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Abstract

We propose a new algorithm for detecting multiple

object categories that exploits the fact that different cat-

egories may share common features but with different

geometric distributions. This yields an efficient detec-

tor which, in contrast to existing approaches, consid-

erably reduces the computation cost at runtime, where

the feature computation step is traditionally the most

expensive. More specifically, at the learning stage we

compute common features by applying the same Ran-

dom Ferns over the Histograms of Oriented Gradients

on the training images. We then apply a boosting step

to build discriminative weak classifiers, and learn the

specific geometric distribution of the Random Ferns for

each class. At runtime, only a few Random Ferns have

to be densely computed over each input image, and their

geometric distribution allows performing the detection.

The proposed method has been validated in public

datasets achieving competitive detection results, which

are comparable with state-of-the-art methods that use

specific features per class.

1. Introduction

The problem of object category detection from im-

ages has been shown to be a challenging one, because

of the large intra-class variations that an object may

suffer, due to changes in pose, illumination and clut-

tered backgrounds. Many recent methods have shown

remarkable success for single class detection, by using

intensive machine learning techniques such as Boosting

[7, 14], or Support Vector Machines [2, 3, 6, 10, 12], to

learn the different appearances of an object. As shown

in [17], among the previous methods, those based on
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Figure 1. Shared Feature Pool. Car and motor-

bike categories share the features computed using

Random Ferns.

Histograms of Oriented Gradients (HOG) have demon-

strated to outperform classical methods based on Haar-

like intensity features.

In order to go a step further and deal with multi-

ple categories, several classifiers or detectors have to

be learnt offline and tested at runtime. The simplest ap-

proach consists in learning each category-specific clas-

sifier independently from the rest. While this procedure

allows focusing on the most discriminative features for

each category, it has a high computational cost at run-

time, because the total number of features increases

with the number of object categories. This is specially

critical, when features are computed by using a sliding

window under different scales over the whole image.

Recent approaches have attempted to reduce this

computational burden inherent in the multiclass object

detection problem by splitting the detection process in

two steps: initially the object class is estimated by ei-

ther using joint class classifiers [16] or a rough class es-

timator [12], and subsequently the object is accurately

detected through category-specific classifiers. Never-

theless, in both situations the initial estimation is only

reliable when object categories may be represented by

predefined-regions with the same size, and when deal-

ing with classes that may have very distinct aspect-

ratios this procedure is prone to introduce many false

positives and negatives in the initial estimation.
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Figure 2. Local Binary Feature. Our features are

computed from binary comparisons between dif-

ferent bins of the HoG.

In order to address this situation we proceed as the

former methods mentioned above, independently learn-

ing a robust classifier for each category. However, in

order to make their computation as efficient as possible,

we propose to build a pool of features that is shared by

all the categories. For instance, in the example shown

in Fig.1, three features are shared by the “car” and “mo-

torbike” classes. Then, at runtime, only these three fea-

tures have to be evaluated over the input image, and the

decision to classify such an image to belong to one class

or the other, depends on the response of category clas-

sifiers built from the common features. Note that the

process to compute the features only needs to be done

once, and it is independent from the number of cate-

gories to detect.

More specifically, in order to build the shared pool of

features, we apply the very same Random Ferns (RF’s)

[11] on the HOG’s of a set of training images from

multiple classes. Given these features, we then use a

boosting step to learn discriminative object classifiers.

The result of the boosting step is a specific combina-

tion of Random Ferns for each category, that although

sharing the same Ferns, it has a geometric distribution

that is particular for each class. As will be shown in

the Results section, our detector yields similar recogni-

tion and detection results as state-of-the-art approaches

when applied to each of the individual classes.

The rest of paper is organized as follows. Section 2

explains the procedure to compute local binary features

over the HOG. Section 3 describes how discriminative

RFs are computed. Category classifier computation and

experiments are described in Sections 4 and 5, respec-

tively.

2 Local Binary Features

A Local Binary Feature (LBF) maps the image sam-

ple x to a boolean space in the form,

f : x → {0, 1} , x ∈ X , (1)

by simple comparison between a pair of image values

(e.g pixel intensities). Traditionally, LBFs are com-

puted in the image intensity domain yielding success-

ful detection results for specific objects [11, 15]. We

extend the same idea and propose to compute LBFs in

the HOG domain because in recent years HOG-based

methods have demonstrated remarkable results for ob-

ject categorization showing robustness to illumination

and object appearance changes. Therefore, for our pur-

poses, an LBF is defined as a signed comparison be-

tween two HOG cells,

f(x) =

{

1 xΩi
> xΩj

0 xΩi
≤ xΩj

, Ω ∈ IR3 , (2)

where Ωi and Ωj are the feature component locations

defined by spatial and orientation coordinates (u, v, θ).
Figure 2 shows one LBF instance in a HOG.

3 Discriminative Random Ferns

In order to compute object features, we use the Ran-

dom Ferns proposed in [11] for keypoint classification.

However, and in contrast to this original formulation

of the Random Ferns, we write the Ferns expression in

terms of likelihood ratios between classes. This allows

us to seek for the feature combinations that maximize

this ratio, by means of a boosting algorithm.

Our goal is to model the posterior object class prob-

ability given a set of n features (LBF). This can be ex-
pressed by means of the Bayes rule as

P (Cj |f1, f2, ..fn) =
P (f1, f2, ..fn|Cj)P (Cj)

P (f1, f2, ..fn)
, (3)

where Cj refers to the category and fi is a feature. An

equivalent expression may be written for the rest of cat-

egories and for the background (B) class. For each of

the classes we seek to maximize its posterior probabil-

ity ratio w.r.t. the background class. By removing the

priors P (f1, f2, ..fn), common for all the classes, and
assuming uniform prior probabilities, P (Cj) = P (B),
the posterior probability may be written by the likeli-

hood ratio

log
P (Cj |f1, f2, ..fn)

P (B|f1, f2, ..fn)
= log

P (f1, f2, ..fn|Cj)

P (f1, f2, ..fn|B)
. (4)

Since computing the complete joint probability for a

large feature set is not feasible, it is split intom subsets
(̥i = {f1, f2, ..fr}), with r = n/m. These feature
subsets are known as Ferns, and assuming they are in-

dependent, their joint log-probability is computed as

log

∏m

i=1 P (̥i|Cj , gi)
∏m

i=1 P (̥i|B, gi)
=

m
∑

i=1

log
P (̥i|Cj , gi)

P (̥i|B, gi)
,

(5)
where the parameter gi (g ∈ IR2) corresponds to the

image spatial location where the Fern ̥i is evaluated,

measured from the object image center. Each Fern cap-

tures the co-occurrence of r binary features computed
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Figure 3. Category-specific classifiers. Several

weak classifiers for different classes built from the

same pool of features.

on the HOG space, and encodes object local appear-

ances. Its response is represented by a combination of

boolean outputs. For instance, the observation zi of a

Fern ̥i made of r = 3 features with binary outputs
0, 1, 1, would be (011)2 = 3. In other words, each Fern
maps 2D image coordinates to a K = 2r-dimensional

space
̥ : x → z, x ∈ X, z ∈ IR . (6)

The Fern probability may then be written using the class

conditional probability, the Fern location and the fea-

ture set observations:

m
∑

i=1

log
P (̥i|Cj , gi, zi = k)

P (̥i|B, gi, zi = k)
, k = 1, 2, ...K , (7)

with k, the observation index.

4 Building Robust Category Classifiers

The Random Ferns ̥i, defined in the previous sec-

tion, are shared by all of the object categories. This is

what we call a pool (ϑ) of Random Ferns (See Algo-
rithm 1). We next build a robust category-specific clas-

sifier as a linear combination of weak classifiers, where

each of them is based on a Random Fern selected from

the feature pool, with an associated spatial image loca-

tion.

More formally, we want to build the object category

classifier Hj(x), that yields the Ferns ̥i and locations

gi that are most discriminative, that is, that maximizes

Eq.7. This is achieved by means of a Real Adaboost al-

gorithm [13], that iteratively assembles weak classifiers

and adapts their weighting values.

Then, a category-specific classifier based on Ran-

dom Ferns is defined as

Hj(x) =

T
∑

t=1

hj
t (x) > βj , (8)

where βj is a threshold with a zero default value, h
j
t is

a weak classifier defined by

h
j
t(x) =

1

2
log

P (̥t|Cj , gt, zt = k) + ǫ

P (̥t|B, gt, zt = k) + ǫ
, k = 1, .., K ,

(9)

Algorithm 1 Detector computation.

1: Given a number of weak classifiers T , a shared fea-
ture pool ϑ consisting of M Random Ferns, and

N image samples (x1, y1)...(xn, yn), where yi ∈
{+1,−1} is the label for object category Cj and

background classes B, respectively:
2: Initialize sample weights D1(i) = 1

N
.

3: for t = 1 to T do
4: form = 1 toM do
5: for g ∈ x do
6: Under current distribution Dt, calculate

hm,g and its distance Qm,g.

7: end for

8: end for

9: Select the ht that minimizes Qt.

10: Update sample weights.

Dt+1(i) = Dt(i) exp[−yiht(xi)]
P

N
i=1

Dt(i) exp[−yiht(xi)]

11: end for

12: Final strong classifier.

Hj(x) = sign
(

∑T

t=1 hj
t (x) − βj

)

and ǫ is a smoothing factor. At iteration t, the probabil-
ity P (̥t|Cj , gt, zt) is computed under the distribution
of sample weights D(i) as

P (̥t|Cj , gt, zt = k) =
X

i:zt(xi)=k

Dt(i) , k = 1, .., K .

(10)

The classification power of each weak classifier is
measured by means of the Bhattachryya distance be-
tween object and background distributions. We then

choose the classifier hj
t that minimizes the following

criterion,

Qt = 2

K
X

k=1

p

P (̥t|Cj , gt, zt = k)P (̥t|B, gt, zt = k) .

(11)
Figure 3 depicts one example of several weak classi-

fiers retrieved for two object categories that share the

same features (Random Ferns).

5 Experiments

We next validate several aspects of our algorithm on

public datasets, and compare its performance to state-

of-the-art methods that are focused on single object de-

tection. The datasets we consider are the well-known

UIUC car-side dataset [1], the TUD motorbike dataset

[5] and the Caltech face dataset [4].

HOG-based Ferns. The proposed method has been

tested using Ferns on the HOG and intensity domains.

This experiment is performed over the UIUC car-side

dataset that has 108 images of 139 cars at different
scales. Figure 4-Left shows how using HOG-based fea-

tures we obtain better results that when using intensity
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Figure 4. Detection performances. Left: HOG vs intensity based features under varying numbers of weak

classifiers. Middle: Shared feature pool size. Right: Selected RFs for several categories.

Method UIUC Caltech TUD

Multi-scale Faces motorbikes

[1] 39.6% - -

[4] - 96.4% -

[5] 87.8% - 81.0%

[10] 90.6% - -

[14] - 94.0% -

[9] 94.7% - 89.0%

[8] 95.0% - 87.0%

[6] 98.6% - -

Our Method 97.8% 99.1% 86.7%

Table 1. Performances on Object Categorization.

based features. In addition, we observe that increasing

the number of weak classifiers also improves detection

performance. Yet, since the number of features remains

the same, the cost of the algorithm does not significantly

increase.

Shared Feature Pool Size. The classifier perfor-

mance has been evaluated in terms of the feature pool

size. This evaluation is performed on the TUD motor-

bike dataset that consists of 115 test images under chal-
lenging situations such as occlusions. For training, we

have used about 400 motorbike images from the Cal-
tech dataset. Figure 4 shows that with only 10 Random
Ferns the classifier achieves remarkable results compa-

rable to state-of-the-art methods specifically tailored to

single object detection (Table 1).

Feature Sharing. Figure 4 shows the Random Ferns

distributions for different category-specific classifiers.

Since these classifiers share the same features, the com-

putational cost of detecting multiple categories isO(M)
whereM is the cost of feature computation. This is in

contrast to the O(KM) cost of using different features
per category, withK the number of categories.

6 Conclusions

We have presented an algorithm for multiple object

detection, that makes use of a common pool of features,

computed using Random Ferns over the HOG domain.

We have shown that sharing common features yields

an efficient multiple object detector while the detection

rates are similar to current approaches that compute spe-

cific features for each category.
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