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Abstract. Locally weighted as well as Gaussian mixtures learningrélyos are
suitable strategies for trajectory learning and skill asijon, in the context of pro-
gramming by demonstration. Input streams other than viatmimation, as used in
most applications up to date, reveal themselves as quifelis¢rajectory learning
experiments where visual sources are not available. Fdirhi¢ime, force/torque
feedback through a haptic device has been used for teachéhepperated robot to
empty a rigid container. The memory-baded/PL S and the non-memory-based
LWPR algorithms [1,2,3], as well as both the batch and the increateversions
of GMM/GMR [4,5] were implemented, their comparison leadio very similar
results, with the same pattern as regards to both the imalbeot joints and the
different initial experimental conditions. Tests where thacher was instructed to
follow a strategy compared to others where he was not leagetulconclusions
that permit devising the new research stages, where théttaugtion will be re-
fined by autonomous robot rehearsal through reinforcenseanhing.
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Introduction

Personal, domestic and service robots are intended to be@mpérform everyday tasks.
Such tasks, like household chores, have to be executed bigidy varying conditions
and thus it is very complex, if not impossible, to base thégrerance of the robot
entirely on a formal mock-up of reality. Hence, within the®®-PLUS project, we are
relying onlearningto endow robots with the necessary skills [6]. As trainifgetaplace
in a real-world scenario, the possible arising contingemeire implicitly contemplated
in the acquisition process.

The goal in skill acquisition is to learn policies, that is,gstablish the appropriate
correspondence between perceived states and actionshi@ndtural way of learning
skills is by observing how they are performed byeacher This is known as program-
ming by demonstration or imitation learning [8], which switell a domestic setting as
the teacher does not need to be a programmer, but just knowwchexecute the task.

Due to differences between human and robot morphologi@syiteg is not aimed at
reproducing exactly the teacher’'s motions, but at ideimifyhe relevant execution traits,
so that the robot can afterwards refine its motion autonoipdiough rehearsal.
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08028 Barcelona, Spain.



Learning paradigms based on local characterization likeallp weighted learning
(LWL) or Gaussian Mixture Models and Regression (GMM/GMR)well these de-
mands, and especially that of coping with changing distidims, which may easily lead
to catastrophic interference within many neural netwonlagegms. LWL methods have
been successfully used in a variety of applications, likéldgicking and pole-balancing
[1], or air hockey playing [9], among others. We have adaptedsuch methods, namely
Locally Weighted Partial Least Squares and Locally WeidHeeojection Regression,
to our particular setting and task. GMM/GMR algorithms haeeently been used with
great success in human gesture imitation [5] and we havdedsed them in our setting.

Unlike most existing contributions to skill learning by denstration, our training
algorithms do no rely exclusively on positional informatjdut mainly on force/torque
feedback. This is a distinctive feature, whose relevanaeiines evident when visual
information is insufficient to determine the state of theteys In particular, we address
applications that involve emptying a container through ke héor an opaque container,
empty or full states are visually indistinguishable. In edperimental setup, described
in Section 1, the content is assumed heavy enough to be eétegt force/torque sensor
mounted on the robot’s wrist.

The remaining of the paper is structured as follows. Sec®dnprovides a brief
description of LWL and GMM/GMR methods, and Section 2.2 akpd how we have
adapted them to the present context. The obtained resudtshair interpretation are
described in Section 3. Finally, some conclusions are diav@ection 4 and future work
is indicated.

1. Experimental Setting

In our experimental setting a STAUBLI RX-60 robotic arm wahforce/torque (F/T)
sensor placed on its wrist (the Shunk’s FTC-050 sensorjuesés motion commands
through a Force Dimension’s 6-DOF Delta haptic device (SgerE 1(a)). The user
handles the end-effector of the haptic device, and theggadisments and orientation
changes are transformed into motion commands by the ctertajlthe device and sent
to the controller of the robot. Unlike conventional telecgi®n interfaces, the haptic de-
vice allows the user to feel forces and torques on its engktff, which may be provided
by an internal computer model, or, like in this case, by aeml source like the robot’s
F/T sensor. In sum, this setting enables the user to comnendtely the robot arm
while feeling the interaction forces and torques produaethe robot arm’s wrist.

In our experimental setup, the robot arm has a rigid rectiangontainer with a hole
attached at its wrist, as shown in Figure 1(b). Inside the bhdall is free to roll around.
The goal is to teach the robot to extract the ball out from thwelty reorienting the box
until the ball falls through the hole. The relevant aspecehe that only forces/torques
on the robot’s wrist (which are implicitly related to the ées/torques generated on the
container by the ball) are being sensed while the teleopepatrforms a demonstration
of the task. The teacher has both visual (a direct visualgpian of the scene) and
haptic feedback, whereas the robot receives exclusivgidiaformation.

Formally speaking, each position/orientatiogenerated by the teleoperator at the
end-effector of the haptic device is transformed to the tekfoame and sent to the
robot’s controller as desired configuration in the operwlapace. This controller sends



(a) Teleoperation setting (b) Robot arm and container
Figurel. Learning by demonstration setting using a haptic device

the command for moving the robot to such position. At the sime, all forces/torques
sensed on the robot’'s wrist from the F/T sensor are filteragistormed to the haptic
device’s frame and reproduced on the teleoperator’s hanodigh the haptic interface.
There is a key issue related to the filtering process: theefgtorques signals/T ; cor-
respond to forces/torques generated by thefal}, those generated by the container’s
massH/T,,, and noise::

FITy = FITy+FIT,, +¢ @)

We would like to feed back to the haptic device only those aligiavhich are gener-
ated by the ball’'s dynamics, thus it is necessary to elimgibath noise and forces/torques
due to the container’s mass. As the container is not a périegid structure, it vibrates
when the robot moves, and the reproduction of these vibratm the teleoperator site
is an undesired effect. It can be avoided by implementingaalifilter that cuts out all
vibration signals on the force/torque sensor, in a similay &s in [10], where a method
for suppressing residual vibrations in flexible payloadsried by robot manipulators,
is developed by preconditioning the robot joint trajeaeriising FIR digital filters. In a
second stage it was necessary to dynamically compensdtetes/torques generated by
the container’'s mass in the sensor’s frame. Here, the mamigito model the container
force/torques generated by its dynamics, and to use thighfiodremoving them from
the sensor readings [11,12]. For more details about filgestimd dynamic compensation
processes applied to this setting, refer to [16].

The setting described has an evident academic flavour. Tinioer and the ball
have been dimensioned so as to provide a suitable colleotioreasurements. Further
experiments will include more realistic settings. Nonéths and despite their simplicity,
these experiments are very appropriate to show how foreabfeck-based learning by
demonstration can be carried out and how a simple motoeglyatan be successfully
taught to the robot, while constituting a valuable test bedtifie implementation and
performance evaluation of LWL and GMM/GMR techniques.

2. Learning the Manipulation Task

2.1. Learning Algorithms

Trajectory-level skill learning involves in general theqatsition of a quite complex
function: complex due to the high dimensionality (spatiasition and orientation, ve-



locities, dynamics) and to the fact that it does not have llysaacompact analytical

representation. In what follows we briefly describe the #jmealgorithms used in this

work, grouped in two familiest.ocally weighted learnindLWL) based methods and
algorithms based oBaussian mixture models and regress{@MM/GMR).

2.1.1. Locally Weighted Learning

LWL aims at nonlinear function approximation by using piets® linear functions [1].
Under this key concept, several algorithms have been desd|grouped into two fam-
ilies: memory-based LWL and non-memory-based LWL. In whdbfvs, brief descrip-
tions of the two implemented algorithms belonging to thesrilies, are given.

Locally Weighted Partial Least Squar@sNVPL S) is a suitable method to reduce the
computational complexity afocally Weighted RegressidhWR) [13] and to avoid its
numerical problems [3]. The idea behind PLS is to fit lineadels by using a hierarchy
of univariate regressions along selected projections elnghut space which are chosen
in accordance with input/output correlation and ensurivag the subsequent projections
will be orthogonal in the input space. The approach follolgdSchaal et al. [14,3] is
based on the fact that global high dimensionality does nphjrtihat the data remain high
dimensional if viewed locally. Thus, they started perfargiPLS regression in a local
fashion by weighting the data around the query point. In ty, the dimensionality
reduction process is developed in the query point’s neidinimd.

A quite determinant point of concern remains open with LWPBS a typical
memory-based system. Namely, if the learning system researge, possibly never
ending stream of input data, as it is typical in online rotke&rhing, both memory re-
quirements to store all data as well as the computationalafasinning the algorithms
become too large. Under these circumstances, a non-merasegtversion of LWL is
desirable such that each new data point is incrementalbrporated in the learning sys-
tem and lookup speed becomes accelerated. The corresgamdiime version of the LW-
PLS technique ikocally Weighted Projection Regressi(tW PR), which employs non-
parametric regression with locally linear models [15]. hder to stay computationally
efficient and numerically robust, each local model perfotimnesregression analysis with
a small number of univariate regressions in selected d@direstn input space in the spirit
of partial least squares regression. The properties of L\&fRhati) it learns rapidly
with second-order learning methods based on incremeatairig,ii) it uses statistically
sound stochastic LOOCYV for learning without the need to nréredraining dataiii)
it adjusts its weighting kernels based only on local infatiorain order to minimize the
danger of negative interference of incremental learnivjgt has a computational com-
plexity that is linear in the number of inputs, avit can deal with a large number of -
possibly redundant - inputs [2].

2.1.2. GMM and GMR

GMM are a probabilistic representation of data where a set of§an models work
as universal approximators of densities. In this approasthit is described in [4], the
main idea is to model data from a mixture KfGaussians — of dimensionality with

d = n+m, beingn andmthe input and output spaces dimensions, respectively —etkfin
by a probability density function:
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p(Z;) = plk)p(Z;|k) 2

k=1

whereZ; is a datapoint = {Z;, Z,,}, with Z; and Z, representing the input and out-
put data, respectivelyp(k) is the prior anth(Z;|k) the conditional probability density
function. Thus, the parametersin (2) gogk) = 7, andp(Z;|k) = N(Z;; puk, L), with
Tk, . and Xy defining respectively the prior, mean and covariance matiithe kth
Gaussian. The GMM’s initial values are computed throughktngeansclustering tech-
nique and then the GMM are trained by using the stan@aquectation-Maximization
algorithm with the aim of finding the best representationhef tdata from the Gaussian
components. From the trained GMM, it is possible to recdveigeneral form of the data
by applying GMR. Assuming that a set of query points is avddatheir corresponding
predictions can be estimated through regression.

This algorithm is implemented in batch mode, computing tiMGfrom the in-
put and output data saved in memory, and then solving thessigm with the result-
ing GMM parameters. However, Calinon and Billard in [5] pogpd two incremental
versions for GMM/GMR based learning, namedjrect updateandgenerative update
methods, where the first one showed a better performancemefioy our implemen-
tation and test. The direct method is based on the idea of tsmporal coherence prop-
erties of data to update GMM. The objective is to adapt the Ejdrihm by separating
those parts dedicated to the data already used to train thdelrfrom those devoted to
the newly available data, assuming that the set of posterajrabilities remains without
changes when new data are used to update the model. Thugf iflsthe model is cre-
ated withN datapointsZ; and updated in an iterative way durimgeM-stepsuntil con-
vergence to the set of parametévsé?), ug), E,(CT), E,iT)}. After that, when new data
are available]' EM-stepsare again carried out to adjust the current model to the New
datapoints, taking as initial values of parameters thoselting from the former stage.

2.2. Implementation Issues

Demonstrations were carried out by teleoperating the rabatuntil taking the ball out

of the box in each example. Figure 2 displays the initial poss where the ball was
released. Starting at each predefined initial positionntwelemonstrations were per-
formed, of which ten were carried out using a particular ostrategy: take the ball
to the wall adjacent to the hole, then take the ball alongwlail to the hole. The other

ten examples were demonstrated using a random strategy Wieeteacher just tried to
take out the ball regardless of the movements. Test sampievéluating the learning
technique performance were obtained by simply removingomef each ten executions
of the training sets, corresponding to both the random amlatesty experiments.

2.2.1. LWL Implementation

Regarding the LWPLS algorithm, several trainings wereiedrout with the aim of tun-
ing the distance metric parameter for obtaining betterltesat the prediction stage.
After that, each remaining experiment was used as queryhLWPLS algorithm
and the mean square errors were computed for each outpstirtportant to high-



Figure 2. Initial positions of the ball

light that the inputs for the LWPLS method are forces anduesgin the robot’s frame
(Fy, Fy, F., N, Ny, N.) and the outputs are the six robot joir{ts, . .., g¢) for this
case. Here, we desired to test the robustness of the LWL itaedmin front of irrelevant
inputs as it is the case of the first three robot joints thatrobthe end-effector posi-
tion, which seem less relevant for our application, sineedhientation of the container
is what the teacher significatively modifies for achieving joal of the task.

The features of LWPR as a hon-memory-based learning systeessed in the pre-
vious section, fit ideally our problem, and thus we have te#t®n our experimental
setting. We used the same training “strategy” and “randoatasets as for the LWPLS,
with the same input and output sets. Again, for both datasetsneeded to perform a
distance metric tuning process obtaining the one that gesvihe best predictions of
our training data. In this process, first of all, we disablled incremental updating of
the distance metric with the aim of analyzing which initialwes for this variable have
a good performance by keeping the distance metric fixed irtriging phase. Along
trainings with different values, we checked the predicfi@nformance for the training
dataset and retrained the model with an increased distaati&crantil a satisfying ac-
curacy was achieved. Afterwards we enabled the distancecnagtaptation stage and
using the “best” initial values, we carried out the traingtgge again, now with the aim
of finding the optimal distance metric values through itgémsental updating for each
local model in our LWPR model. After we ran the prediction phasing the same test
experiments used for LWPLS and the corresponding remaaXpgriments in the “ran-
dom” dataset, with the aim of computing the MSEs and evalgdfithe system learns
the demonstrated task.

2.2.2. GMM/GMR Implementation

Both batch and incremental versions of GMM/GMR were testea $imilar fashion as
LWL based techniques. Strategy and random datasets wettdarsevaluating the per-
formance of GMM/GMR-based methods. In a preliminary stdgeh input and output
sets were subjected to a principal components analysis YA the aim of reducing
the dimensionality of the input and output spaces, by rempiirelevant dimensions
and thus solving one of the main learning paradigmatic gurestWhat to imitateq8].
Analyzing the resulting eigenvectors from PCA, it was pblgsto infer that just two of
them were enough to generate the new reduced space witltoeaging the prediction
error significantly, for both input and output datasetssTeduction is related to the facts
that only two inputs are important for carrying out the taisé. forques generated about



the main axes of the box plane, where the ball rolls on), aatjtlst two robot joints
are necessary and sufficient for achieving the given gaaltfiose robot’s wrist joints
that control the orientation of the box about its axis on tlaae, without taking into ac-
count the joint that controls the orientation about the redrais to the plane which does
not generate significant movements of the ball). Thus botA$épplied to input and
output datasets led to select just the two eigenvectors higthest eigenvalues, which
transforms the initial data set = { X, Y} to a new reduced ore= {x, ¥ }.

Based on ideas proposed by Calinon and Billard [4,5], the GBIMR was imple-
mented for obtaining the probability of generatingiven x, i.e. p(¢|x). From several
tests, only two Gaussian components were considered fointggGMM because this
configuration showed a very similar performance to those GMi more models. With
GMMs trained, GMR was used for computing the prediction feetof given queries,
corresponding to those experiments extracted from eaabf sefmonstrations for each
initial position. Once all predictions were computed frorviR, the MSEs were com-
puted with the aim of evaluating the performance of the GMMRsbased algorithms.

3. Resaults

We have conducted a series of experiments in order to tespeéhfermance of the
learning algorithms as well as to provide a basis for congpar{16]. Eleven “strategy
datasets”, each one corresponding to an experiment foea giitial position of the ball
in the recipient, were used for testing the algorithms: Fdlugs along each trajectory
constituted the inputs to the prediction modes of theseriitgos, the output robot coor-
dinate values were subtracted from the values predictedéwplgorithms to obtain the
prediction errors. From the prediction errors for each trgata point, the mean squared
error for each output dimension in each experiment was ctealpé low mean squared
error along an experiment for a given start position meaasttie predicted trajectory
is similar to the demonstrated one, or, in other words, thatnhovements strategy was
learned successfully. We proceeded similarly with furtsleven “random datasets”, to
evaluate whether the algorithms were able to generalize@ade a set of motions (joint
positions) for a given input, from a training dataset whigiparently does not have a
predefined strategy. Furthermore, as another performaeasure, prediction times (i.e.,
time inverted in computing each prediction) were also messu

Table 1. Prediction times for tested algorithms

Algorithm Prediction time(s)
LWPLS 3.0347
LWPR 0.2187
GMM/GMR (Batch) 0.0320
GMM/GMR(Incremental) 0.0302

In sum, the computed performance measures from these meues allow us to
evaluate the following aspect) underlying algorithmic principle, i.e., piecewise linear
local approximation versus mixtures of local Gaussian rngd@ batch modes versus
incremental versiong;) incidence of each output dimension of the learned actions on



T

Hl  \WPLS - Strategy

I L WPLS — Random

I L WPR — Strategy =

N L WPR — Random

N GMM/GMR(Batch mode) — Strategy
GMM/GMR(Batch mode) — Random [

GMM/GMR(Direct method) — Strategy
GMM/GMR(Direct method) — Randon
0.05( —
0.03— —
0.02( —
o.01f
o
2 3 a 5 6

Average MSE
°
3
T

Robot joints

Figure 3. Average MSEs for each robot’s joint

performancegl) influence of the starting position of the bad),learning a specific motion
strategy versus learning random trajectories.

The obtained MSEs have been summarized in Figures 3 and 4easprediction
times appear in Table 1. The following results can be exhftom analyzing these
figures:a) The performance of the learning algorithms in terms of prigal errors is
quite good. Most average MSEs are below 0.04 for any one dktfied learning algo-
rithms and data sets. This means that the predicted valueséb robot joint are close
to the actual ones, thus the actions based on these predietie very similar to those
taught by the demonstrator, and the “hidden” strategy me@ddy the teacher as well
as the random trajectories were learned successh)lliyor this kind of tasks, no ma-
jor differences exist in the performance of LWPLS/LWPR ampared to GMM/GMR
when considering prediction errors, the tendency is ofgh#lly better performance of
the first ones. However, prediction times are much shortethi® Gaussian models)
Figure 3 shows that the prediction errors for the three tasbtjoints are lower than for
the first positioning joints. This is concordant with thetfitat these variables are the
least relevant to achieve the task’s goal, since they cbihtecend-effector position and
not its orientation, therefore having only a minor effecttba targeted ball motiord)
The analysis of Figure 4 throws some expected conclusicshs@me surprising results.
That the trajectories starting at positions 1 and 10 belonfpeé most predictable ones
by all the algorithms was to be expected, due to the closa@ndhkg hole and the single
degree of freedom involved. For the same reason, it is perahlat trajectories originat-
ing at position 11 are in the group of those most difficult tarie A possible interpre-
tation of this fact is that the ball does not reach directly tiole, but hits the wall very
close to it, and the F/T data corresponding to these positoe only slightly different
from those of the exit. The trend is that it is seemingly aasigilt the platform left and
down, that is, to learn the trajectories starting from thgead@there the container is hold
by the robot, than left and up. Observe the difference betwstsating positions 5 and 6,
which may be magnified by the same reason as starting poditiog) It may surprise
at first glance that the overall performance of generalittireg'random dataset”, without
a predefined set of actions, is better than learning thetéglyadataset”. This may be
ascribed to the existence of a common set of motions for eatial iposition of the ball
which the teacher carried out without being aware of it. Baeher possibly developed a
taking the shortest wastrategy for leading the ball out of the container, which besn
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better learned than that with a predefined set of movememigeliberate use of infor-
mation, latent in the user’'s mind, that is not directly olvabte by the robot may also be
present in demonstrating unknown robot tasks through peledion. Such information
may include user preferences as to how a task should be perfoor state information
observable to the human but not the robot (e.g. the visuatipmvides the position of
the ball inside the container, and such information is natlalale to the robot).

4. Conclusionsand Future Works

In the framework of the PACO-PLUS project, we aim at devisirgystem to teach ma-
nipulation skills to a robot in a domestic environment. 8imo programming expertise
should be required from the teacher, we have opted for a pnogiing by demonstra-
tion approach where teacher instruction should be followe@dutonomous robot re-
hearsal to adapt the instructed skills to the robot kinerrsdtucture. Force and torque
feedback constitute valuable input sources for learninguahskills, especially when
no visual information is available. This information, whet provided in batch mode
or as a continuous data stream, has been successfully usegding LWPLS, LWPR,
GMM/GMR and its direct update incremental method. Theserélygns have been able
to learn simple rigid-container emptying skills, as showrthe reduced obtained mean
square errors, as a measure of the discrepancy betweemdeptedicted (as output of
the learning process) trajectories. Coherently, all agors behaved similarly on each
dataset, producing similar patterns of results as regarleth the involved robot joints
and the different initial experimental conditions. Theatadets correspond to tests where
the teacher was instructed to follow a strategy and otheerevhe was not, and they
provided useful expertise that permits devising the neearsh stages, where the taught
motion will be refined using reinforcement learning.

In future work, more involved strategies may arise by inglgdbbstacles inside the
container, like the walls of a maze. We think of the describegerimental setting as
a first step in the consideration of other sensorial inpuptging a pill box, for exam-
ple, where the weight of the last pills may not be significambueggh, as compared to
the box, finer touch/impact sensors or even sound could lem tato account instead.



Another setting that includes the need to resort to nonaVisiormation and which can
be regarded as the natural extension of the present workst®itsemptying deformable
containers, which may adopt shapes that make it difficultgoally distinguish whether
there is still something inside. Related work, bag-emmyearning based on a virtual
reality telerobotic interface and using a Q-learning atomn, can be found in [17].
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