
A Conductance Electrical Model for Representing and Matching Weighted
Undirected Graphs ∗

Manuel Igelmo
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Abstract

In this paper we propose a conductance electrical
model to represent weighted undirected graphs that al-
lows us to efficiently compute approximate graph iso-
morphism in large graphs. The model is built by trans-
forming a graph into an electrical circuit. Edges in
the graph become conductances in the electrical cir-
cuit. This model follows the laws of the electrical circuit
theory and we can potentially use all the existing the-
ory and tools of this field to derive other approximate
techniques for graph matching. In the present work,
we use the proposed circuital model to derive approxi-
mated graph isomorphism solutions.

1. Introduction

Graphs have been successfully applied in various
fields such as chemistry and biochemistry, transporta-
tion, telephony and computers networks, speech recog-
nition and computer vision [2]. In this paper we con-
centrate in those graphs coming from the field of com-
puter vision. In this case, graphs have labeled nodes
and/or edges [13] and they usually have a large num-
ber of nodes and/or edges. The methods for graph
and sub-graph matching are based on enumerative tech-
niques [15, 7], edit operations [14, 10, 9], spectral meth-
ods [16], expectation-maximization [12], random walks
[5], genetics algorithms [3] and probabilistic approxi-
mations [17]. The time complexity in the enumerative
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and edit operation methods is NP–complete while in the
other methods it is polynomially bounded. Only in the
enumerative solutions we have the exact solution, in
the other cases we can get only graph and sub–graph
matching approximations. The focus of this paper lies
in providing a model for undirected weighted graphs
and allowing them to apply theories, methods and pro-
cedures which are well known in the model. Specif-
ically, we propose a circuit model without generators
and formed exclusively with resistors. As an illustration
of the model gives an approximate solution (through the
circuit model) to graph isomorphism.

2. Conductance Electrical Model (CEM)

To represent weighted undirected graphs we pro-
pose to use a Conductance Electrical Model (CEM), ex-
tracted from the circuit theory, formed exclusively with
resistors without generators. The two stages for con-
structing the model are explained in the following sub-
sections.

2.1. Step function

The first stage is to assign conductance values (in
what follows we will use the letter c for conductances
instead of the usual g for which the latter is used to rep-
resent graphs) in the circuit from the edge weights. To
this end, we define a step function φ(ωij) = cij where
ωij is the weight of the edge joining nodes i and j, and
cij is the conductance (in siemens) of the resistor join-
ing nodes i and j in the CEM. The step function must
satisfy two conditions. First, the step function must
be injective. This condition is absolutely necessary if
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we want to retrieve a graph from its model. Second,
φ(0) = 0 must be. It is known that when two nodes
are not connected by any edge, it corresponds to a zero
in the adjacency matrix. These two nodes, in its circuit
counterpart, have no resistor so that its conductance is
zero. In summary, the step function can be any transfor-
mation which fulfils the following requirements:

1. φ is injective.
2. φ(0) = 0.

Once the conditions are set, the decision to choose a
step function depends strongly on the physical meaning
of the weights of the edges and, therefore, it depends
on the context of the problem. In other words, the step
function is a parameter design.

2.2. Indefinite Conductance Matrix (ICM)

The second and last stage for the model is to obtain
the Indefinite Conductance Matrix (ICM) in the usual
sense as of circuit theory (for example [4]). It is well
known that this matrix is obtained putting in row i and
column j the value of the conductance (changing the
sign) joining the nodes i and j for i �= j; otherwise
must be such that the row sum zero for i = j. As an
example (see Fig. 1 and 2), if we have an adjacency
matrix A of a graph g with degree N like,

A =

⎛
⎜⎜⎝

0 ω12 · · · ω1N

ω12 0 · · · ω2N

...
...

. . .
...

ω1N ω2N · · · 0

⎞
⎟⎟⎠

then, the CEM model (C matrix) is obtained, for any
step function, by the ICM, that is

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
j=1
j �=1

c1j −c12 · · · −c1N

−c12

N∑
j=1
j �=2

c2j · · · −c2N

...
...

. . .
...

−c1N −c2N · · ·
N∑

j=1
j �=N

cNj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where it has already been taken into account that both
matrix are symmetrics (ωji = ωij and cji = cij). Note
that the ICM has some similarities but it is not a Lapla-
cian matrix in general. Only if cij = ωij ICM becomes
a Laplacian.

2.3. Benefits of CEM

CEM is a linear model: One of the most natural
representation for weighted graphs is through its
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Figure 1. An example of a weighted undirected
graph.
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Figure 2. The CEM model of the example graph
of the Fig. 1.

adjacency matrix. The CEM representation of a graph
continues to be a matrix (C) but with the added value
that is a linear application that means we can use all
the tools of linear applications. The physical meaning
of this matrix can be seen in the formula I = CV
where C is the CEM representation of the graph, V and
I are the vector column of the voltages and currents
respectively.

Computational complexity of CEM: The compu-
tational complexity to obtain the CEM is O(N2) where
N is the graph size.

3. Approximate graph isomorphism

We will use the proposed model to approximately
compute graph isomorphism between two given graphs.
This procedure is carried out in three steps:
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1. Transform both graphs g and h into their CEM
models Cg and Ch.

2. Approximate CEM models Cg and Ch into star cir-
cuits C ′

g and C ′
h.

3. Decide whether there is an isomorphism compar-
ing the star circuits C ′

g and C ′
h.

Using afore mentioned procedure, we cannot con-
firm exactly whether two graphs are isomorphic, be-
cause we transform a CEM model in a star circuit and
we are not able to know if two different CEM models
has the same star circuit. However it can be useful to
perform a first filtering within a large database, keeping
only those pairs of graphs which are said to be isomor-
phic and the apply an exact (or a more accurate) method
to make a final decision.

3.1. Obtaining the CEM model

The two graphs to be compared g and h (with N
nodes and M edges) are transformed into their CEM
models Cg and Ch using the following step function,

cij = φ(ωij) =
{

0; ωij = 0
1/ωij ; otherwise

3.2. Computing the star circuit

Using circuit theory, we extracted from the original
circuit the value of equivalent resistance seen from the
N(N − 1)/2 pairs of nodes: reqij

. With this data we
compute their star circuits, C ′

g and C ′
h. These circuits

have N + 1 nodes (the central node will be the refer-
ence) and N branches (resistors) that their behavior ap-
proximates the original CEM circuit (see Figure 3 for
an example). With this new representation we will be
able to perform approximate graph isomorphism.
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34
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Figure 3. star circuit as approach of the example
original circuit of the Fig. 2.

This will require, for example, that the equivalent re-
sistance seen from each terminal pair (r′eqij

) is identical

or approximate to the original circuit counterparts. In
star circuit this value is simply

r′eqij
= r′i + r′j

where r′i and r′j are the resistors that join nodes i and
j with the reference node respectively. So in the above
equation the r′eqij

is replaced by reqij
. This leads to

obtain a system of N(N − 1)/2 linear equations with
N unknowns (the N values of star circuit). The matrix
form is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 · · · 0 0
1 0 1 0 · · · 0 0
1 0 0 1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
1 0 0 0 · · · 1 0
1 0 0 0 · · · 0 1
0 1 1 0 · · · 0 0
0 1 0 1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 1 0 0 · · · 1 0
0 1 0 0 · · · 0 1
0 0 1 1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 1 0 · · · 1 0
0 0 1 0 · · · 0 1
0 0 0 1 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 0 1 · · · 1 0
0 0 0 1 · · · 0 1

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 0 · · · 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

r′
1

r′
2

r′
3

r′
4

.

.

.
r′

N−1
r′

N

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

req12
req13
req14
.
.
.
req1,N−1
req1,N

req23
req24
.
.
.
req2,N−1
req2,N

req34
.
.
.
req3,N−1
req3,N

req45
.
.
.
req4,N−1
req4,N

.

.

.

.

.

.
reqN−1,N

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This linear system has more equations than unknowns
that usually have no solution unless there are sufficient
linearly dependent equations. It is therefore an over-
sized system which we obtain an approximate solution
that minimizes the euclidean norm. If we denote as A
the matrix of coefficients, as b the column vector of in-
dependent terms, as r′ the exact solution and as a r̂′

the approximate solution that minimizes the euclidean
norm then we have

r′ ≈ r̂′ = (AtA)−1Atb

where the (AtA)−1At is known pseudo-inverse of A.
Remember that the resulting r̂′ link the corresponding
node in the original graph.

3.3. Comparison between the two star circuits

Once we have the values of N resistors, r̂′i, in the star
circuit of the two graphs, we have to do node labeling
assignment in order to find the isomorphism matching.
If two star circuits are identical that means isomorphic,
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they have the same N resistor values in the correspond-
ing nodes. The node labeling assignment is done by
arranging the values of the resistors using ascendant or
descendant criteria. Then the comparison between both
star circuits is done node by node, if they are the same,
then both star circuits are identical. The computation
complexity is linear with respect to the number of resis-
tors, which is equal to the number of nodes N .

4. Experiments

In our experiments we used the graph-based version
[11] of the COIL-100 database [8]. This dataset is com-
posed by 7,200 graphs comming from 72 different ob-
jects. The nodes of the graphs in this database are the
corners detected in the COIL objects using the Harris
algorithm [6]. From these database we picked up ran-
domly 100 graphs with the same degree, and we com-
puted the graph isomorphism between all the possible
unordered pairs (100(100 + 1)/2 = 5, 050). As a result
we can say that al the isomorphic pairs were detected
and no false positives were found. In short, the algo-
rithm performed perfectly.

5. Conclusions and future research
The main contribution of this paper is a novel graph

model, the CEM model, inspired on the circuit theory,
which allows us to approximately test for graph isomor-
phism in only O(N2) time complexity, where N is the
size of the graphs. Combining the CEM model with star
circuit transformation, we are able to perform approxi-
mate graph isomorphism detection. Simple experiments
done on a real database show that the method performs
good in approximate graph isomorphism detection.

However, there are still some directions to extend
this model. For instance, in the illustrative example pre-
sented in this paper we have chosen to approximate the
original circuit by a star circuit, but this is not the only
possibility, other settings fit provided that can detect
special nodes to facilitate the comparison of approxi-
mate circuits. It should be emphasized to obtain the
model itself is accurate in the sense that it is always pos-
sible to obtain the graph from the model, the approaches
that enable the reduction of the problem are computa-
tional approaches that are performed on the model al-
ready obtained.

It is also of interest to use this model in other prob-
lems, such as graph distance measure, node reduction
[1] and [18] and subgraph isomorphism.

References

[1] T. Asano and T. Hirata. Edge-deletion and edge-
contraction problems. Proceedings of the fourteenth an-

nual ACM symposium on Theory of computing, pages
245–254, 1982.

[2] H. Bunke and A. Sanfeliu. Syntactic and Structural
Pattern Recognition - Theory and Applications. World
Scientific Publishing Co. Pte. Ltd.. Series in Computer
Science - Vol. 7, Singapore, New Jersey, London, Hong
Kong, ISBN 9971-50-566-5., 1990.

[3] A. D. J. Cross, R. C. Wilson, and E. R. Hancock. Inexact
graph matching using genetic search. Pattern Recogni-
tion, 30(6):953–970, 1997.

[4] R. A. DeCarlo and P. Lin. Linear Circuit Analysis. Pren-
tice Hall, 1995.

[5] M. Gori, M. Maggini, and L. Sarti. Exact and approxi-
mate graph matching using random walks. Pattern Anal.
and Mach. Intelligence, 27(7):1100–1111, 2005.

[6] C. Harris and M. Stephens. A combined corner and edge
detector. Proceedings of the 4th Alvey Vision Confer-
ence, pages 147–151, 1988.

[7] B. T. Messmer and H. Bunke. A new algorithm for
error-tolerant subgraph isomorphism detection. IEEE
Transactions on Pattern Analysys and Machine Intelli-
gence, 20(5):493–504, May 1998.

[8] S. A. Nene, S. K. Nayar, and H. Murase. Columbia ob-
ject image library (coil-100). Technical Report CUCS-
006-96, February 1996.

[9] M. Neuhaus and H. Bunke. Edit distance-based kernel
functions for structural pattern classification. Pattern
Recognition, 39(10):1852–1863, 2006.

[10] M. Neuhaus and H. Bunke. Automatic learning of cost
function for graph edit distance. Information Sciences,
(177):239–247, 2007.

[11] K. Riesen and H. Bunke. Iam graph database repository
for graph based pattern recognition and machine learn-
ing. SSPR, 2008.

[12] A. Robles-Kelly and E. R. Hancock. An expectation-
maximisation framework for segmentation and group-
ing. Image and Vision Computing, (20):725–738, 2002.
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