Sharpening haptic inputs for teaching a manipulation skill to a robot
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Abstract— Gaussian mixtures-based learning algorithms are
suitable strategies for trajectory learning and skill acquisition,
in the context of programming by demonstration (PbD). In-
put streams other than visual information, as used in most
applications up to date, reveal themselves as quite usefuh i
trajectory learning experiments where visual sources are at
available. In this work we have used force/torque feedback
through a haptic device for teaching a teleoperated robot to
empty a rigid container. Structure vibrations and container
inertia appeared to considerably disrupt the sensing procss, so
a filtering algorithm had to be devised. Moreover, some input
variables seemed much more relevant to the particular taskd
be learned than others, which lead us to analyze the training
data in order to select those relevant features through prigipal
component analysis and a mutual information criterion. Then,
a batch version of GMM/GMR [1], [2] was implemented using
different training datasets (original, pre-processed daa through
PCA and MI). Tests where the teacher was instructed to follow
a strategy compared to others where he was not lead to useful
conclusions that permit devising the new research stages.

. INTRODUCTION

success in human gesture imitation [2] and teaching phlysica
collaborative tasks [7], [8].

Within the PACO-PLUS project, we have devised a
decision-making framework where skill learning serves to
encode basic robot actions, which constitute the action
repertoire of a symbolic rule system [9] that learns state-
action rules, which in turn are the basic operators of a logic
planner. In a previous work [10], we adapted both LWL and
GMM/GMR methods to our setting and reported results for
a few variants of them, assessing the importance of several
parameters and factors in their performance. Somethirtg tha
became clear was the crucial role of a good conditioning of
inputs for both the speed and quality of learning. Thus, we
devote attention to this issue in this paper.

Unlike most existing contributions to skill learning by
demonstration, our training algorithms do no rely exclakiv
on positional information, but mainly on force/torque feed
back. This is a distinctive feature, whose relevance besome
evident when visual information is insufficient to determin

If robots are to collaborate with humans at home, at workhe state of the system. In particular, we address apitsiti
and in other human-centered environments where manipuf&at involve emptying a container through a hole. For an
tion skills are required, approaches where a layman coufPaque container, empty or full states are visually indisti
teach a robot such skills by just demonstrating them beconglishable. In our experimental setup, described in Section
essential. These approaches are generally named learnihghe content is assumed heavy enough to be detected by a
(or programming) by demonstration [3], [4], or imitation force/torque sensor mounted on the robot's wrist (not asly i

learning. Key features in this context are: the teacher does

presence/absence, but also approximately where the lesd li

need to have expertise in robot programming but just in th@side the container). Thus, the main goal of this paper is to
manipulation skill, no predefined setup is required, and th@nalyze the demonstration data with the aim of obtaining
skill is not ameanable to being taught by only symbolicogi @ suitably conditioned and reduced data set that permits
means (e.g., through verbal instruction). Due to diffesanc learning tasks based on complex force/torque signals in a
between human and robot morphologies, learning is né&st and reliable way.

aimed at reproducing exactly the teacher’s motions, but
identifying the relevant execution traits, so that the tatzm

at The remaining of the paper is structured as follows.
Section Il describes the container-emptying task adddesse

afterwards refine its motion autonomously through rehéars@nd the experimental setup. The next section is devoted to

Learning paradigms based on local function approximatiofie necessary preprocessing of the haptic signals. Then, a
like Locally weighted learning (LWL) or Gaussian Mixture brief description of the GMM/GMR method and its imple-
Models and Regression (GMM/GMR) fit well the afore-mentation, together with the analysis of the inputs releean
mentioned demands. LWL methods have been Successfu‘@/the addressed manipulation task is covered in Section IV.
used in a Variety of app"cationsy like dev”-sticking andThe obtained results and their interpretation are detiibe
pole-balancing [5] or air hockey playing [6], among othersSection V. Finally, some conclusions are drawn in Section
GMM/GMR algorithms have recently been used with grea¥! and future work is indicated.
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Il. DESCRIPTION OF THE TASK AND EXPERIMENTAL
SET-UP.

We aim at teaching a robot to extract a metallic ball (250
g) from inside a box-like container (30x30x&n?), which
has a hole on its base. The robot has to orient the box in such
a way that the ball is forced to roll towards the hole and fall
through it. The key concept is that the task is exclusively



Fig. 1. Robot arm with F/N sensor and box. Observe the holdheright  Fig. 2. Delta Haptic Device, whose end-effector is the krothe middle.
side of the box. The ball is in initial position 2. Initial pens 1-10 are The superimposed image shows a snapshot of the GUI.

arranged along the the border of the box, in countercloakwisler, position

11 is just in the middle. The frame axes to which forces andues are

referred to are also displayed. . . L.
duty is to apply the inverse transformation in order to syppl

the corresponding signal to each link of the arm, and move

based on force/torque (F/N) feedback, i.e., the robot dodéisto this pose. Simultaneously, the six-componéi,
only sense the forces and torques exerted on its wrist by tNgctors, as read by the F/N sensor at the robot's wrist, are
box and the ball, which change with the orientation of th@réprocessed (as described in the next section), tranetbrm
box and the position of the ball. The teacher, instead, has &hthe frame of the haptic device, and reproduced at its end-
additional source of information by watching the scene.tTh&ffector (and thus felt by the user or teleoperator).
is, besides feeling the weight distribution when perforgnin
the task, the user has visual feedback. To this end, the robot
arm (a 6-DOF STAUBLI RX-60, in our case) is equipped The F/N signals originating at the sensor have to be
with an F/N sensor (Shunk FTC-050) attached to its wrispreprocessed before becoming suitable stimuli to be felt by
In order to simplify the experiments and to avoid having tdhe teacher, reflecting exclusively the dynamics of thergll
consider the dynamic effects of a robotic hand while movin%aII (F/Ny). The original F/N signals can be considered to
the box is directly fixed to the F/N sensor (Figure 1). e composed by the following components:

On the user’s side of our telemanipulation _syster_n, the FIN, = F/N, + FIN,, + ¢ 1)
teacher holds the end-effector of a Force Dimension 6-
DOF Delta Haptic Device (Figure 2), and moves it around. with F/N,,, corresponding to the container’'s mass and the
The displacements and orientation changes produced at thegise ¢ due mainly to the vibration of the box. Next we
end-effector are transformed by the controller to motionlescribe how to eliminate the noise and the dynamic effects
commands for the robot. Furthermore, the device allows thef the box.
human teacher to feel on the same end-effector the forces ) o
and torques sensed at the robotic wrist. A graphical usér Filtering the noise due to vibrations.
interface running on a PC allows to test the correct operatio As the container is not a perfectly rigid structure, it
of the system as well as to initiate the data gathering psycewibrates when the robot moves, and the reproduction of these
setting some learning parameters, and to execute thertgainivibrations on the teleoperator site is an undesired effiedt a
or the prediction phase of the learning system, as explainedsource of instability for our telemanipulation system. It
later. The current F/N readings and the joint angles of thean be avoided by implementing a digital filter that cuts out
robot are also displayed. In sum, the teacher performs tladl vibration signals on the force/torque sensor, in a simil
necessary motions to extract the ball from the box whilevay as in [11], where a method for suppressing residual
feeling how the ball rolls around, and the user’s motion areibrations in flexible payloads, carried by robot manipoiat
reproduced at the robot arm carrying the box. is developed by preconditioning the robot joint trajectsri

More formally, each position and orientation provided bysing FIR digital filters. To this end, the signal’s fundarteén
the teacher at the end-effector of the haptic device (the sikrequency was determined by subjecting the structure to
component vectok) is transformed to the robot’s frame, vibrations (considering together the container and thé bal
thus becoming the desired configuration in the operationaiside it, with the aim of obtaining a lower fundamental
space. This instruction is sent to the robot’s controllérpae  frequency than if the container was empty, in this way it

IIl. PREPROCESSING THE GENERATED SIGNALS



is possible to guarantee that vibrations will be removedgspectively. These Gaussians are defined by a probability
independently of the presence or not of the ball). Suctensity function:
vibrations are generated by applying manually a repeated K
impact perpendicularly to the container’'s base, at thetfron (7)) = Zp(k’)p(ZjIk) (6)
edge in Figure 1. P

The frequency spectrum of the generated data was an-

alyzed, obtaining the fundamental frequency as the cuto\féfhere Z s a da'Fapoth = {2, Zo}, with Z; a?”d Zo
epresenting the input and output data, respectively,

frequency of our low-pass filter. This filter was designe& . " o :

by using theConstrained Least Squardschnique and the Is the prior andp(Z;|k) the conditional probability density
, . function [1]. The parameters in (6) are:

MATLAB’s FDAtool. The filter order was 75 and the cutoff

frequency equals to 7.5 Hz. pk) = m 7

B. Compensating the dynamics of the box. p(Zilk) = N(Zj; e, Xk) (8)

In a second stage it was necessary to dynamically com-wherer;, i, andX, correspond respectively to the prior,
pensate the forces/torques generated by the containess mmean and covariance matrix of théh Gaussian. Thek-
in the sensor’s frame. Here, the main idea is to model th@eansclustering technique is used to compute the GMM'’s
container force/torques generated by its dynamics, anddo unitial values and afterwards the GMM are trained by using
this model for removing them from the sensor readings [12the standardExpectation-Maximizatioralgorithm in order
[13]. To achieve this aim, let us denote the position of théo determine the best representation of the data from the
center of gravity of the container g5 its mass asn, | as Gaussian components [14].
its moment of inertiafF /N, andF./N. as the sensor and Once the trained GMM are obtained, a general form
external forces/torques respectivety, and r. the vectors of the data can be recovered by applying GMR. For a
from the center of gravity of the container to the sensoset of query points, their corresponding predictions can
and external forces frame. Then, using the Newton-Euléye estimated through regression. So, for each Gaussian

equations, we obtain: componentk, both input and output data are separated by
SF = mp=mg+F,+F, @ expressing the mean and covariance matrix as:
SN = IF+FxIFf =Ng+rsxFs+Ne+r. x Fe(3)

Yii P
pr = { ik, ok} » Xk = ( Eu-’z Ew,}; )
Assuming very low linear and angular accelerations, as - | oi, 0o, |
well as a low angular velocity for simplicity — which  Then, the conditional expectation of output datg, given

empirically did not seem to have any negative impact fothe queryZ;, and the estimated conditional covariance matrix

the dynamical compensation — we obtain: of Z, . given Z; are:
Fo = —mg-F. 4) Zog = ok +Toik(Zin) (Zi—pir)  (9)
Ng+rgxF, = —N.—r.xF, (5) Yok = Zok— Boik(Zik)  Siok (10)

Solving these equations the forces/torques produced by theThus, the conditional expectation and the conditional
container dynamics are obtained, and they can be remove@variance ofZ, given Z;, for a mixture ofK Gaussians
from the measured forces and torques in the subsequéie:
experiments. In this way, the remaining forces/torques$ wil

5 _ K i 5 - _ K 2 11
be those generated by the ball in the container. These Zo = 2k=1 Pelok 5 Yo =Yg Bicdok (11)

signals will be transformed to the haptic’s frame, scaled an whereg), = 2%k
reproduced on the haptic interface. > P
IV. LEARNING THE MANIPULATION TASK In_ this way, it is possible to compute a prediction for
a given query fromZ,. In batch mode, the GMM are
A. GMM and GMR computed from the input and output data saved in memory,

Trajectory-level skill learning involves in general theby solving the regression with the resulting GMM parame-
acquisition of a quite complex function: complex due taers. Nonetheless, also incremental versions for GMM/GMR
the high dimensionality (spatial position and orientationbased learning exist, as the two proposed by Calinon and
velocities, dynamics) and to the fact that it does not havBillard [2], the direct updateandgenerative updateethods,
usually a compact analytical representation. In what fedlo where the first one showed a better performance confirmed
we briefly describe the specific algorithm used in this workby our implementation and test [10]. In the direct method, th
Gaussian mixture models and regress{@MM/GMR ). For EM algorithm is modified by separating those parts dedicated

more details, please refer to the cited works. to the data already used to train the model from those devoted
The main idea behinGMM/GMR is to model data from to the newly available data, based on the assumption that
a mixture of K Gaussians, of dimensionality, with d = the posterior probabilities will not change as new data are

n—+m, beingn andmthe input and output spaces dimensionsintroduced to update the model (by temporal coherence).



That is, first the model is created with datapointsZ; C. Implementation issues
and updated in an iterative way durifig EM-steps until
the parameter$7r,(€T)7M,§T), EECT),E,(CT)} converge. Then, as ; - . ;
soon as there are new data available corresponding to n erating the robot arm, tilting the <_:onta|ner until thelk_)al
trajectories,’ EM-stepsare again carried out to adjust the eft the box through the hole. Starting at each predefined

current model to the newV datapoints, taking as initial initial position (see Figure 1), twenty demonstrations ever

values of parameters those obtained from the previous sta %rfg.rm('e(d, 'r? tgn”of WE'Ch a"pa(;pcular mo';:onhstlratehgy wa:
(see [2] for details). sed: take the ball to the wall adjacent to the hole, then take

the ball along this wall to the hole. The other ten examples

B. Assessing input relevance to the task were demonstrated using a random strategy where the teacher

In the context of supervised learning, with an output just tried to take out the ball without caring about perfargi
which is a function of a set of inputsXo, ..., X,,} a well- specific motions.
known result concerns the dependency of the output with The software application samples each demonstration at
respect to each of its inputs. Knowing the inputs relevanck00 Hz, recording the robot joints positions and the filtered
with respect to the output allows to reduce the input spacend compensated forces/torques in the robot’s frame. Test
for a learning algorithm by removing low-relevance varegbl samples for evaluating the learning technique performance
as well as eliminating noise which can make harder to leawere obtained by simply selecting (and removing) one out
a specific task. Mutual information-based feature selacticof each ten executions of the training sets, corresponding t
(MIFS) is a very suitable tool for achieving these objectiveshoth the random and strategy experiments. Moreover, when

Mutual information MI) is one of the most fundamental testing the batch version, each demonstration was reduced
information measures in information theory. Initiallywss by taking just the tenth part of it (i.e. each demonstration
mostly used at engineering of noisy communication chamwas sampled at 10 Hz), so as to lower the computational
nels, but other fields of application have arisen as welkost of the training stage.
The concept behind mutual information applied to feature
selection [15] is the reduction of the output data uncetyain At a first stage, our initial training data consisted of an
considering each input variable. Depending on how thgputs set corresponding to forces and torques in the ebot’
uncertainty of the output data is reduced, an input give®moframe (Fy, Fy, F., N, N,, N.) and an outputs set made up
or less information about the output, or in other words, it igf the six robot joints(qi,...,qs). Strategy and random
highly or lowly correlated to the output. In order to knowgatasets were used as described above. In a preliminagy stag
the grade of importance of an inpdt with respect to the 3 principal components analysis (PCA) was applied to the
outputY it is necessary to compute the M(X, Y) between jnput and the output sets, so as to reduce the dimensionality

In the learning stage, demonstrations consisted in tele-

them (for more details see [16]): of the input and output spaces: the data are projected to
(@, y) a latent spaceand irrelevant dimensions are removed. This

I(X,Y) = Z Zp(m, y)log ——— (12) addresses one of the main learning paradigmatic questions,
z oy p(@)p(y) What to imitate?3]. The eigenvectors obtained from PCA

With the aim of reducing the input space dimensionalityvere analyzed, and we concluded that two of them were
(speeding up learning and prediction stages) and removiggough to generate the new reduced space without increasing
noise (simplifying the task to learn), the training data everthe prediction error significantly, for both the input and
subjected to M1 analysis. At a first phase, mutual infornmatiooutput datasets. The fact that only two inputs are important
was computed for each pair input/output — considering d6r carrying out the task (i.e. torques generated about the
inputs forces/torques sensed and transformed to the sobonain axes of the box plane, where the ball rolls v,
frame, and as outputs each robot joint — using entire tr@jectand N,), and that just two robot joints are necessary and
ries from the training data. From all Ml values obtained fosufficient for achieving the given goal (i.e. those robottsstv
each variable with respect to each output, a simple averaifénts that control the orientation of the box about its a@es
MI value was calculated which shows a good estimatiothe planegs andgs) seem to confirm that such reduction is
on how relevant an input variable is in comparison wittpossible. Following these criteria, both PCAs applied fin
all outputs, as Figure 3 shows. In general terms, the inpand output datasets led to select just the two eigenvectors
variablesF, and N, show less relevance whereas and Wwith highest eigenvalues, which transforms the initialadat
N, are the most correlated variables with outputs whicketZ = {X,Y} to a new reduced ong= {x,1}.
does make sense as they are the variables that give thé&'he GMM/GMR was implemented for obtaining the prob-
most useful information for knowing where the ball isability of generatingy given x, i.e. p(1|x), following [1],
inside the box (see Figure 4). Therefore, it is possible tf?]. After some experiments, it could be concluded that
carry out the training and prediction phases removijg only two Gaussian components had to be considered for
and N, for both learning approaches without influencingiraining GMM, obtaining performance which was close to
their performance significantly. Figure 3 shows MI valuethose GMM trained with more models. After training GMMs,
for different number of interval& used for computing the we used GMR to compute the prediction for a set of given
conditional and marginal probabilities for equation 12. gueries. These queries were extracted from each set of
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Fig. 4. Torques map for each initial position (Cluster)

demonstrations for each initial position (Figure 5 showsso performance on this new resulting training data composed of
predicted trajectories for given queries). Finally, MSEsre&v  the four input dimensions and the original six outputs — we
used as performance measure of the different GMM/GMRshould stress thaW,, IV, are inputs highly correlated with
based approaches. the position of the ball, which confirms former inferences

) ~about which input variables are the most relevant for the
On the other hand, at a second stage a mutual informatiply |n 4 similar way, both batch and incremental versions

analysis was carried out on the training data with the aim Qft 5\MM/GMR were tested with two Gaussian models
selecting those input variables with a high influence on the

outputs, keeping in mind that this feature selection preces V. RESULTS

directly reduces the dimensionality of the input space and Experiments aimed at testing the overall performance of
removes noise generated by irrelevant dimensions as wehe learning algorithm and at evaluating the effects of cedu

It is important to highlight that it can be considered asng the input space through principal components analysis
another approach to solve the paradigmatic questidhat and mutual information. We tested the complete and reduced
to imitate? because the algorithm just learns from that inforversions of GMM/GMR at eleven “strategy datasets”, corre-
mation that is relevant for the task to execute. So, obsgrvirsponding to experiments beginning at each initial positibn
MIFS results showed in Figure 3, a reduced input datas#ie ball. The inputs to the prediction stage consisted inta se
(Fy, F., Nz, N,) was used for evaluating the GMM/GMR of F/N values along each trajectory, and the actual output
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Fig. 5. Predicted and desired trajectories for initial fiosi3

robot coordinate values were subtracted from the obtainedAfter analyzing these figures, we can afirm the following:
predictions in order to compute the prediction errors. €hesn general, the performance of the learning algorithm imter
prediction errors (for each input data point), were used tof prediction errors is quite good. Most average MSEs are
compute the mean squared error for each output dimensibelow 0.06 for any one of the tested versions (i.e. complete
in each experiment. These MSEs constitute a measure tedining data, reduced training data through PCA and MIFS)
the success in learning a trajectory: the lower they are, tlend types of data sets. The predicted values for each robot
more similar the predicted trajectory is to the demonstratgoint are close to the actual ones, the actions based on
one. As we wanted to test also whether the learning methadldese predictions are very similar to those taught by the
was able to generalize creating a set of trajectories for tttemonstrator. Moreover, the strategy implicitly propobgd
joints for given inputs, using a training dataset where nthe teacher as well as the random trajectories were learned
predefined strategy exists apparently, we did also carry osticcessfully.

similar experiments with further eleven “random datasets” on the other hand, Figure 6 shows that the prediction

Prediction times (i.e., time inverted in computing eachyrors for the three last robot joints are lower than for the
prediction) were also measured. Considering less vasablgyst positioning joints, which can be expected from the fact
allows to spare up to one third of prediction time, as showghat these variables are the least relevant to achieveskis ta

in Table | goal, as they do not affect the orientation of the container.
TABLE | As for Figure 7, regarding the effect of applying principal
PREDICTION TIMES FOR TESTED ALGORITHMS component analysis as a pre-processing stage, it is cle@r th
this process increases considerably the MSE at each robot
Algorithm Prediction time(s) joint and initial position of the ball in the maze. Howeves, a
G'\c";"'\"/l/'\(;’ll'\éF’;(FC{E’PmCﬂ?te) 00602312 it is expected the prediction time is lower than when usirg th
GMMIGMR(MI) 0.026 original data set (see Table I). On the other hand, in general

terms the application of MIFS on data increases slightly the
MSE in comparison with those obtained with original data.
The computed MSEs, summarized in Figures 6 and 7 alloiowever, there are some cases where this method leads to

us to evaluate the following items: lower MSEs, e.g. those fay, in Figure 6, initial positions
« Incidence of each output dimension of the learned. 3 and 6 with “random” dataset in Figure 7.
actions on performance. Interestingly, the overall performance of generalizing th
« Relevance of the original and reduced datasets on traitfrandom dataset”, without a predefined set of actions, is
ing and prediction phases. better than learning the “strategy dataset”, considerirgg t
« Influence of the starting position of the ball (more orMSEs obtained for each robot joint. A possible explanation
less difficult trajectories to learn). may consist in that the teacher possibly developéakang

o Learning a specific motion strategy versus learninghe shortest wagtrategy —maybe without being aware of it—
random trajectories. for leading the ball out of the container, which has beerebett
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Fig. 6. Average MSEs for each robot’s joint with their copesding standard deviations

learned than that with a predefined set of movements (i.e. tApproach where teacher instruction should be followed by
“strategy dataset”). Information which is latent in the tsse autonomous robot rehearsal to adapt the instructed skills t
mind and not directly observable by the robot may be used lifie robot kinematic structure. This paper has described two
the teacher in an undeliberate fashion, being present whiéeps towards this general goal, namely signal conditgptan
demonstrating unknown robot tasks through teleoperatiofilter out disruptive sensing components, and haptic teagchi
This includes user preferences as to how a task should bemparing the use or not of a specific motion strategy.
performed or state information observable to the human but It has been shown that F/N feedback constitute valuable
not the robot (in our case, the visual input on the positiomput sources for learning manual skills, specially in the
of the ball inside the container, not available to the robot) absence of visual information. MSEs have been computed
Analyzing Figure 5, the learning algorithm learns a betteas a measure of the discrepancy between real and predicted
approximation of the “desired trajectory” (as the one eatri (as output of the learning process) trajectories, and the
out by the demonstrator of the task, which it does not impljow MSE values obtained confirm that GMM/GMR, in
that this is the only one for achieving the goal) for mostts different versions, has been able to learn simple rigid-
robot joints, when it uses the complete data or a reducentainer emptying skills. Furthermore, as for dimensiibna
dataset through mutual information, than when using redluceeduction techniques, we have seen that in most cases the
data via PCA. It is important to highlight that fas and price of a slight increment in the MSE values has to be
ge, the predicted trajectories using complete and MI datasetsid for considering less variables. Comparing the results
approximate better the desired movement, as compareddbtained for PCA and MI, the better performance of the
the predictions for the rest of robot joints, which are not ssecond technique probably lies in the fact that here the
relevant in this task. correlation between input and output drives the selection o
V. CONCLUSIONS AND FUTURE WORK yarlables, whereas PQA prunes both input and output spaces
_ independently by projecting data on a latent space where
A. Conclusions reduction dimensionality takes place. It should be als@dot
The application described in this paper has an evident aditat Ml selects precisely the variables that provide a bette
demic flavour. The container and the ball have been dimediscrimination on the position of the ball inside the con&ai
sioned so as to provide a suitable collection of measuregment Despite a few outliers, the different versions of the
Further experiments (as described in the next subsectideprning algorithm produced a similar pattern of results
should include more realistic settings. Nonetheless and deegarding both the involved robot joints and the different
spite their simplicity, these experiments are very appader initial positions. Tests where the teacher was instructed t
to show how force-feedback-based learning by demonstratifollow a strategy compared to others where he was not
can be carried out and how a simple motor strategy carovided useful expertise that permits devising the new
be successfully taught to the robot, while constituting aesearch stages, where the taught motion will be refinegyusin
valuable test bed for the implementation and performangeinforcement learning or coaching.
evaluation of GMM/GMR techniques. On the other hand
since no programming expertise should be required from ttfe Future Work
teacher —as the final goal is to develop the tools that allow to More involved strategies should arise if obstacles are
teach robots in domestic settings—, we have opted for a Phiicluded inside the container. For example, the walls of a
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maze should favour the success of learning a specific syrategs] S. Schaal, , C. G. Atkeson, and S. Vijayakumar, “Reaktimobot
in front of pure random motions. The described experimental

setti

ng should be considered as a first step towards takiag in [6]

account alternative sensorial input sources in learnimgp-E

tying a pill box, e.g., where the weight of the last pills may

not

be significant enough, as compared to the box, shoul

lead to consider instead finer touch/impact sensors or even
sound (together with a sensing directed action as shakingl!
Moreover, although not considered in the present settheg, t

use

of a haptic display introduces the possibility of enlramnc  [9]

the teaching process by appropriate scaffolds provided by a

computer model, that may help the teacher in the executi

of his/lher own motions. Still another setting that can be

regarded as a natural extension of the present work —in

that

the robot needs to resort to non-visual information—ll]

consists in emptying deformable containers like bags. Such

flexi
visu

ble containers may adopt shapes that make it difficult taz
ally distinguish whether there is still something desi ]

Related work, bag-emptying learning based on a virtual
reality telerobotic interface and using a Q-learning aithon,  [13]

can

be found in [17]. Even daily tasks such as opening a

door where key-lock interaction forces/torques are of high4]
relevance, may be good target applications for our approach

(1]

(2]

[15]
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