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Abstract. In pattern recognition applications, it is useful to represent objects by 

attributed graphs considering their structural properties. Besides, some graph 

matching problems need a Common Labelling between vertices of a set of 

graphs. Computing this Common Labelling is an NP-complete problem. State-

of-the-art algorithms are composed by two steps: in the first, they compute all 

pairwise labellings among the graphs and in the second, they combine this 

information to obtain a Common Labelling. The drawback of these methods is 

that global information is only considered in the second step. To solve this 

problem, by reducing the Common Labelling problem to the quadratic 

assignment one, all graphs nodes are labelled to a virtual structure whereby the 

Common Labeling is generated using global information. We tested the 

algorithm on both real-world and synthetic data. We show that the algorithm 

offers better performance than a reference method with same computational 

cost.  

Keywords: Graduated Assignment, Multiple graph matching, graph common 

labelling, inconsistent labelling, softassign. 

1 Introduction 

From 80’s, graphs have increase its importance in Pattern Recognition, being one 

of the most powerful characteristics the abstraction they achieve. Therefore, the same 

structure is able to represent a wide sort of problems from image understanding to 

interaction networks. Consequently, algorithms based on graph models are suitable in 

a very large problem space. There is an interesting review of graph representation 

models, graph matching algorithms and its applications in [1]. 

Sometimes in graph based Pattern Recognition applications, given a set of graphs, 

which all represent equivalent or related structures, it is required to find global 

consistent correspondences among all those graphs. These correspondences are called 

a Common Labelling (CL). Reference applications could be found in [2], where 

representations obtained from Infra-red, Optical, Cartographic and SAR images must 
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be combined or in [3] where a prototype has to be synthesized from noisy data 

representing the same object. 

Unfortunately, only a few techniques to compute these correspondences have been 

developed when the elements are represented by Attributed Graphs (AGs). Among 

them we could name: [4] where optimal pairwise labelings are required or [5] and [6] 

where, in this case, the CL computation is based on sub-optimal pairwise labelings. 

Although [5] is quite more effective than [6], both share the same weakness: the use 

of pairwise labelings, where a simple labeling error taken at initial stages could derive 

in a bad global result. Moreover [5] have tendency to add extra nodes in the final CL, 

which might be not desired in some applications. In [2], Williams et al. introduce a 

method, which could induce a solution for this problem. However, this method is not 

extensible to N graphs. Another method, which seems to solve both problems, was 

published in [7]. Nevertheless, its high computational complexity makes its use 

infeasible with large graphs sets. 

In this article, we present an energy function that represents the global cost of a 

given CL. Moreover, we present an algorithm, similar to the Graduated Assignment 

algorithm presented in [8] that iteratively seeks for a CL that maximizes this energy. 

The document is structured as follows. In Section 2, we present some theoretical 

basis of the CL problem. In Section 3 and 4, the Graduated Assignment algorithm for 

graph matching [8] and our new algorithm are presented. The evaluation of our 

method is presented in Section 5. Finally, Section 6 finalizes the article with some 

conclusions. 

2 Definitions 

Definition 1. Attributed Graph: Let Dv and De denote the domains of possible 

values for attributed vertices and arcs, respectively. An attributed graph AG over (Dv 

and De) is defined by a tuple AG=(Sv, Se, gv, ge), where Sv= {vk | k = 1,…,R} is the set 

of vertices (or nodes), Se œ {eij | i,j œ {1,…,R}, i ∫ j} is the set of arcs (or edges) and 

gv:Sv  → Dv, ge : Se  →  De assign attribute values to vertices and arcs respectively. In 

case it is required, any AG can be extended with null nodes. A null node is a special 

AG node which has special attribute Ø œ Dv 

Definition 2. Isomorphism between AGs: Let G
p
 = (Sv

p
, Se

p
, gv

p
, ge

p
) and 

G
q
=(Sv

q
, Se

q
, gv

q
, ge

q
) be two AGs. If the selected graphs have initially different node 

size or it is desired to permit some extra null to vertex labelings, G
p
 and G

q
 can be 

extended with any number of null nodes. Besides, let Τ  be a set of isomorphisms 

between two vertex sets Sv. The isomorphism f 

p,q
:Sv

p→Sv
q
, f

p,qœT, assigns each vertex 

from G
p
 to only one vertex of G

q
. There is no need to define the arcs isomorphism 

since they are mapped accordingly to the node isomorphism of their terminal nodes. 

Definition 3. Cost and Distance between AGs: Let f 

pq
 be the isomorphism 

f
p,q

:Sv
p→Sv

q
 that assigns each vertex from G

p
 to a vertex of G

q
. The cost of this 

isomorphism, C
G
(G

p
,G

q
, f 

p,q
) is a function that represents how similar are the AGs and 

how correct is the isomorphism. We consider this cost to be: 
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where F
p,q

[a,i] is a permutation matrix which values are 1 if q
i

p
a

pq vvf =)(  and qp
bjai

C
,
,

 

represents the cost of matching nodes p
av  to q

iv  and p
b

v  to q
jv  plus the cost of 

matching the corresponding edge eab
p
 to eij

q
. 

Usually, C
G
=0 represents that both AGs are identical and that the isomorphism 

captures this similarity. The distance D between two AGs is defined to be the 

minimum cost of all possible isomorphisms f
p,q

. That 

is, ( ) ( )qpqpG

Tf

qp fGGCGGD
qp

,,,min,
, ∈

= . We say that the isomorphism f 

p,q
 is optimal if it 

is the one used to compute the distance. 

Definition 4. Multiple Isomorphism (MI) of a set of AGs: Let Γ={G
1
, G

2
, …, 

G
N
} be a set of N AGs. We say that the set φ is a Multiple Isomorphism of Γ if it 

contains one and only one isomorphism between elements, φ = {f 
1,2

, …, f 
2,1

, …, f
N,N

}. 

We assume that the AGs have R nodes. If it is not the case, the AGs would have to 

be extended with null nodes. We say that a multiple isomorphism is consistent if 

concatenating all the isomorphisms we can define disjoint partitions [5] of vertices. 

Every partition is supposed to contain one and only one vertex per each AG and, in 

addition, every vertex must belong to only one partition. Fig 1a shows a Consistent 

Multiple Isomorphism between three AGs, being R=2. We can distinguish two 

partitions, P1 and P2. Fig 1b. shows the same AGs with an Inconsistent Multiple 

Isomorphism, consequently partitions can not be defined. 

  
We define the cost of a MI as the addition of the costs of all isomorphisms in φ:  
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Definition 5. Consistent Multiple Isomorphism of a set of AGs (CMI): Let φ be 

a Multiple Isomorphism of Γ. φ is a CMI of Γ if it fulfils that: 
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We define the cost of a CMI as the cost of the related MI. The Optimal Consistent 

Multiple Isomorphism (OCMI) is the CMI with the minimum cost. Note that, the cost 

of the OCMI may be obtained by non-optimal isomorphisms since it is restricted to be 

consistent. 

Definition 6. Optimal Consistent Multiple Isomorphism of a set of AGs 

(OCMI): Let φ be a CMI of Γ. φ is an Optimal Consistent Multiple Isomorphism 

(OCMI) of Γ if it fulfils that ( )∑
∀∈

=
qppq

GG

qpqpG

Tf

fGGC

,

,,,minargϕ . 

Given Γ, we can define a Common Labelling (CL) which is a bijective mapping 

between all graph nodes in the AGs to a virtual structure. We construct this CL 

through a CMI. The CMI requirements are mandatory due to if not, the CL would not 

Fig. 1b: Inconsistent MI. Fig. 1a: Consistent MI. 



be a bijective since an AG node would have to be labeled to several nodes of the 

virtual structure. 

Definition 7. Common Labelling of a set of AGs (CL): Let φ be a CMI of Γ and 

let L be a vertex set, L œ Σv. The Common Labelling ψ= { h
1
, h

2
, … , h

n
} is defined to 

be a set of bijective mappings from the vertices of AGs to L as follows:  

h
1
(vi

1
)=i, h

p
(vi

p
)=h

p-1
(vj

p-1
), 1≤ i,j ≤R, 2≤ p≤N, being f 

p-1,p
(vj

p-1
)=vi

p
.  (4) 

Fig. 2 illustrates this definition. 

Finally, the Optimal Common Labelling of a set is a CL computed through an 

OCMI. The prototype or representative of the set synthesized using this CL would be 

the best representative, from the statistical point of view, since the sum of the costs of 

each pair of AGs, considering the global consistency requirement, is the lowest 

among all possible CL.  

 

Definition 8. Optimal Common Labelling of a set of AGs (OCL): Let ψ be a CL 

of Γ computed by a CMI φ. We say that ψ is an Optimal Common Labelling (OCL) of 

Γ if φ is an OCMI of Γ.  

3 Common Labelling framework 

Given two graphs G
p
 and G

q
, there are several error-tolerant graph matching 

algorithms that return the best isomorphism f
p,q

 between them, given a minimization 

criteria. Considering that these graphs have a degree of disturbance and also the 

exponential complexity of the problem, some of these algorithms [8], [9], [10], [11] 

do not return exactly isomorphism f
p,q

 but a probability matrix related to it. We 

represent this matrix by Pf

p,q
 where each cell contains: 

[ ] ))((, ,, q
j

p
i

qpqp
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To adapt the CL problem to the matching problem, we define the probability of match 

between a graph node vi

p
 and a virtual node lj as Ph

p
[i,j]=Prob(h

p
(vi

p
)=lj) (Fig. 3). 

Both, Pf

p,q
 and Ph

p
 are stochastic matrices [12], note that F

p,q
 in (1) and (2) is a special 

case of Pf

p,q
, when Pf

p,q 
is composed by zeros and ones. At the end of the proposed 

Fig. 2: From a CMI to a CL. 



algorithm, it is necessary to convert Pf

p,q 
into f

p,q
 and Ph

p
 into h

p
. There are several 

techniques to find these isomorphisms, e.g. [8], [13], which are out of the scope of 

this paper. We will indentify this discretization process as Λ. 

 

We consider, as Fig 3 depicts, that the probability of matching a vertex vi

p
 of graph 

G
p
, to a vertex lj of the virtual structure L is the probabilistic union of all the paths 

that goes through the nodes of a third graph G
q
. That is,  
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Combining (6) with Pf and Ph definitions and assuming independence of events we 

have: 
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In a similar way, we could infer that Pf
p,q

 = Ph
p
·(Ph

q
)

T
. 

Hence, following (7) we could obtain Ph

p 
in several equivalent ways if Λ(φ) is a CMI, 
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However, in real data (due to distortion on the object representation and distortion 

induced by sub-optimality of the matching algorithms), it is usual that [2]: 
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For this reason, probabilities Ph
p 

cannot be computed directly through matrices Pf
p,q

, 

as in (8), when we cannot assume that Pf
p,q will compose a CMI. 

In this article, we propose and algorithm for the computation of a suboptimal 

solution to the CL problem, the algorithm is inspired in the Graduated Assignment. 

For ease of understanding, we first present an overview of the Graduated Assignment 

algorithm to later introduce the proposed algorithm. 

Fig. 3: Probability of matching v1

1 
to l1. 



4  The Graduated Assignment algorithm 

The Graduated Assignment algorithm is probably the most popular algorithm to 

compute a suboptimal solution for the graph isomorphism problem. Its cornerstone is 

how it reduces the referenced problem to the quadratic assignment problem. The 

proposed development starts by defining the energy of an isomorphism as: 
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analyzing the approximation it is seen that:  
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The algorithm proposed in [8] minimizes (10) under the assumption that it minimizes 

at same point as (12) is maximized. In this way, the problem is equivalent to the 

quadratic assignment one, where Q represents a cost matrix, and Pf  represents a 

stochastic matrix [12] which contains the desired assignation probability. 

The Graduated Assignment algorithm proceeds in the following way: start with a 

valid Pf, compute cost matrix Q given by (12), apply softassign to compute Pf and 

start again. A pseudo code of the Graduated Assignment is listed in Algorithm 1. 

Program Graduated_Assignment input 
G
p
,G

q
 returns f 

 Initialise qp

fP ,  

 Begin A: (Do A until β ≥ βf) 

  Begin B: (Do B until qp

iaQ ,

, converges)            
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  End B 
 End A 

 )( ,qp
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End Program 

Algorithm. 1. GA algorithm. 

Program CL input Γ returns ψ 
 Initialise Ph   
 Begin A: (Do A until β ≥ βf) 

  Begin B: (Do B until p
a

Q
1,ω converges) 

   Compute p
a

Q
1,ω (Alg. 3 or Alg. 4) 
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Algorithm 2. CL algorithm. 



5 N-Graduated Assignment for the CL problem 

The methodology that we present applies a similar procedure as the Graduated 

Assignment methodology to solve the CL problem. The proposed algorithm instead of 

computing an isomorphism of two graphs, it computes the isomorphism of a set of 

graphs Γ and in addition, it imposes to those isomorphisms to be consistent (3). 

 
Due to our objective is to compute a CL, our new energy function depends on the 

probabilities Ph instead of Pf. Nevertheless, the CL has to represent consistent and 

bijective isomorphisms between the involved graphs and the virtual structure, for this 

reason, we impose the restrictions a≠b, i≠j and ω1≠ω2. Fig. 4a,b,c shows non valid 

isomorphisms. Our new energy function is, 
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From (13) we compute the Taylor series expansion deducing that in our case Q is 

given by: 
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Finally, Algorithm 2 obtains a CL ψ given a set of graphs Γ. Note that in (4), we 

impose h
1
(vi

1
)=li. For this reason, in the algorithm we present, we impose Ph

1
 to be 

the identity matrix throughout the iterative process. This requirement is due to the fact 

that the virtual structure does not contain any type of attributes nor structure. Forcing 

nodes of G
1
 to concrete nodes of the virtual structure L, we force the other graphs to 

label each other according to this prior labeling. The other probability matrices can be 

initialized to any stochastic matrix. 

Function Exact_Q computes Q (14) with a cost of O(N
2
·R

6
)(Algorithm 3).  But, 

with the aim of reducing this cost, we have relaxed constraint ω1≠ω2 in (14) (Fig. 4.a) 

which allows to compute an approximation of (14) with a cost of O(N
2
·R

4
). Algorithm 

4 shows the pseudocode. We don’t show evaluation results of the Exact_Q due to the 

results are equivalent to the approximation ones. Moreover, it can be proven that, with 

large size of Γ, the noise introduced by the non valid isomorphism when ω1=ω2 in the 

approximation algorithm is not significant. 

Fig. 4a: non valid: ω1=ω2. Fig. 4c: non valid: i=j. Fig. 4b: non valid: a=b. 



Function Exact_Q input Ph,Γ returns Q  

for Γ∈∀p   

 for Ra ..1=  

  for R..11 =ω  
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Algorithm 3. Calculus of Q. 

Func Approx_Q input Ph,Γ returns Q  

for Γ∈∀p   
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Algorithm 4. Calculus of approx Q. 

6 Evaluation 

To evaluate the presented algorithm we have compared to the algorithm presented 

by Bonev et al. [5]. We consider it is the only one generic enough. The method 

applies the Graduated Assignment algorithm [8] to compute the N
2
 possible 

probabilistic assignation matrices Pf between the graphs. Next, the N
2
·R

2
 probabilities 

Pf
p,q

 are sorted and processed in descending order to compute what they call a Super-

graph. The cost of the algorithm is O(N
2
·(#iterations ·R

4
)). 

We evaluate both algorithms using two datasets composed by AGs that represent 

objects embedded in the plane. In both cases, nodes are defined over a two-

dimensional domain that represents its plane position (x, y). Edges have a binary 

attribute that represents the existence of a line between two terminal points. The 

former dataset, created synthetically, is composed by 35 classes. The number of 

graphs per class is N œ [3, 5, 7, 9, 11] and the noise level between graphs is ν œ [10, 

20, 40...80]. Therefore, we defined 5 x 7 = 35 different classes: seven classes with 

four graphs (with different noise levels), seven classes with five graphs (with different 

noise levels), and so on. Each class was created as follows. We randomly generate a 

base graph composed of R=10 nodes with random attributes in the range Dv=[0..100, 

0..100]. Edges are defined by the Delaunay triangulation. Then, with this base graph, 

we created N other graphs by: 1, generating Gaussian noise at every node with 

standard deviation σ= ν/100. 2, removing v% nodes randomly. 3, inserting v% nodes 

(with random attributes) and 4, changing the state of v% edges. The latter dataset, 

created at the University of Bern [14], is called Letter. It is composed of 15 classes 

and 150 graphs per class representing the Roman alphabet i.e. A, E, F, …, X, Y, Z. 



From each class, we randomly selected N œ [3, 5, 7, 9, 11] graphs, to generate the 

CL. To compute the cost C in equations (2), (12) and (14) we used the Edit Distance 

[15] applied to the sub-graphs induced by {va
p
, vb

p
} and {vi

q
, vj

q
}. Finally, with the 

aim of obtaining non-biased results, each experiment was performed 7 times.  

The ground truths of our experiments are the MIs in which each isomorphism has 

been computed through Algorithm 1. Note that these MIs are not restricted to be 

consistent (3) and so, do not compose a CL (Def. 7). Their costs are computed 

through C
MI

 (2) and they are supposed to be the lowest ones due to the consistency 

restriction are not imposed. The results of the evaluation procedure are presented in 

Fig. 5 for the Letter dataset and in Table 2 for the Synthetic dataset. Each point in Fig. 

5 shows the mean cost minus the cost of the ground truth of an experiment set 

performed by both algorithms. Each set is constructed by 7 random experiments with 

letter ‘A’, 7 with letter ‘B’, … and 7 with letter ‘Z’ given a concrete size of Γ. 

Besides, we present the results using the synthetic dataset in Table 1. In this case, 

each cell of the table represents the percentage of increment of the proposed algorithm 

in comparison with [5]. Each value is computed using the mean of 7 random 

experiments using a concrete size of Γ and a concrete noise level.  

 

Fig. 5: Results of Letter dataset. 

 

 

 

Table 1: Results of Synthetic dataset. 

We see in Fig. 5 that the presented algorithm achieve better CLs than [5], we 

observe that as the size of Γ increases the performance of the presented algorithm tens 

also to increase respect [5]. In the results performed over the synthetic dataset (Table 

1), we can observe that with noises greater than 10, the percentage of increment is 

considerable and also tends to increase together with the size of Γ and the noise level.  

7 Conclusions and further work 

Graphs are a very flexible representation of data capable of representing a large 

sort of problems related to pattern recognition. Examples could be found in image 

databases, video analysis, biomedical and biological applications and so on. A nice 

review can be found in [1]. In some of these applications, it is usual the need of 

finding a structure that represents a set of graphs. This structure is used as a 

representative of the set. The first step to generate this structure is to find a Common 

Labeling between the vertices of all the graphs such that a general cost is minimized. 

It is crucial to find a good common labeling to generate a good representative. In 

addition some works [2] deduce that, due to the noise, in some applications it is more 

useful to find a CL (of three graphs) instead of just pairwise labellings. 



Known algorithms to compute a Common Labeling consist on first finding the 

labeling between any pairs of graphs and then combining this information to compute 

the Common Labeling. The presented algorithm differs from others because it 

computes the Common Labeling at the same time as the pairwise labelings, mixing 

the local and global knowledge at each step of the algorithm. 

We have compared our algorithm with the most popular one in the literature and 

we present and evaluation which shows that our method finds better common 

labelings with similar computational cost. This means that, the approaches that need a 

Common Labeling between graphs would perform better. Moreover, the proposed 

iterative approach allows using the current Common Labeling at each step of the 

algorithm, in comparison with [5] which must wait for all pairwise computations 

before concluding a solution. 

As a future work, we will apply this new technique to the representative of a set of 

graphs called Structurally-Defined Random Graph [3] and we will analyze its ability 

to keep the structural and semantic knowledge of the Γ set. 
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