graph.
4. New approximate algorithm based on graph embedding in
vector spaces

In the last section we have shown that the computation of the
generalized median graph is a rather complex task. In this section
we present a novel approach for the computation of the median
graph that is faster and more accurate than previous approximate
algorithms. It is based on graph embedding in a vector space and
it consists of three main steps.

ARTICLE IN PRESS

Set of graphs S

GRAPH DOMAIN VECTOR DOMAIN

1

2

3

Graph embedding
in vector space

Median vector
computation

From median vector to
median graph

Median Graph

Fig. 2. Overview of the approximate procedure for median graph computation.

1 Actually, only nðn� 1Þ=2 distances have to be computed, since the distance

between two graphs is symmetric.

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–1655 1645
Given a set S¼ fg1; g2; . . . ; gng of n graphs, the first step is to
embed every graph in S into the n-dimensional space of real
numbers, i.e. each graph becomes a point in Rn. The second step
consists of computing the median using the vectors obtained in
the previous step. Finally, the go from the vector space back to the
graph domain, converting the median vector into a graph. The
resulting graph is taken as the median graph of S. These three
steps are depicted in Fig. 2. In the following subsections, these
three main steps will be further explained.

4.1. Graph embedding in vector spaces

The embedding procedure we use in this paper follows the
procedure proposed in [25]. For the sake of completeness, we
briefly describe this approach in the following.

Assume we have a set of training graphs T ¼ fg1; g2; . . . ; gng and
a graph dissimilarity measure dðgi; gjÞ (i; j¼ 1; . . . ;n; gi; gjAT).
Then, a set P¼ fp1; . . . ; pmgDT of m prototypes is selected from T

(with mrn). After that, the dissimilarity between a given graph of
gAT and every prototype pAP is computed. This leads to m

dissimilarity values, d1; . . . ;dm where dk ¼ dðg;pkÞ. These dissim-
ilarities can be arranged in a vector ðd1; . . . ; dmÞ. In this way, we can
transform any graph of the training set T into an m-dimensional
vector using the prototype set P. More formally this embedding
procedure can be defined as follows:

Definition. Given a set of training graphs T ¼ fg1; g2; . . . ; gng and a
set of prototypes P¼ fp1; . . . ;pmgDT , the graph embedding:

c : T�!Rm
ð3Þ

is defined as the function:

cðgÞ�!ðdðg; p1Þ;dðg; p2Þ; . . . ; dðg; pmÞÞ ð4Þ

where gAT, and dðg; piÞ, is a graph dissimilarity measure (in this
paper the graph edit distance between the graph g and the i-th
prototype pi).

We perform the graph embedding step according to this
definition, but let the training set T and the prototype set P be
the same, i.e. the set S for which the median graph is to be
computed. So, we compute the graph edit distance between every
pair of graphs in the set S. These distances are arranged in a
distance matrix.1 Each row/column of the matrix can be seen as an
n-dimensional vector. Since each row/column of the distance
matrix is assigned to one graph, such an n-dimensional vector is
the vectorial representation of the corresponding graph. Fig. 3
illustrates this procedure.

4.2. Computation of the median vector

Once all the graphs have been embedded in the vector space,
the median vector is computed. To this end we use the concept of
Euclidean Median.

Given a set X ¼ fx1; x2; . . . ; xmg of m points with xiARn for
i¼ 1 . . .m, the geometric median is defined as

Geometric median¼ argmin
yARn

Xm

i ¼ 1

Jxi � yJ

where Jxi � yJ denotes the Euclidean distance between the points
xi; yARn.

That is, the Euclidean Median is a point yARn that minimizes
the sum of the Euclidean distances between itself and all the
points in X. It corresponds with the definition of the median
graph, but in the vector domain. The Euclidean median cannot be
calculated in a straightforward way. The exact location of the
Euclidean median cannot be found when the number of elements
in X is greater than 5 [2]. No algorithm in polynomial time is
known, nor has the problem been shown to be NP-hard [13]. In
this work we will use the most common approximate algorithm
for the computation of the Euclidean median, that is Weiszfeld’s
algorithm [29]. It is an iterative procedure that converges to the
Euclidean median. To this end, the algorithm first chooses an
initial estimate solution y (this initial solution is often chosen

ARTICLE IN PRESS

DM =

0 d1,2 d1,3 ... d1,n

d2,1 0 d2,3 ... d2,n

d3,1 d3,2 0 ... d3,n

...
...

...
...

...
dn,1 dn,2 dn,3 ... 0

n-dimensional
Vector Space

Set of graphs S

GRAPH DOMAIN

........

VECTOR DOMAIN

Fig. 3. Step 1. Graph embedding.

a b

g''

g'g

Fig. 4. Weighted mean of a pair of graphs.

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–16551646
randomly). Then, the algorithm defines a set of weights that are
inversely proportional to the distances from the current estimate
to the samples, and creates a new estimate that is the weighted
average of the samples according to these weights. The algorithm
may finish either when a predefined number of iterations is
reached, or under some other criteria, for instance, when the
difference between the current estimate and the previous one is
less than a established threshold.

4.3. Back to graph domain

The last step in order to obtain the median graph is to
transform the Euclidean median into a graph. Such a graph will be
considered as an approximation of the median graph of the set S.
To this end we will use a triangulation procedure based on the
weighted mean of a pair of graphs [4] and the edit path between
two given graphs. For the sake of completeness the definition of
the weighted mean of a pair of graphs is included here.

Definition. Let g and g0 be graphs. The weighted mean of g and g0

is a graph g00 such that

dðg; g00Þ ¼ a

dðg; g0Þ ¼ aþdðg00; g0Þ

That is, the graph g00 is a graph in between the graphs g and g0

along the edit path between them. Furthermore, if the distance
between g and g00 is a and the distance between g00 and g0 is b, then
the distance between g and g0 is aþb. Fig. 4 illustrates this idea.

The weighted mean of a pair of graphs is used in the procedure
that transforms the Euclidean median vector into a graph. This
procedure, illustrated in Fig. 5(a), is based on a triangulation
procedure among points in the vector space as follows. Given the
n-dimensional points representing every graph in S (represented
as white dots in Fig. 5(a)), and the Euclidean Median vector vm
(represented as a grey dot in Fig. 5(a)), we first select the three
closest points to the Euclidean median (v12v3 in Fig. 5(a)). Notice
that we know the corresponding graph of each of these points (in
Fig. 5(a) we have indicated this fact by labelling them with the
pair vj; gj with j¼ 1; . . . ;3). Then, we compute the median vector
vm
0 of these three points (represented as a black dot in Fig. 5(a)).

Notice that vm
0 is in the plane formed by v1, v2 and v3. With v12v3

and vm
0 at hand (Fig. 5(b)), we arbitrarily choose two out of these

three points (without loss of generality we can assume that we
select v1 and v2) and we project the remaining point (v3) onto the
line joining v1 and v2. In this way, we obtain a point vi in between
v1 and v2 (Fig. 5(c)). With this point at hand, we can compute the
percentage of the distance in between v1 and v2 where vi is
located(Fig. 5(d)). As we know the corresponding graphs of the
points v1 and v2 we can obtain the graph gi corresponding to vi by
applying the weighted mean procedure explained before (Fig.
5(e)). Once gi is known, then we can obtain the percentage of
distance in between vi and v3 where vm

0 is located and obtain gm
0

applying again the weighted mean procedure (Fig. 5(f)). Finally,
gm
0 is chosen as the approximation for the generalized median of

the set S.

4.4. Discussion on the approximations

This approximate embedding procedure is composed of three
steps: the graph embedding into a vector space, the median vector
computation and the return to the graph domain. Each of these
steps introduces some kind of approximation to the final solution.
In the first step, in order to deal with large graphs an approximate
edit distance algorithm is normally used. Thus, each vector
representing a graph includes small errors in its coordinates with
respect to the optimal distance between two graphs. Nevertheless,
the two approximate methods for the edit distance computation
we used [21,24] provide correlation scatter plots showing a high
accuracy with respect the exact distance computation. Also the
median vector computation introduces a certain amount of error,
since the Weiszfeld method obtains approximations for the
median vector. This factor may lead to choose three points that
might not be the best points to go back to the graph domain. In
addition, small errors may be introduced when choosing vm

0

instead of directly vm to perform the weighted mean of a pair of
graphs. Finally, when the weighted mean between two points is
computed, the graph edit path is composed of a set of discrete
steps, each of them with its own cost. In the return to the graph
domain, the percentage of distance needed to obtain the weighted
mean of a pair of graphs may fall in between two of this edit
operations. Since we choose only one of them, small errors may
also be introduced in this step.

Although all these approximations may seem too severe to
obtain good medians, in the next section we will show that this
method is able to obtain reasonable good approximations for the

ARTICLE IN PRESS

v1,g1

v2, g2

v3, g3

vm

vm'

vi
v'

m

vi

v2, g2 v3, g3

v1, g1

v'
m

v1, g1 v1, g1

v3, g3v2, g2

v1, g1

vi, gi
v'

m, g'
m

v2, g2 v3, g3v3, g3v2, g2

v'
m

vi, gi

v1, g1

v2, g2 v3, g3

v'
m

Fig. 5. Illustration of the triangulation procedure.

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–1655 1647
median graph. But, at the same time, these well defined entry
points of approximation can be used to improve the medians
obtained. That is, each of these three steps can be further studied
and other options for each of them can be proposed in order to
minimize the error introduced and obtain better medians, as we
will comment on the proposals for future work.
5. Experimental set-up

In this section we provide the results of an experimental
evaluation of the proposed algorithm. To this end three com-
pletely different real databases have been used, namely a
molecule database containing 2000 instances of molecules from
two classes, active and inactive; a database containing 2340
graph-based representations of web-pages belonging to six
different classes and the GREC symbol database containing 1100
instances of graphical symbols from 22 different classes. The
experiments consisted of two different phases. The first step was
to compute several medians for each database in order to evaluate
whether we obtain good approximations of the median graph.
Then, in a second stage, we used these medians to perform some
classification tasks. In all these experiments the edit distance
between graphs was computed using the approach introduced in
[21] for the GREC dataset and the procedure presented in [24] for
the Molecule and the webpage dataset. In the following, we will
firstly explain these three datasets in detail. Then, the results of
the experiments will be presented and analysed.
5.1. Datasets

In order to make the paper self-contained we briefly explain
the used datasets in the following, but the reader is referred to
[23] for a detailed explanation of each of them.

Molecule dataset: The molecule database consists of graphs
representing molecular compounds. These graphs have been
extracted from the AIDS Antiviral Screen Database of Active
Compounds [1]. The database consists of two different classes of
molecules: active and inactive, depending on whether they show
activity against HIV or not. The molecules are converted into
graphs in a straightforward way, representing atoms as nodes and
covalent bonds as edges. The nodes are labelled with the number
of the corresponding chemical symbol, while the edges are
labelled with the valence of the linkage. Some examples of each
class are shown in Fig. 6. In order to simplify the representation,

ARTICLE IN PRESS

Fig. 6. Examples of active compounds (a) and inactive compounds (b).

Record

Practice

Album

RecentSurprise

ClubGig

High
Tech

Fig. 7. Example of a webgraph.

Table 1
Number of graphs in each class.

Class

B E H P S T

Number of graphs 142 1389 494 114 141 60

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–16551648
different chemical symbols are represented using different gray
levels.

In this database there is a total number of 2000 graphs, 400
corresponding to active molecules and 1600 to inactive ones. In
order to create the training set we have randomly chosen 200
graphs from each class and included the 1600 remaining ones in
the test set.

Webpage dataset: In [28] several methods to create graph-
based representations of webpages are introduced. In our case,
graphs representing webpages are constructed as follows. First, all
words appearing in the web document are converted into nodes in
the web graph, except for stop words which contain little
information. The nodes are attributed with the corresponding
word and its frequency. That is, even if a word appears more than
once in the web document, only one node with this word label is
added to the graph, and the frequency of the word is used as an
additional attribute. Then, if a word wi immediately precedes
another word wj in the document, a directed edge from the node
corresponding to the word wi to the node corresponding to the
word wj is added to the graph. In order to keep the essential
information of the document, only the most frequently used
words (nodes) are kept in the graph and the terms are combined
to the most frequently occurring form (Fig. 7).

The dataset is composed of 2340 documents belonging to 20
different categories (Business, Health, Politics, Sports, Technology,
Entertainment, Art, Cable, Culture, Film, Industry, Media, Multi-
media, Music, Online, People, Review, Stage, Television and
Variety). The last 14 categories are sub-categories of Entertain-
ment. These web documents were originally hosted at Yahoo as
news pages (http://www.yahoo.com). For simplicity, from now on,
the six main classes will be referred as B, H, P, S, T and E for
Business, Health, Politics, Sports, Technology and Entertainment,
respectively.

Note that not all the classes have the same number of graphs.
Table 1 shows the number of graphs in each class.
We have divided this dataset into a training and a test set. As
one can see in Table 1, the class with the smallest number of
graphs is class T, with 60 graphs. For this reason, we have
randomly chosen 30 graphs of every class to form the training set
(that is, the training set is composed of 180 graphs) and the
remaining 2160 graphs are used as the test set.

GREC dataset: The GREC database used in our experiments
corresponds to a subset of the symbol database of GREC 2005
contest [8]. The whole database is composed of a set of 150
symbols from architecture, electronics and other technical fields.
We have used a subset of 22 different symbols, those which are
composed only of straight lines. In order to work with a large
dataset, with arbitrarily strong distortions, we have generated
several instances of each symbol applying different distortion
operators to the original images. Such distortion operators include
moving the junction points between two lines within a predefined
radius r, splitting junction points and deleting some lines. These
images are converted into graphs by assigning a node to each
junction or terminal point and an edge to each line. The labels for
the nodes are coordinates in a 2-dimensional space corresponding
to the location of the point. The labels for the edges are simply
binary numbers indicating whether a line exists between two
given nodes or not. Fig. 8 shows an example of two symbols and
different distorted instances of them.

For each of the 22 symbols (classes) in the dataset we have
generated 50 distorted instances. So, totally we have 1100 images.
The complete dataset is split into a training set of 440 (20 graphs
for each class) and a test set of 660 elements (30 graphs per class).

Table 2 summarizes some important parameters of each
dataset including the number of classes, total number of
elements in the dataset, elements in the training and test set
and the maximum, minimum and average size of the graphs in the
dataset.
5.2. Assessment of the median quality

To evaluate the quality of the obtained median graphs, we
compare their SOD with the SOD of the set median graph. We do
not use other approximations of the median graph as a reference
for two reasons. First, the existing methods are not able to
compute the median graph with these large graphs and datasets
we are dealing with. Second, as the set median graph is the graph
belonging to the training set with minimum SOD, it is a good
reference to evaluate the generalized median graph quality.
Therefore, for a given dataset, the same edit distance algorithm
is used to compute the set median and the approximate median.
In this sense, since they are computed using the same method, the
same amount of error or distortion (due to the approximation) is
introduced to both of them. Thus, we can say that they are fairly
comparable. For this experiment we have randomly chosen an
increasing number of graphs from the training set, and we have
computed the median graph of each of these sets (that
corresponds to the set S in the definition of the median graph).
The different number of graphs chosen from the training set for

http://www.yahoo.com

ARTICLE IN PRESS

Fig. 8. Examples of GREC symbols with some distortions: (a) architectural symbol and (b) electrical symbol.

Table 2
Some characteristics of each dataset.

Property Molecule Webpage GREC

Number of classes 2 6 22

Total number of elements 2000 2340 1100

Number of elements in the training set 400 180 440

Number of elements in the test set 1600 2160 660

Max. number of nodes in a graph 95 834 25

Min. number of nodes in a graph 1 43 3

Mean number of nodes 15.7 186.1 11.5

Table 3
Number of graphs in S for each database.

Class Number of graphs in S

Molecules 10;20;30; . . . ;100

Webpages 5;10;15; . . . ;30

GREC 5, 10, 15, 20

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–1655 1649
each database is shown in Table 3. We repeated the experiment 10
times for each size of the set S in order to generalize the results.

Results for the molecule, webpage and GREC datasets are
shown in Figs. 9–11, respectively. In these figures, the mean value
over all classes and repetitions of the SOD of the set median
(continuous line) and the SOD of the computed median (dashed
line) are displayed. In addition, for each size of the set (x-axis),
bars showing the standard deviation of the SODs of each method
(set median in black and computed median in grey) are plotted.

Discussion: The results of Figs. 9–11 show that the performance
of both the set median and the generalized median graph are
comparable to each other. In this sense, we can observe that in
two of the databases (the molecule and the webpage datasets),
the results for the SOD are slightly better for the generalized
median graph. However, due to the large standard deviation and
the similarity between the results for both methods), we cannot
conclude that these results are statistically significant.

Nevertheless, with these results at hand, we can conclude that
our method achieves, in general, good approximations of the
generalized median graph, independently of the size of the
training set. That means that the generalized median adapts well
to the increasing variability and distortion as the number of
graphs in the training set increases.
5.3. Classification

In this section we will use the previously computed medians to
perform some basic classification experiments. For each dataset
we classified each element in the test set according to three
different schemes. The first one is a 1NN classifier using the whole
training set. The other two use the generalized median and the set
median graphs respectively. Each element in the test set is
classified into the class of the most similar median. It is important
to note that, again, for each size of S we repeated the experiment
10 times. Thus the classification rates shown in the following are
the average results over these 10 repetitions. In addition, we show
the standard deviation of the classification rate in order to show
the stability of our method against different repetitions of the
experiment.

Molecule dataset: Table 4 shows the results of classification for
the three mentioned methods on the molecule dataset. The values
are the mean values over the two classes.

Although the 1NN approach performs better, it is important to
notice that both kinds of medians achieve quite good levels. But at
this point, it is relevant to mention that the recognition rate of the
computed median is, in general, slightly better than the one
obtained for the set median. In addition the median approach
shows more stability in the results than the set median. For
instance, as we can see in the table, for a size of S equal to 90 there
is a negative peak in the recognition rate for the set median, while
the median approach shows more stable results. This means that
even for a large number of graphs the median we compute is able
to keep the basic information of the class. We can remark the
direct correlation of these results with those obtained in the SOD
evolution. That is, we obtain better recognition rates with the
median as the median has better SOD evolution. Only for a large
number of graphs in S (from 70 on), it seem that the set median
performs slightly better than the median approach (except for the
size 90).

In spite of the loss in the recognition rate of the median-based
methods, it should be remarked the difference in the number of
comparisons required by both methods. While the number of
comparisons is 640,000 for the 1NN classifier, in the median-
based classifiers the number of comparisons is only 3200. This
reduction may play an important role in graph-based applications,
where the time needed for comparing two graphs is sometimes
quite high and the time requirements are also important.

Webpages dataset: Table 5 shows the results of classification for
the webpage dataset. Here, the classification rates are the mean
over the six classes. The results show that the classification rates
for both medians are reasonably close to those of the 1NN
classifier. For instance, the minimum difference between the 1NN
classifier and the median is lower than a 4% (for a size of S equal
to 10). The recognition rates for both medians are very close to
each other, being slightly better in the set median (except for the
case when the size of S is equal to 10). In addition, the standard
deviation of the set median is lower than that of the generalized
median.

Although the 1NN classifier performs better, it is important to
notice again the difference between the number of comparisons
needed for both classifiers. While the 1NN classifier needs
388,800 comparisons, the use of the median graph reduces such
quantity to 12,960 comparisons.

With the fact that the median achieves classification rates
quite close to the 1NN classifier, we can think of using the median
to filter out the number of possible classes before applying the
1NN approach. With this approach we aim to improve the
performance of the 1NN classifier and reduce the number of
comparisons needed.

ARTICLE IN PRESS

5 10 15 20 25 30
0

1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

Number of graphs in S

Va
lu

e

SOD Evolution

Set median SOD value
Generalized median SOD value
Set median SOD deviation
Generalized median SOD deviation

Fig. 10. SOD evolution on webpage dataset.

5 10 15 20
0

2000

4000

6000

8000

10000

12000

14000

16000

Number of graphs in S

Va
lu

e

SOD Evolution

Set median SOD value
Generaized median SOD value
Set median SOD deviation
Generalized median SOD deviation

Fig. 11. SOD evolution on GREC dataset.

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

Number of graphs in S

Va
lu

e

SOD Evolution

Set median SOD value
Generalized median SOD value
Set median SOD deviation
Generalized median SOD deviation

Fig. 9. SOD evolution on molecule dataset.

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–16551650
To this end, we propose first to measure the appearance
frequency of the correct class within a predefined number of
retrieved classes. That is, for every input pattern we will rank all
classes in an increasing order based on the distance of the input
pattern to the median of each class. Then, we will set a depth (the
predefined number of classes) and we will see if the correct class
appears in this set. In this experiment, we have used a depth of
three classes. The computation was repeated 10 times in order to
better generalize the results.

In Fig. 12, we can see the results of the frequency of the correct
class appearance and its deviation depending on the number of
graphs in S. Results show that in general, the appearance
frequency of the correct class using the computed median is
quite similar to the appearance frequency using the set median,

ARTICLE IN PRESS

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–1655 1651
being even better in the computed median when the number of
classes is equal to 30. Only when the number of classes is equal to
20, the difference between them is greater than 2%. It is important
to note that, in general, both medians achieve more than 95% of
appearance frequency, which is higher than the classification rate
using the 1NN approach. The low value of the deviation when the
number of graphs increase (25 and 30 graphs) suggests that the
results (and so, the median) get more stable with a large training
set.
5 10 15
94

96

98

100

Number o

Fr
eq

ue
nc

y
[%

]

Class Appearan

5 10 15
0

1

2

3

Number o

D
ev

ia
tio

n

Fig. 12. Appearance frequen

Table 4
Classification rate for molecule database with an increasing number of graphs in

the training set.

jSj Rate (%) Std Dev.

1NN Median Set median 1NN Median Set median

10 92.11 89.52 84.02 2.10 5.36 3.75

20 95.38 89.95 87.79 1.60 4.24 5.86

30 96.40 88.87 86.70 1.32 4.58 3.89

40 96.42 89.22 84.77 1.16 5.11 4.14

50 96.72 90.40 86.90 0.82 4.78 3.96

60 97.45 87.70 86.75 0.74 4.03 4.67

70 97.81 87.45 88.12 0.51 4.43 4.75

80 97.99 86.77 89.05 0.24 4.31 4.11

90 97.45 86.72 77.32 0.24 8.90 14.42

100 98.54 85.00 91.25 0.87 4.57 4.95

Table 5
Classification rate for webpage database with an increasing number of graphs in

the training set.

jSj Rate (%) Std Dev.

1NN Median Set median 1NN Median Set median

5 78.56 65.40 76.34 5.37 11.48 5.71

10 87.06 83.68 79.82 3.23 5.51 3.01

15 88.01 78.59 81.59 2.07 7.53 3.04

20 90.06 78.39 82.77 1.12 8.20 2.58

25 91.18 80.44 83.05 0.67 9.65 1.11

30 91.48 82.77 83.42 2.49 8.29 2.98
Finally, with these results at hand, we performed a modified
classification experiment, mixing the median-based methods
with the classic 1NN classifier. The objective of this experiment
is to investigate whether it is possible to increase the recognition
rate of the 1NN classifier using a smaller number of comparisons.
The basic idea is as follows. First, we compare each element of the
test set against the medians, and rank the classes from the most
similar to the least similar median. After that, the same element in
the test set is compared against the training set but using only a
reduced number of classes (3 for instance) instead of using all
classes as in the 1NN classical approach. The input query is
assigned to the class of the most similar element within the
reduced number of classes. It is clear in this experiment that if the
number of classes is set to 1, then the results are the same as the
classification using the median, and if the number of classes is the
total number of classes (in this case 6) then the results are the
same as in the 1NN classifier. Again, we repeated the experiment
10 times.

Fig. 13 shows the results for medians computed with 30
elements and for a number of classes ranging from 1 (the
minimum number of classes) to 6 (all the possible classes), and
also the deviation achieved in the classification rate.

If the number of classes is equal to 1 the set median
outperforms the median approach. However, for the rest of the
cases this changes completely. This result reinforces the hypoth-
esis that the computed median keeps better the basic information
of the class. But what is important to note is that even for a
number of classes equal to 2 the recognition rate for the median is
better than the 1NN classifier. The maximum recognition rate is
achieved for the number of classes being equal to 4. This means
that we can obtain better results than the 1NN classifier with less
than half the number of comparisons needed by the 1NN classifier
(in the case where the number of classes is equal to 2). Here, the
gain achieved by the set median approach is significantly lower,
maintaining practically the same recognition rates as in the 1NN
classifier. These results are supported by the low values of the
deviation achieved by both methods for the number of classes
being equal to 2 or more.

These results show a correspondence with the SOD evolution
experiments. That is, better medians in terms of the SOD achieve
better recognition rates here. Thus, the median can help us to
20 25 30
f Graphs in S

ce Frequency

20 25 30
f Graphs in S

Set median
Median

Set median
Median

cy of the correct class.

ARTICLE IN PRESS

1 2 3 4 5 6
80

85

90

95

Number of Classes

R
at

e
[%

]

Classification Rate

1 2 3 4 5 6
0

2

4

6

8

10

Number of Classes

D
ev

ia
tio

n

NN
Set median
Median

Set median
Median

Fig. 13. Mixed-classification rate for the webpage database with an increasing number of classes used for filtering the original set of classes.

Table 6
Classification rate for GREC database with an increasing number of graphs in the

training set.

jSj Rate (%) Std Dev.

1NN Median Set median 1NN Median Set median

5 93.27 79.07 78.33 1.31 2.30 1.56

10 96.59 78.33 77.78 0.77 2.78 2.46

15 97.95 78.53 77.31 0.66 1.93 1.71

20 98.63 78.25 76.68 0.68 1.49 1.60

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–16551652
achieve better classification rates using fewer comparisons than
the 1NN classifier.

GREC dataset: Table 6 shows the results of classification rate for
the GREC database. The values are the mean values over all the 22
classes and repetitions.

The results show that the 1NN classifier outperforms in all
cases the recognition rate for both the set and the computed
median. Nevertheless, it is important to notice that in this case,
the recognition rates for the computed medians slightly outper-
form the results for the set medians. This could mean that our
method is able to obtain better representatives than the set
median. In spite of the loss in the recognition rate in the median-
based methods, we should point out again the difference in the
number of comparisons needed in the classification experiments.
While the 1NN approach took 290,400 comparisons, this number
was reduced to 14,520 in the median-based approaches.

Again, in order to extend the classification results, a frequency
appearance experiment (repeated 10 times) has been conducted.
In this case the results for both the class appearance frequency
and the deviation are shown in Fig. 14 as a function of the number
of graphs used to compute the medians. In this case we defined
the number of classes equal to 8. The results show that the set
median performs better, both in the class appearance frequency
and the deviation, for values of the number of graphs in S up to 10,
while for larger numbers, the computed median obtain better
results. Nevertheless, it is important to note that for a number of
classes equal to 10 the percentage of times that the correct class
appears is greater than 99%.
Finally, we performed the same modified recognition experi-
ment as with the webpage dataset. Results for both the
classification rate and deviation are shown in Fig. 15, for a
number of classes ranging from 1 to 22 and for a number of graphs
in S equal to 15. In this case, the results obtained with the medians
are in the best case equal to those for the 1NN classifier. Although
both median approaches perform quite similar, the results show
that for a small number of classes (up to 5), the median approach
slightly outperforms the set median. This means that in general,
the median approach is able to better represent the best class
among the first classes in the ranking. But, what is important to
notice is that using less than 10 classes we achieve almost the
same classification rates as with the 1NN classifier but using less
than half of the number of comparisons. Thus, the use of the
median is fully justified for large databases. Fig. 15 also suggests
that most probably if we are able to obtain better medians we can
improve these results and achieve better results than the 1NN
classifier. It is important to note that in this case, the values of the
deviation for the median are, in general, lower than those of the
set median.

Again, a correspondence between the SOD evolution results
and this experiment can be seen. As the medians have similar
SOD, they also have similar recognition rates here. It suggests that
if we are able to improve the medians in terms of the SOD, we will
also be able to improve the classification rates.
6. Discussion and conclusions

Representation of the objects in pattern recognition is often
carried out by either feature vectors or graphs. The main
advantage of feature vectors is that many operations needed in
machine learning can be easily executed on vectors, and a huge
number of algorithms for pattern analysis and classification
become immediately available. But they have a limited represen-
tational power, making them not suitable to represent structured
objects. Differently, graphs have a high representational power,
but have two main drawbacks. The computational complexity of
the algorithms related to graphs is usually high and some basic
operations that are needed in many pattern recognition methods,
such as computing the sum or the mean, that might appear quite

ARTICLE IN PRESS

5 10 15 20
98.5

99

99.5

100

Number of Graphs in S
Fr

eq
ue

nc
y

[%
]

Class Appearance Frequency

5 10 15 20
0

0.2

0.4

0.6

0.8

Number of Graphs in S

D
ev

ia
tio

n

Set median
Median

Set median
Median

Fig. 14. Appearance frequency of the correct class.

2 4 6 8 10 12 14 16 18 20 22
75

80

85

90

95

100

Number of Classes

R
at

e
[%

]

Classification Rate

2 4 6 8 10 12 14 16 18 20 22
0

0.5

1

1.5

2

Number of Classes

D
ev

ia
tio

n

NN
Set median
Median

Set median
Median

Fig. 15. Mixed-classification rate for the GREC database with an increasing number of classes used for filtering the original set of classes.

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–1655 1653
simple in the vector domain, turn very difficult or even impossible
in the graph domain. One of these operations is the median of a
given set, that in the graph domain, is called the median graph. It
can be seen as the representative of the set and, therefore, it has a
large number of potential applications including many classical
algorithms for learning, clustering and classification that are
normally used in the vector domain. However, the computation of
the median graph is a highly complex task.

In the present paper we have proposed a novel technique to
obtain approximate solutions for the median graph. This new
approach is based on embedding of graphs into vector spaces.
First, the graphs are turned into points of n-dimensional vector
spaces using the graph edit distance paradigm. Then, the crucial
point of obtaining the median of the set is carried out in the vector
space, not in the graph domain, which simplifies dramatically this
operation. Finally, using the graph edit distance again we can
transform the obtained median vector to a graph by means of
the weighted mean of a pair of graphs and a triangulation
procedure. This embedding approach allows us to get the
main advantages of both the vector and graph representations.
That is, we compute the more complex parts in real vector
spaces but keeping the representational power of graphs. This
permits to apply the median graph computation to real data
and to extend the application of the median graph to real
classification problems. In particular we have applied it to
three different databases containing a high number of
graphs with high number of nodes each. Under these strong
conditions, the generalized median could not be computed before,
due to the large computational resources needed for the existing
methods.

ARTICLE IN PRESS

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–16551654
In a first experiment we compare the obtained SOD with the
SOD of the set median graph. The results over these three datasets
demonstrated that our method is able to obtain good approxima-
tions of the median graph. In addition we show that there is a
direct correlation between the quality of the medians and the
classification accuracy we can achieve with them.

Classification experiments show that with the use of the
median graph we can achieve similar results as in the 1NN
classifiers but with less number of comparisons. This result is
useful in large databases, where the number of comparisons in the
1NN classifier may be unfeasible. Furthermore, we have proven
that in some cases, the median approach can slightly outperform
the set median approach, which tells us that the median can
potentially be a better representative of a set. In addition, we have
shown that a mixed solution in between the median and the 1NN
classifier is able to obtain better classification accuracy than the
1NN classifier with still a reduced number of comparisons. These
last classification results are similar of those obtained in [25]. This
makes the graph embedding in vector spaces procedure a very
promising way to improve the classical leaning algorithms with
the power of graphs.

Nevertheless, there are still a number of issues to be
investigated in the future. One of the points that introduces some
distortion in the median computation is the triangulation
procedure. In this way it would be interesting to try to find more
accurate triangulation procedures in order to improve the
computed medians. It is also of interest the application of these
medians to other learning algorithms. For instance, up to now, the
graph-based k-means algorithm for graph clustering has been
mainly used with the set median. The new approach we present
will permit to perform some clustering tasks using the general-
ized median instead of the set median, probably finding more
accurate centres and improving the response of this algorithm.
Acknowledgements

This work has been partially supported by the CICYT Project
TIN2006-15694-C02-02 and by the Spanish research programme
Consolider Ingenio 2010: MIPRCV (CSD2007-00018). Kaspar
Riesen and Horst Bunke like to acknowledge support from the
Swiss National Science Foundation (Project 200021-113198/1).

References

[1] Development Therapeutics Program DTP. AIDS Antiviral Screen, 2004 /http://
dtp.nci.nih.gov/docs/aids/aids_data.htmlS.

[2] C. Bajaj, The algebraic degree of geometric optimization problems, Discrete
Comput. Geom. 3 (2) (1988) 177–191.

[3] H. Bunke, G. Allerman, Inexact graph matching for structural pattern
recognition, Pattern Recognition Lett. 1 (4) (1983) 245–253.

[4] H. Bunke, S. Günter, Weighted mean of a pair of graphs, Computing 67 (3)
(2001) 209–224.
[5] D. Conte, P. Foggia, C. Sansone, M. Vento, Thirty years of graph matching in
pattern recognition, Int. J. Pattern Recognition Artif. Intell. 18 (3) (2004)
265–298.

[6] C. de la Higuera, F. Casacuberta, Topology of strings: median string is NP-
complete, Theor. Comput. Sci. 230 (1–2) (2000) 39–48.

[7] M.F. Demirci, A. Shokoufandeh, Y. Keselman, L. Bretzner, S.J. Dickinson, Object
recognition as many-to-many feature matching, Int. J. Comput. Vision 69 (2)
(2006) 203–222.

[8] P. Dosch, E. Valveny, Report on the second symbol recognition contest, in: W.
Liu, J. Lladós (Eds.), GREC, Lecture Notes in Computer Science, vol. 3926,
Springer, Berlin, 2005.

[9] R. Duda, P. Hart, D. Stork, Pattern Classification, second ed., Wiley
Interscience, 2000.

[10] M. Ferrer, F. Serratosa, A. Sanfeliu, Synthesis of median spectral graph, Second
Iberian Conference of Pattern Recognition and Image Analysis, Lecture Notes
in Computer Science, vol. 3523, Springer, Berlin, 2005.

[11] M. Friedman, A. Kandel, Introduction to Pattern Recognition, World Scientific,
Singapore, 1999.

[12] K. Grauman, T. Darrell, Fast contour matching using approximate earth
mover’s distance, in: Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2004.

[13] S.L. Hakimi, Location Theory, CRC Press, Boca Raton, FL, 2000.
[14] A. Hlaoui, S. Wang, Median graph computation for graph clustering, Soft

Comput. 10 (1) (2006) 47–53.
[15] P. Indyk, Algorithmic applications of low-distortion geometric embeddings,

in: IEEE Symposium on Foundations of Computer Science, 2001.
[16] X. Jiang, A. Münger, H. Bunke, On median graphs: properties, algorithms,

and applications, IEEE Trans. Pattern Anal. Mach. Intell. 23 (10) (2001)
1144–1151.

[17] D. Justice, A.O. Hero, A binary linear programming formulation of the graph
edit distance, IEEE Trans. Pattern Anal. Mach. Intell. 28 (8) (2006) 1200–1214.

[18] B. Luo, R.C. Wilson, E.R. Hancock, Spectral embedding of graphs, Pattern
Recognition 36 (10) (2003) 2213–2230.

[19] A. Münger, Synthesis of prototype graphs from sample graphs, Diploma
Thesis, University of Bern, 1998 (in German).

[20] M. Neuhaus, H. Bunke, An error-tolerant approximate matching algorithm for
attributed planar graphs and its application to fingerprint classification, in:
A.L.N. Fred, T. Caelli, R.P.W. Duin, A.C. Campilho, D. de Ridder (Eds.), SSPR/SPR,
Lecture Notes in Computer Science, vol. 3138, Springer, Berlin, 2004.

[21] M. Neuhaus, K. Riesen, H. Bunke, Fast suboptimal algorithms for the
computation of graph edit distance, Joint IAPR International Workshops,
SSPR and SPR 2006, Lecture Notes in Computer Science, vol. 4109, Springer,
Berlin, 2006.

[22] E. Pekalska, R.P.W. Duin, P. Paclı́k, Prototype selection for dissimilarity-based
classifiers, Pattern Recognition 39 (2) (2006) 189–208.

[23] K. Riesen, H. Bunke, IAM graph database repository for graph based pattern
recognition and machine learning, in: SSPR/SPR, 2008.

[24] K. Riesen, H. Bunke, Approximate graph edit distance computation by means
of bipartite graph matching, Image Vision Comput. 27 (7) (2009) 950–959.

[25] K. Riesen, M. Neuhaus, H. Bunke, Graph embedding in vector spaces by means
of prototype selection, Sixth IAPR-TC-15 International Workshop, GbRPR
2007, Lecture Notes in Computer Science, vol. 4538, Springer, Berlin, 2007.

[26] A. Robles-Kelly, E.R. Hancock, A Riemannian approach to graph embedding,
Pattern Recognition 40 (3) (2007) 1042–1056.

[27] A. Sanfeliu, K. Fu, A distance measure between attributed relational graphs for
pattern recognition, IEEE Trans. Syst. Man Cybern. 13 (3) (1983) 353–362.

[28] A. Schenker, H. Bunke, M. Last, A. Kandel, Graph-Theoretic Techniques for
Web Content Mining, World Scientific Publishing Co., Inc., USA, 2005.

[29] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points
donnés est minimum, Tohoku Math. J. 43 (1937) 355–386.

[30] D. White, R.C. Wilson, Mixing spectral representations of graphs, in: 18th
International Conference on Pattern Recognition (ICPR 2006), Hong Kong,
China, IEEE Computer Society, 20–24 August 2006.

[31] R.C. Wilson, E.R. Hancock, B. Luo, Pattern vectors from algebraic graph theory,
IEEE Trans. Pattern Anal. Mach. Intell. 27 (7) (2005) 1112–1124.
About the Author—M. FERRER was born in Terrassa, 24 October 1975. He received his telecommunications engineering degree from the Universitat Ramon Llull, La Salle
(Barcelona) in 2003. In 2004 he joined the Departament d’Informática i Matem�atiques, Universitat Rovira i Virgili. In 2005 he moved to the Computer Vision Center,
Departament de Ciéncies de la Computació, Universitat Autónoma de Barcelona, where he obtained his Ph.D. in June 2008.
About the Author—E. VALVENY is an associate professor at the Computer Science Department of the Universitat Aut �onoma de Barcelona (UAB), where he obtained his
Ph.D. degree in 1999. He is also member of the Computer Vision Center (CVC) at UAB. His research work has mainly focused on symbol recognition in graphic documents.
Other areas of interest are in the field of computer vision and pattern recognition, more specifically in the domain of document analysis, including shape representation,
character recognition, document indexing and layout analysis. He is currently a member of the IAPR TC-10, the Technical Committee on Graphics Recognition, and IAPR-TC-
5 on Benchmarking and Software. He has been co-chair of the two editions of the International Contest on Symbol Recognition, supported by IAPR-TC10. He has worked in
several industrial projects developed in the CVC and published several papers in national and international conferences and journals.
About the Author—F. SERRATOSA was born in Barcelona, 24 May 1967. He received his computer science engineering degree from the Universitat Polit�ecnica de Catalunya
(Barcelona) in 1993. Since then, he has been active in research in the areas of computer vision, robotics and structural pattern recognition. He received his PhD from the

http://dtp.nci.nih.gov/docs/aids/aids_data.html
http://dtp.nci.nih.gov/docs/aids/aids_data.html

ARTICLE IN PRESS

M. Ferrer et al. / Pattern Recognition 43 (2010) 1642–1655 1655
same university in 2000. He is currently associate professor of computer science at the Universitat Rovira i Virgili (Tarragona). He has published more than 40 papers and he
is an active reviewer in some congresses and journals. He is the author of two patents on the computer vision field.
About the Author—K. RIESEN received his M.S. degree in computer science from the University of Bern, Switzerland, in 2006. Currently he is a Ph.D. student and lecture
assistant in the research group of computer visions and artificial intelligence at the University of Bern, Switzerland. His research interest is mainly focussed on structural
pattern recognition, particularly graph based pattern classification and clustering. He has 18 publications, including two journal papers.
About the Author—H. BUNKE received his M.S. and Ph.D. degrees in computer science from the University of Erlangen, Germany. In 1984, he joined the University of Bern,
Switzerland, where he is a professor in the Computer Science Department. He was department chairman from 1992 to 1996, dean of the faculty of science from 1997 to
1998 and a member of the Executive Committee of the Faculty of Science from 2001 to 2003. From 1998 to 2000 he served as 1st vice-president of the International
Association for Pattern Recognition (IAPR). In 2000 he also was acting president of this organization. He is a Fellow of the IAPR, former editor-in-charge of the International
Journal of Pattern Recognition and Artificial Intelligence, editor-in-chief of the journal Electronic Letters of Computer Vision and Image Analysis, editor-in-chief of the book
series on Machine Perception and Artificial Intelligence by World Scientific Publ. Co., advisory editor of Pattern Recognition, associate editor of Acta Cybernetica and
Frontiers of Computer Science in China, and former associate editor of the International Journal of Document Analysis and Recognition, and Pattern Analysis and
Applications. He received an honorary doctor degree from the University of Szeged, Hungary, and held visiting positions at the IBM Los Angeles Scientific Center (1989), the
University of Szeged, Hungary (1991), the University of South Florida at Tampa (1991, 1996, 1998–2007), the University of Nevada at Las Vegas (1994), Kagawa University,
Takamatsu, Japan (1995), Curtin University, Perth, Australia (1999) and Australian National University, Canberra (2005). He served as a co-chair of the Fourth International
Conference on Document Analysis and Recognition held in Ulm, Germany, 1997 and as a track co-chair of the 16th and 17th International Conference on Pattern Recognition
held in Quebec City, Canada, and Cambridge, UK, in 2002 and 2004, respectively. Also he was chairman of the IAPR TC2 Workshop on Syntactic and Structural Pattern
Recognition held in Bern 1992, a co-chair of the Seventh IAPR Workshop on Document Analysis Systems held in Nelson, NZ, 2006, and a co-chair of the 10th International
Workshop on Frontiers in Handwriting Recognition, held in La Baule, France, 2006. He was on the program and organization committee of many other conferences and
served as a referee for numerous journals and scientific organizations. He is on the Scientific Advisory Board of the German Research Center for Artificial Intelligence (DFKI).
He has more than 550 publications, including 40 authored, co-authored, edited or co-edited books and special editions of journals.

	Generalized median graph computation by means of graph embedding in vector spaces
	Introduction
	Basic definitions
	Graph
	Graph distance

	Generalized median graph
	New approximate algorithm based on graph embedding in vector spaces
	Graph embedding in vector spaces
	Computation of the median vector
	Back to graph domain
	Discussion on the approximations

	Experimental set-up
	Datasets
	Assessment of the median quality
	Classification

	Discussion and conclusions
	Acknowledgements
	References

