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Action Selection for Single-Camera SLAM

Teresa A. Vidal-Calleja, Alberto Sanfeliu, and Juan Andrade-Cetto, Member, IEEE

Abstract—A method for evaluating, at video rate, the quality
of actions for a single camera while mapping unknown indoor
environments is presented. The strategy maximizes mutual in-
formation between measurements and states to help the camera
avoid making ill-conditioned measurements that are appropriate
to lack of depth in monocular vision systems. Qur system prompts
a user with the appropriate motion commands during 6-DOF
visual simultaneous localization and mapping with a handheld
camera. Additionally, the system has been ported to a mobile
robotic platform, thus closing the control-estimation loop. To show
the viability of the approach, simulations and experiments are
presented for the unconstrained motion of a handheld camera and
for the motion of a mobile robot with nonholonomic constraints.
When combined with a path planner, the technique safely drives
to a marked goal while, at the same time, producing an optimal
estimated map.

Index Terms—Action selection, active vision, bearing-only si-
multaneous localization and mapping (SLAM), mutual informa-
tion, path planning.

I. INTRODUCTION

UTONOMOUS vehicles must be able to automatically

determine their control commands to achieve a specified
task. Commonly, it is assumed that the vehicle has complete and
exact knowledge of its environment; of course, this assumption
is not always realistic. If uncertainty in the prior knowledge is
small, it is reasonable to anticipate all possible contingencies
and to generate sensor-based motion plans that can deal with
them. On the other hand, if the autonomous vehicle has no
prior knowledge of its environment, it is necessary to first learn
about it.

Mobile robots operate in environments that are either par-
tially or completely unknown. Often, the environment is chang-
ing with time in an unknown manner; hence, sensors that can
enable the vehicle to navigate in these environments are well
motivated.

Vision sensors offer a wide field of view, plus millisecond
sampling rates, and thus can easily be used for control. Cameras
can be cheaper when compared to other sensors, such as laser
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range scanners. However, some disadvantages of vision include
lack of depth information, image occlusion, low resolution,
and the requirement for extensive data interpretation, i.e.,
recognition.

Real-time performance imposes severe restrictions on the
volume of computation that can take place in a time step. In
order to get a fully autonomous vehicle working in a partially
unknown environment, image processing, decision making, full
estimation of vehicle location, and map updating should be
done at video rates, i.e., at 16 or 33 ms/step.

This paper is about the guidance of an autonomous vehicle
using only a single camera. We are interested in the real-time
estimation and control of a single camera’s motion, moving in
3-D within normal human environments and on nonflat terrains,
mapping visual features. The presented technique builds a fea-
ture map and localizes the sensor in this map by computing the
appropriate control actions in order to improve overall system
estimation.

Three experimental settings are discussed. The first one is
an online implementation for a single-camera simultaneous
localization and mapping (SLAM) system that extends the work
of Davison [1], adding control to his otherwise passive monoc-
ular system. Given the real-time characteristics of the visual
SLAM system used, fast and efficient action evaluation is of
utmost importance. Fortunately enough, the elements needed to
validate the quality of actions with respect to entropy reduction
are readily available from the SLAM priors, and by making
enough implementation adaptations, we are able to evaluate in
real time the value of a reasonably sized action space in order
to give a human approximate low-frequency easy-to-understand
motion commands: ‘move forward’, ‘turn left’, stop’, and so on.
An earlier version of this online implementation is presented
in [2]. The technique is extended in this paper with a novel
more efficient method to compute the information gain in con-
stant time.

The second setting discussed in this paper depicts a wide-
angle camera mounted on a mobile robot navigating in uneven
terrain. In this case, the expected information gain is evaluated
by propagating a particular action using a constrained motion
model. This model considers not only the nonholonomic con-
straints of the vehicle but also the slope of the terrain. As in the
previous case, the action space is also discretized but, this time,
within the range of possible translational and angular impulse
accelerations of the mobile robot. An early version of the tech-
nique was presented in [3]. In contrast to our contributions in
[2] and [3], this paper contains simulations averaging the results
of multiple Monte Carlo simulations for the aforementioned
two systems, as well as a consistency analysis for the handheld
camera case. The results of these extended simulation results
provide stronger support for the effectiveness of the approach.
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Finally, a third case that combines the action selection strat-
egy with a local navigation technique, allowing for both entropy
reduction and obstacle avoidance at the same time, is presented.
The method proposes a new motion strategy that combines a
local planner with our information theoretic metric. Extended
simulation results are also reported for this latter case.

The remainder of this paper is ordered as follows: First,
we present a summary of related work. Then, in Section III,
a brief introduction is given on the extended-Kalman-filter-
based single-camera SLAM estimation. The information gain
metric that will be used to test the action space in the search
for a locally optimal action is also detailed. In Section IV,
we present an overview of the motion models for the free-
moving handheld camera and the constrained motion of a
wheeled mobile robot. In the same section, we also present the
local navigation strategy chosen. Section V is devoted to the
general perception model. Section VI discusses in detail three
experimental settings, including both simulations and experi-
mental results. First, the handheld camera performing SLAM
at video rate with generic 6-DOF motion is shown, where a
graphical user interface (GUI) feeds back motion commands
to the user. The section shows the advantages of using the
proposed action selection strategy when compared with random
exploratory sequences. Second, the case of a camera mounted
on a vehicle moving on uneven 3-D terrain is given, in which
a low-level feedback controller is used to follow the actions
chosen by the mutual information-based exploration strategy.
Finally, simulation results are presented for the application
of the local navigation technique, together with our action
selection strategy. Concluding remarks are given in Section VIIL.

II. RELATED WORK

Considerable research has focused on the use of vision
systems for guiding autonomous vehicles without mapping. As
exemplars, Kim et al. [4] proposed a tracking system based on
monocular visual feedback using consecutive image frames and
an object database. This was achieved with the use of an EKF.
Das et al. [5] also used an EKF and feedback from a monoc-
ular omnidirectional camera to enable wall-following, follow-
the-leader, and position regulation tasks. In [6], a method to
stabilize a wheeled mobile robot to a target pose based on
the discrepancies between a target view of the landmarks in
the workspace and the robot’s current view is presented. The
method combines the nonlinear control theory with research
derived from hypotheses on insect navigation. In [7], a bionic
vision system is used to guide a humanoid robot combining a
mechanical platform for pitching and rolling with stereo vision
to obtain the position of the objects in the scene.

In a different context, Song and Huang [8] used spatio-
temporal apparent velocities obtained from an optical flow of
successive images of an object to estimate depth and time-to-
contact to develop a monocular vision guided robot. In [9],
Wang et al. exploited rigid body transformations to develop
a visually servoed mobile robot (the regulation problem was
not solved due to restrictions on the reference trajectory) that
adapted for the constant unknown height of an object moving
on a plane. In a mapping context, without guidance, optical
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flow, kinematics, and depth information are used to estimate
the object’s motion in [10].

One of the first approaches that took into account the effect
of actions during mapping with visual sensing used feature
correspondences from stereo image pairs [11]. The computa-
tional burden for the accurate detection and matching of image
pairs motivated the use of active visual sensing for landmark
selection in sparse feature maps.

Action selection is of paramount importance during bearing-
only SLAM. The reason is that single-bearing observations
produce ill-posed depth estimates, whereas incremental-bearing
observations can be integrated with the appropriate selection of
camera motion for triangulation. Our thesis is that the camera
should be driven to a location that maximizes the expected in-
formation gain between states and measurements. Exploration
strategies driven by uncertainty reduction have been used in the
past for the acquisition of 3-D models of objects from range
data [12] and within the context of SLAM to produce maps
from ultrasonic signals [13]. In the latter work, a metric is
proposed to evaluate uncertainty reduction as the sum of the
independent robot and landmark entropies with an exploration
horizon of one step. Bourgault ez al. [14] alternatively proposed
a utility function for exploration that trades off the cost of
navigation with the potential vehicle localization uncertainty
reduction (measured as entropy) and the information gained
over an occupancy grid. That work required two different
representations of the environment: 1) an occupancy grid and
2) a map of individual features. Their work suggested results
over a simulated SLAM setting for a 2-D mobile platform with
range sensing. In contrast to these approaches, which indepen-
dently consider the reduction of vehicle and map entropies,
we tackle the issue of joint robot and map entropy reduction,
taking into account robot and map cross correlations. Our
work uses a feature-based map representation, and we present
results not only over simulated settings but also for real-time
implementations.

Another technique that tackles the problem of exploration
in SLAM as an entropy minimization problem makes use of
Rao-Blackwellized particle filters [15]. When using particle
filters for exploration, only a very narrow action space can
be evaluated due to the complexity in computing the expected
information gain. The main bottleneck is the generation of
the expected measurements that each action sequence would
produce, which is generated by a ray-casting operation in the
map of each particle. In contrast, measurement predictions in
a feature-based EKF implementation, such as ours, can be
computed much faster, having only one map posterior per
action to evaluate, instead of the many that a particle filter
requires. Moreover, in [15], the cost of choosing a given action
is subtracted from the expected information gain with a user-
selected weighting factor. In this paper, we show how the cost of
performing a given action is inherently taken into account when
evaluating the entropy for a set of possible priors. Higher level
strategies such as planning in partially observable continuous
domains via value iteration over POMDPs could also be consid-
ered [16]. Unfortunately, such long-term planning approaches
are not yet viable for real-time implementations and are out of
the scope of this work.
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In a work closely related to ours, Bryson et al. presented
simulated results of the effect that different vehicle actions
have with respect to the entropic mutual information gain [17].
The analysis is performed for a 6-DOF aerial vehicle equipped
with one camera and an inertial sensor, for which landmark
range, azimuth, and elevation readings are simulated, and data
association is known.

In all of the previously discussed works, little to no effort has
been expended on the real-time constraints of action selection
during exploration. This paper instead pays special attention to
ensure that the most appropriate action is chosen within the
small computation time available for video-rate bearing-only
SLAM systems.

III. ACTION SELECTION

This section presents the strategy of choosing the appropri-
ate motion commands for a single camera moving about an
unknown environment. The aim is to move the camera in the
direction that most reduces the uncertainty in the entire SLAM
state by using the information that should be gained from future
predicted landmark observations should such a move take place
but taking into account the information lost as a result of
moving with uncertainty.

Consider the classical feature-based SLAM framework [18],
in which the state vector x contains the camera pose and the
map of features x = (x,,y). An EKF propagates the camera
pose and velocity estimates, as well as the map estimate.
The state prior xj ), is predicted with the motion models
described in Section IV, which slightly vary, depending on the
platform setup. For instance, a handheld camera freely moving
is tracked with a constant velocity model, whereas a robot
moving in uneven terrain is restricted to be in contact with
the ground surface at all times, and its motion is limited by its
nonholonomic constraints.

In both cases, linear approximations for uncertainty propaga-
tion are computed with X 1, = FX,,F" + X, in which F
is the appropriate motion model Jacobian, which is computed
as the partial derivative with respect to the state x of the motion
models for the free-moving camera and for the constrained
robot motion, and 3, is the input motion covariance term,
which is adequately tuned for each of the systems.

The subscripts k|k and k + 1|k denote the posterior at time k
and the prior (before integrating measurements) at time k + 1,
respectively. State updates follow the conventional Kalman re-
cursion Xy 1,41 = Xp1)k + K(Zi — 2 pr1)x)> With z; 111,
which is the ith measurement prediction, and for which the
Kalman gain, error covariance matrix, and covariance update
are computed with

K=%,.,,HS"
S=HZ, ;. H + 3.
Sk =T - KH)Zp

with H, which is the Jacobian of the measurement model with
respect to the state. Measurement uncertainty is assumed to be
zero-mean Gaussian with covariance X,.
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Fig. 1. Maximization of mutual information for the evaluation of motion
commands. A bearing sensor is located at the center of the plot, and a decision
on where to move must be taken as a function of the pose and landmark
states, and the expected measurements. Three landmarks are located to its
left, front, and right—front. Moving to the location in between landmarks 2
and 3 maximizes the mutual information between the SLAM prior and the
measurements.

We adopt entropy as a measure of dispersion, i.e., as a
measure of how much randomness there is in our state estimate.
Entropy is defined as H(X) = — " p(x) log p(x), which, for
our case where p(x) is an n-variate Gaussian distribution, has
the form H (X) = 1/2log((2me)™|X)).

Being able to know the changes in entropy naturally leads to
the important question “What action provides the best reduc-
tion of entropy?” or, equivalently, “What action gives us the
most informative observation?”” The question may be answered
through the idea of mutual information.

We want to choose the action that maximizes the mutual
information between the state x and the possible measurements
occurring at that location z. The mutual information is defined
as the relative entropy between the joint distribution p(x, z) and
the marginals p(x) and p(z), i.e.,

1(XZ) = Z p(x,z)logpXZ

xeX,zeZ p(X)p(Z)
=H(X)+H(Z)- H(X,Z)
— H(X) - H(X|2) (1)

which, for our Gaussian multivariate case, evaluates to

R

= 1log ()

I(XZ _
(X2) 2 7 Bkl

In choosing a maximally mutually informative motion com-
mand, we are maximizing the difference between prior and pos-
terior entropies [19]. That is, we choose the motion command
that most reduces the uncertainty of x due to the knowledge of
z as a result of a particular action. Fig. 1 shows the directions
maximizing the mutual information for a simple 2-DOF camera
and three landmarks. The cost of actions is implicitly taken into
account as loss of information when evaluating the priors in
(2). This is possible, because the plant noise model depends on
the value of the motion command. In the figure, the entropy
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Fig. 2. Action evaluation in time intervals. Actions U = {ul!,u?,...,u"}

are evaluated at different time intervals but compared at the same instant
in time.

reduction as a result of the three landmark-bearing measure-
ments is plotted in grayscale. The optimal position, for which
the relative entropy is maximized, is marked by the red dot in
the plot. Note also that, for large-valued actions, the compro-
mise between greater loss of information during the prediction
step and the information recovery during the update step pro-
duces less informative overall entropy reduction. This happens
near the boundaries of the action space shown.

This action selection mechanism picks the optimal choice in
one-step lookahead. Getting the optimal sequence of actions
for a larger time horizon turns out to be prohibitive for a real-
time application. The problem turns into a partially observ-
able Markov decision process, in which computing the value
function would require the integration of all possible states and
measurements. Even for the one-step lookahead time horizon,
the evaluation of a decently sized action space requires some
considerations. The computation of determinants in (2) only
allows for the estimates of the outcome of all possible actions
from the set U to be computed for neighboring points in time.
However, the comparison against each other occurs at the same
point in time. Fig. 2 illustrates the approach.

A second consideration is necessary to drive the system to
explore and not to settle for homoeostasis, because the use of
entropy reduction as a measure of exploration assumes that
uncertainty can be reduced as landmarks are being discovered.
Our solution to the problem is to first have an idea of the
size of the space to be mapped and initially fill this space
with uniformly distributed expected landmarks with large un-
certainty. The error covariance matrix that will be used in com-
puting the information gain measures contains the variances
for such a fixed number of uncorrelated unvisited landmarks.
Fig. 3 shows a representation of such covariance matrix. It is
common practice to have an a priori estimation of the size
to be mapped for any mobile robotic exploration mechanism.
Think, for example, of probabilistic grid-based mapping. The
grid size and granularity are known a priori. In our case,
the expected number of landmarks to see and a very rough
uniform disposition of them in the environment are our initial
conditions. Several authors make such assumption either with
a priori grid-based discretization of the environment [14], [20]
or by adding uniformly distributed unvisited landmarks as
vague priors [21], [22].

A straightforward evaluation of global entropy reduction as
in (2) is computationally expensive. It requires the computation
of the determinants of large matrices. In recent work [23], we
show however that this measure can be computed in constant
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Fig. 3. A fixed number of unvisited landmark states accounting for the
unexplored part of the scene is added to the state vector during the computation
of entropy values. These unvisited landmarks contain artificially large and
uncorrelated covariance.

time. Algebraic manipulation transforms the ratio of determi-
nants of large matrices in (2) into a ratio of determinants of
matrices with the size of the observation

1 |2k 1l 1

I=-log—=-lo
2 IZhqrpsr] 2

Due to the sparsity of the measurement Jacobian H, the
computation of the preceding equation turns out to be indepen-
dent of the map size and can be computed in constant time,
depending only on the range of the sensor. To be more precise,
the computation takes time cubic on the number of features seen
at each iteration. The result is particularly relevant for not only
exploration strategies such as the one reported in this paper but
also SLAM systems, in general, that use information content
at each step for other purposes, such as active loop closure
assertion or heuristics that maintain the state size limited.
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IV. MOTION MODELS AND LOCAL NAVIGATION

The three experimental settings presented in this work use
the preceding considerations with slight differences.

A. Unconstrained Constant Velocity Motion Model

The first experimental setting focuses on action selection for
video-rate SLAM with a single camera rapidly moving with
6-DOF in 3-D within normal human environments and with
minimal prior information about motion dynamics. Insisting on
video-rate performance using modest hardware imposes severe
restrictions on the volume of computation that can take place in
each 16-ms time step. Re-estimation must take place of course,
but making strictly optimal camera movements would require,
in addition, the computation of model Jacobians for the entire
action space [24]. Such a computation remains infeasible for
our 6-DOF nonlinear system and measurement models. Human
actions are 1) approximate, 2) low frequency, and 3) delayed.
Therefore, we give a small set of choices at 1-s intervals. To give
a human time to react, the action is selected every second, so in
Fig. 2, nstep is equal to the frames per second. The camera
motion predictions are computed with a smooth unconstrained
constant velocity motion model presented as follows:
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It is assumed that the camera could be attached to any
mobile platform—in this case, a human hand—and is free to
move in any direction in R?® x SO(3). The system is driven
by zero-mean normally distributed accelerations. The Gaussian
acceleration assumption means that large impulsive changes
of direction are unlikely. The camera motion prediction mod-
el is

Prt1|k Prjk + (Vi +arAt)At
_ | Qe | Qak
Xy, k+1]k Vir1le Vi + apAt 4)
W1k Wik + apAt

withp = (z,y,2)" andq = (qo, g1, 2, q3) " denoting the cam-
era pose (three states for position and four for orientation using
a unit norm quaternion representation), and v = (v, vy, v,)"
and w = (wy,wy,w,)" denoting the linear and angular veloc-
ities, respectively. The input to the system is the acceleration
vectoru = (a',a")" = (az,ay,a,,az, ay, ;)"

The model Q for the prediction of change in orientation is
inspired by [25] and is

_ At|| 2 (At
Q—cos( 5 >I+|Q|sm( 5 )M 5)

where M is the skew-symmetric matrix form of the angular
velocity

0 —w; —wy —w;
w 0 —w w
M = r z v (6)
Wy Wy 0 —Wy
W, —Wwy Wy 0

The redundancy in the quaternion representation is accounted
with a ||q|| = 1 normalization at each update, accompanied
by the corresponding Jacobian modification as in [1]. Note
also that this model is decoupled in terms of linear and an-
gular velocities. Therefore, camera rotations do not affect the
translation.

B. Constrained 3-D Motion Model

In the second experiment, the case of the camera mounted
on a vehicle moving in uneven terrain is considered. We have
opted for a strategy that chooses actions in terms of impulse
accelerations. The expected information gain is evaluated by
propagating actions with a constrained motion model, with the
advantage that this model considers not only the nonholonomic
constraints of the vehicle but also the slope of the terrain. The
vehicle receives a new control command when all the actions
have completely been evaluated, i.e., nstep in Fig. 2 is equal to
the size of U plus one.

In order to do the prediction step of the EKF, computing
the position using the 2-D vehicle model or even the odometry
information would be inappropriate if we want 3-D informa-
tion. For this reason, the model considers not only uneven
surfaces but also the kinematic constraints of the differential
steer vehicle and the camera position with respect to the rotation
axis of the vehicle.
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In this case, the vehicle is controlled by linear and angular ve-
locities u = (v, w;.) ", which are tangent to the terrain surface.
Vehicle surface contact is considered at all times. Substituting
the previous motion prediction model with a constrained model
for the continuous transition of the camera optic center, we get

Pi+1| _ [Pk F,
o] = 2| [ | weae ™
where
[—sin ¢ sin ¥ —cos ¢ cosiysinf —Icos ) cos b cos ¢
F,=| cos¢siny—sin¢pcosysinf  —cos cosf sin ¢
i cos 1 cos b —lcosysinf
[0 sin tan 6
F,=10 cos
sin ¢
0 oo

0 =[1,0,¢]" is a yaw-pitch-roll Euler angle representation
of q, and [ is the distance between the axle center of the mobile
robot and the camera optic center.

C. Vehicle Guided With APF

The third experiment combines the uncertainty reduction
strategy with a local planner in order to guide the vehicle from
an initial to a final position without colliding with obstacles.
The control law for the vehicle is based on an artificial po-
tential field (APF). In using the potential field method, the
vehicle follows the direction of a resultant force that combines
attractive and repulsive forces to guide the vehicle through
obstacles to reach a goal. The strategy considers optimal actions
as the maximum reduction of entropy added to the direction of
the potential field. In this way, the vehicle is able to reduce
uncertainty in the map and in its pose while being guided
to its final destination without colliding with the obstacles of
the map.

The APF method has extensively been studied in the obstacle
avoidance problem for autonomous mobile robots [26]-[28] in
convex terrains. Control for the vehicle using this approach is
presented as follows:

Consider the position of the vehicle in a workspace p [refer to
(7], the position of the goal g, and the position of an obstacle,
e.g., y. An artificial potential function applied to the vehicle at
point p has the form

U="U,(p,g) +U.(p,y) (®)

where U, (p, g) is the attractive potential induced by the goal,
and U,.(p, y) is the repulsive potential induced by the obstacle.
The resultant force is then obtained as f = f, + f,., where

fa
£,

- VUa(pa g)
- VU (p,y). ©)

The relation between the output p and the control input is
P = u, and the task at hand is to compute the optimal velocity
command u.
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Given that the position of the camera in the y-axis depends
only on the terrain (the altitude is not controllable), we reduce
the obstacle avoidance problem to a 2-D positioning problem
on the xz plane. Let us consider the desired velocity values
ug = (Ug,4,0,u, 4) to be proportional to the normalized force
generated by the potential field, i.e.,

Ug,d fl
Uy | = ﬁ (10)
Uz,d f2

where f1 and f5 are the components of the total force f in the
direction of the z- and z-axis, respectively, and u is the desired
scalar velocity. Under these conditions, it is possible to propose
the feedback control law

- e[
S

where F = (F/F,) 'F] is the left pseudoinverse of F.,.
The attractive potential is given by

(1)

Ua = 56 (= 0:P + (0= 2)?)

where g = (gz, Y|k, 9-) is the goal.
On the other hand, the repulsive potential, which is inside of
the region of influence, is given by

1 1?2
UT - 2 i 2 i 2 2
(z—yl)"+(@—vi)" PO

where 3¢ and 3 are the 2-D components of the ith obstacle or
map feature position vector.
The total repulsive force is given by

f,=> f

iceJ

12)

with J = {i[p(p,y") < p3} and p(p,y") = (2 — y2)* + (z —
y;)2, i.e., the square distance to each obstacle or feature in the
workspace.

Note that, for the first two experimental settings, i.e., the
handheld camera and the vehicle moving in 3-D terrain, the
use of the unvisited expected landmarks is needed to drive
exploration. In the case of the APF, these unknown landmarks
are no longer needed. Thus, the optimal action now is given by

u” = \arg milI}Z(x, u,z) + (1 = A)minU(x)  (13)
uec

where ) is the weight factor.

V. MEASUREMENT MODEL

In this paper, we are interested in mapping the 3-D coordi-
nates of salient point features from images and need to do so at
video rate. Environments with a relatively small number of fea-
tures are considered (50 or less). The strategy is aimed at local
action selection and can be used in any submapping or hierar-
chical mapping approach at the level of each local map. Thus,

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 6, DECEMBER 2010

TABLE 1
PARAMETERS FOR THE SIMULATION OF HANDHELD CAMERA SLAM

[0m, Om, -1.5m,0rad, Orad, Orad]
[0.32m, 0.22m, 0.32m,
Orad, Orad, Orad]

[0m/s, O m/s, -0.1 m/s,
Orad/s, Orad/s, 0.01rad/s]

02 =0.15m/s?, o2 =0.15rad/s?

Initial pose

Initial pose
standard deviation

Initial
velocity

Model noise

the limit of 50 landmarks per local map is not a constraint to the
action selection mechanism. The visual SLAM implementation
used is based on the Shi-Tomasi saliency operator, matching
correspondences in subsequent frames using a normalized sum-
of-squared differences, and a particle filter along the ray for
initialization [11], [29]. Different implementations using, for
instance, SIFT features and inverse depth initialization can be
found in the literature and beyond the scope of this work.

Image projection is modeled using a full-perspective wide-
angle camera model. The position of a 3-D scene point y;
is transformed into the camera frame as y¢ = [2¢, y¢, 2¢]"
R'(y; — p), with R being the rotation matrix equivalent to q.
The point’s projection onto the image plane is

=[] = ol

(14)

where u. = fky,x¢/z¢ v. = fkyy°/z¢, the radial distortion
term is d = 1 + K4(u? + v?2), and the intrinsic calibration of
the camera (focal distance f, principal point (ug,vg), pixel
densities k, and k,, and radial distortion parameter K,) is
calibrated a priori.

When an image feature is detected, its measurement must
be either associated with an existing feature or added as a new
feature in the map. The location of the camera, along with the
locations of the already mapped features, are used to predict
feature position h; using (14), and these estimates are checked
against the measurements using a nearest neighbor test. Feature
search is constrained to 3o elliptical regions around the image
estimates, as defined by the innovation covariance matrix.

VI. SIMULATIONS AND EXPERIMENTAL RESULTS

In this section, we present simulation and experimental re-
sults for the three cases previously mentioned. The experi-
ments show how the proposed entropy-based action selection
mechanism produces improved overall localization and map
estimation, compared to random motion selection for both
unconstrained and constrained motion and also to the case of
APF alone when driving to a predefined goal.

A. Handheld Camera

For the free-moving camera, changes in translation and
orientation are kinematically decoupled. In addition, should
an omnidirectional sensor be used, one would not require a
strategy to direct fixation. Following this reasoning, our ac-
tion selection metric is only used to decide upon maximally
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Fig. 4. Monte Carlo simulation of 100 runs for the freely moving single camera using an unconstrained motion model with two different action selection
mechanisms: (a) and (b) mutual information and (c) and (d) random inputs. In (a) and (c), trajectories and a final map are plotted, and rrea1 and rgs¢ are the real
and estimated camera trajectories, respectively. In (b) and (d), Pcam, Plan, and P indicate the camera, map and overall entropies, respectively; the label newland
and the green dots and dotted vertical lines represent the value of entropy at the instant when new landmarks are initialized. Mean values of the trajectories and

the entropies are highlighted to ease comparison.

informative translation commands, letting the user freely
choose where to look.

The set of possible actions is divided into seven ele-
ments, i.e., “go_forward,” “go_backwards,” “go_right,”
“go_left,” “go_up,” “go_down,” and “stay.” Details on the
EKF-SLAM implementation are further detailed in [1].

1) Simulations: In our simulations of a freely moving cam-
era, the desired camera pose is predicted for the best chosen
action at each iteration. A feedback linearization low-level
control law is applied to ensure that these locations are reached
at 1-s intervals, at this point in time the motion metric is again
evaluated to determine the next desired action.

The simulation considers a fixed number of expected land-
marks to be found, and the mutual information metric is com-
puted, taking into account such fixed number of landmarks
in the computation of the innovation covariance. Unvisited
landmarks are initialized with independently distributed large
uncertainties of 1.5 m2.

A thorough evaluation of the proposed approach is presented
with a 100-run Monte Carlo simulation. Parameters for the
simulations are given in Table 1.

Results of the Monte Carlo simulation are plotted in Figs. 4
and 5. Note the abrupt reductions in entropy in Fig. 4(b). These
changes are caused by repeated small-loop closure events pro-
duced by autonomous back-and-forth or left-right maneuvers.
This behavior is the product of the action selection mechanism
chosen and is meant to keep the system well localized before at-
tempting to search for new landmarks. Homoeostasis is avoided
however through observation in the camera field of view of un-
visited landmarks, whose corresponding actions produce large
reductions in entropy and thus induce exploration.

The simulated environment represents a room that is 6 x
6 x 2.5 m? in size containing 33 randomly distributed point
landmarks, six of which are anchors, which are used as global
references [30], [31]. These anchors make the system observ-
able and provide a metric scale to the visual system.



1574

Ermor ol (ra0)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 40, NO. 6, DECEMBER 2010

Ertor 2(m)

Ertory(m)
Ertorpien (1)

5 100 150 20 280 %00 50 400 450 800 h 5 100 150 20 280 %00 50 400 480 &0

sy S
e s, 4 g % S 4

E £ o Zulie
)‘; o §, Essssssmopozooomn T T ]
8 gqo M. L ARl s S e SRR SR S eae L ___‘:\u-q_ﬂ‘,q.r
02l - %2 i) S
W 20 W0 0 0 &0 @0 W w0 0 20 20 @0 w0 40 40 &0

Stops Stops

Fig. 5.

Erorx(m)

stops

(d)

Estimation errors for position and orientation of a 100-run Monte Carlo simulation for the freely moving single camera using an unconstrained motion

model with two different action selection mechanisms: (a) and (b) mutual information action selection and (c¢) and (d) random input motion commands. Estimation
errors for camera position and orientation, and their corresponding 20 standard deviation bounds are plotted. In (a) and (c), the position errors are indicated as
distances to the real camera location along the x-, y-, and z-axis. In (b) and (d), orientation errors are given in Euler angles from the true orientation. Mean values

are highlighted for comparison.
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Fig. 6. Average NEES of the vehicle position p over 100 Monte Carlo runs.
(Dotted red line) Random action selection strategy. (Continuous blue line)
Average NEES for the mutual information action selection strategy.

Sensor standard deviation is set at 2 pixels, and data associa-
tion is not known a priori. Instead, nearest neighbor x? tests are
computed to guarantee correct matching. New landmarks are
initialized once their ratio of depth estimate to depth standard
deviation falls below a threshold of 0.3. The plots show the
results of actively translating a 6-DOF camera while building
a map of 3-D landmarks. In all cases, each of the seven
motion actions will produce a displacement of 0.3 m in the
corresponding direction while rotating at a constant velocity of
0.1 rad/s.

Figs. 4(c) and (d) and 5(c) and (d) show the results of
controlling the camera with random inputs. Comparing these
plots with our proposed strategy, we notice that, while our
strategy reduces the entropy re-observing landmarks before
searching for new landmarks, the random selection of actions
is more eager to explore, without any control over loop closure
and, hence, without worrying for localization accuracy. In the
end, the result is improved entropy reduction for the proposed
technique.

Improved localization of camera and landmarks is further
shown through a normalized estimation error (NEES) plot of
the mean Monte Carlo estimates, as explained in [32]. Fig. 6
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Fig. 7. Real-time active visual SLAM with a handheld camera experiment.
(a) Computed camera, map, and total entropies during the experiment. The
vertical lines indicate the points in time where new features are discovered.
(b) List of actions sent to the GUI for the first minute.

shows that the average NEES for the proposed approach is
significantly better than that of the random action selection,
justifying the validity of using entropy measures for action
selection.

2) Real-Time Experiments: We present now experimental
results validating the mutual information maximization strategy
for the control of a handheld camera in a challenging 15-fps
visual SLAM application. The experiments were implemented
on top of the single-camera SLAM [33]. We developed an
extension for this application that computes the desired actions
using the approach presented in this paper sending motion
commands to the GUL
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Fig. 8.  Snapshots of the GUI during active visual SLAM experiment.

The camera starts approximately at rest with some known
object in view to act as a starting point and provide a metric
scale. The camera moves, translating and rotating in 3-D,
according to the instructions provided to a user through a GUI
and executed by the user, within a room of a restricted volume,
such that various parts of the unknown environment come
into view.

Given that the control loop is being closed by the human
operator, only displacement commands are computed. Gaze
control is left to the user. Furthermore, the mutual information
measure requires evaluating the determinant of the innovation
covariance matrix at each iteration. Because of the complexity
of this operation, single-motion predictions are evaluated one
frame at a time. It is not until the 15th frame in the sequence that
all mutual information measures are compared, and a desired
action is displayed on screen. That is, the user is presented
with motion directions to obey every second. Note also that,
in computing the mutual information measure, only the camera
position and map parts of the covariance matrix are used,
leaving out the gaze and velocity parts of the matrix. Finally,
to keep it running in real time, the resulting application must
be designed for sparse mapping. That is, with the computing
capabilities of an off-the-shelf system, our current application
is limited to less than 50 landmarks.

Fig. 7 shows (a) a plot of the decrease in the various
entropies for the map being built and (b) the list of actions
chosen as shown to the user during the first minute. Note
that, in consonance with our simulated exercise, in the real-
time implementation, the system prompts the user for repeated
up—down movements, as well as left-right commands. This
can be explained as, after initializing new features, the system
repeatedly asks for motions perpendicular to the line of sight
to best reduce their uncertainty, to gain parallax. In addition,
closing loops have an interesting effect in the reduction of
entropy, as can be seen around the 1500th frame in Fig. 7(a).

Fig. 8 shows snapshots of the GUI for one of our validation
experiments. The top part of each frame contains a 3-D plot
of the camera and the landmarks mapped, whereas the bottom
part shows the information being displayed to the user superim-
posed on the camera view.
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TABLE 1I
ACTION SET FOR A NONHOLONOMIC VEHICLE
Action 0 1 2 3 4 5 6
Linear Acceleration 0 0 0 —Vy Uy —Vp Vr
Angular Acceleration | 0 | —w, | wy 0 0 —wy | wr
TABLE III

PARAMETERS FOR THE SIMULATION OF CONSTRAINED 3-D SLAM

Initial pose | [0m, Om, 0 m,0Orad, Orad, Orad]

Initial pose [1m, 0.5m, 1m,
variances 0.1rad, 0.1rad, 0.1 rad]
Actions Or =0.3 m/s?

@y =0.05 rad/s2

B. Vehicle in 3-D Environment

Now we present the guidance of a vehicle performing SLAM
with a single wide-angle camera in uneven terrain. Actions in
the form of impulse accelerations guarantee smooth platform
velocity change. The chosen command is then integrated to
produce the input velocity that is sent to the vehicle. The actions
are chosen from the discrete set from Table II.

To compare the effects produced by the various actions on the
localization and map estimates, the motion model and a feed-
back control law are used to predict the prior mean xj, 1), for
each instant acceleration in the set, propagating the covariances
by computing the corresponding Jacobians. Map feature priors
are also used to simulate the expected observations using the
camera measurement model and the state prior. The posterior
covariance is then computed, taking into account only known
landmarks inside the camera field of view.

1) Simulations: A Monte Carlo simulation with 100 runs of
a mobile robot navigating in uneven terrains is executed. Plant
noise varied using the constrained motion model in (7), using
the full-perspective wide-angle camera model and a sinusoidal
model of a 3-D surface. In our simulations, as well as in the
real-time experiments, encoder velocities are used to predict
plane surface normals for the computation of action priors
constrained to the characteristics of the terrain. The simulated
environment contains 31 landmarks whose location is sampled
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Fig.9. Camera trajectories and entropies of a 100-run Monte Carlo simulation of a mobile robot exploring an uneven room. The mutual information maximization
strategy produces a nearly linear motion tangent to the surface. The vehicle starts at the shown terrain depression and proceeds backward, slightly rotating to
increase map coverage. In (a), labels rrea1 and regt indicate real and estimated vehicle trajectories, respectively. In (b), Pcam, Plan, and P indicate the robot,
map, and overall entropies. In addition, in (b), the label newland and the green dots, and the dotted vertical lines represent the value of entropy at the instant when

new landmarks are initialized.
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(a) Estimation errors for camera position and (b) orientation and their corresponding 20 standard deviation bounds, respectively. In (a), position errors

are plotted as distances to the real camera location in meters along the -, y-, and z-axis. In (b), orientation errors are plotted in Euler angles.

from a uniform distribution. Of these, six are used as anchors to
give a metric scale and help fulfil the observability conditions
of the SLAM system. The rest is initialized with 5-m? variance
to avoid homoeostasis. Other simulation parameters are given
in Table III.

Fig. 9 shows the vehicle trajectories and the landmark lo-
cations with their uncertainty plotted using hyper-ellipsoids of
uncertainty at 20. The steep decays in overall entropy indicate
either landmark discovery or repeated loop closure. Interest-
ingly enough, the nonholonomic motion constraints of the
system force the vehicle to autonomously explore by repeatedly
choosing a negative linear acceleration. The effect is to augment

the camera field of view with the consequent inclusion of new
features in the model but still maintaining known landmarks in
sight, thus keeping the vehicle well localized at all times. In
contrast to the unconstrained motion case, short-loop closures
orthogonal to the field of view to maintain parallax are not
possible to achieve, with the reason being that the vehicle
cannot perform saccadic motions in the way that a free-moving
camera can. Loop closure instead is only possible through back-
and-forth motion sequences.

Camera pose estimation errors are shown in Fig. 10. Notice
how, when the terrain abruptly changes, velocities become
underestimated in the direction that the terrain changed. Thus,
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Real-time experiment of a single camera mounted on a vehicle traversing uneven terrain. (a) Mobile robot used in the experiments. (b) 3-D trajectory of

the vehicle and orientation with respect to the y axis. (¢) Actions from Table II sent to the vehicle every second.

in simulating vehicle motion, a more elaborate model taking
into account surface discontinuities must be considered for very
rough terrains.

2) Real-Time Experiments: For the case where the camera is
mounted on a vehicle, two independent modules are considered:
an action selection module on top of our modified version of the
SLAM system [33] and an interface that communicates such
motion commands to the robot, enforcing low-level obstacle
avoidance and system integrity. The robot is controlled using
ARIA [34], and the experiments were conducted on the mobile
platform shown in Fig. 11, with a wide-angle camera rigidly
attached to the robot body.

The whole process is running at 15 fps. Single-motion pre-
dictions are evaluated one frame at a time. It is only every
seventh frame in the sequence that all mutual information
measures are compared, and the best action is sent to the mobile
robot. For the experiments, the acceleration magnitudes were
set to 0, = 0.1 m/s® and &, = 0.09 rad/s>. When computing
posteriors, these are predicted for the duration that would take
them to the end of the 15th frame, with each action in turn being
evaluated for a slightly shorter period of time. The motivation
is that we want to be able to test actions on the basis of their
effect at the very same point in time (at the end of the 15th
frame). In order to evade any bias related to the time spent in
evaluating the effect of actions, these are randomly ordered at
each iteration.

As with the simulated setting, the robot navigates in uneven
terrain, as shown in Fig. 11. In the plots, the estimated path
(blue continuous line in top frame) is shown in 3-D, as opposed
to the vehicle odometry, which is restricted to the xz plane.
The orientation angle (bottom frame) indicates the vehicle
orientation with respect to the world axis y (orthogonal to the
white sheet of paper placed in front of the robot, which serves
as global reference consistent to the world zz plane).

As in the simulated case, our mutual information-based
action selection strategy for this constrained motion case au-
tonomously explores the room driving the vehicle back and
forth but mostly backward, enlarging the field of view by
pulling away from the initial view. Fig. 11(b) gives account of
the actions sent to the robot and shows as most frequent action
iterations between positive and negative linear accelerations.

The feature map and camera pose are updated and displayed
in real time in the GUI. Fig. 12 contains a sequence of frames
from the experiment that shows the robot driving away from the
initial known features.

We have shown with our simulations and experiments how
the principled action selection mechanism proposed can deal
with both unconstrained and constrained motion models, au-
tomatically selecting the best suited actions for each case and
enforcing minimization of localization and map estimation
uncertainty during SLAM exploration sessions. For the uncon-
strained motion model, saccadic motion perpendicular to the
line of sight is selected since it closes small loops as features
are discovered, actively reducing entropy. For the nonholo-
nomic constrained motion model, these saccadic movements
are not possible, and the system settles for moving backward,
increasing the field of view and adding new features to the stare
estimate while preserving observation of previous ones, again
actively enforcing loop closure and reduced estimation entropy.

C. Obstacle Avoidance

We consider now the case of longer term navigation, com-
bining the goals of exploration and navigation to a specific
location. In this case, low-level obstacle avoidance as the one
implemented in the previous section does not suffice, and a
higher level mechanism to help drive the robot through ob-
stacles should be implemented. We presented in Section IV-C
a control law that weighs these two objectives during robot
navigation: 1) exploration and 2) obstacle avoidance.

The technique uses APFs to enforce smooth maneuvering
through the obstacles that the SLAM algorithm discovers
during exploration. We present the result of a Monte Carlo
simulation with 100 runs, in which the robot is driven through
a path of more than 3 m in length, with the goal location at (0,
0, 2). The attraction potential function scaling factor is ¢ = 1,
the repulsive potential factor is v = 2, and the safe radio for
obstacles is p = 0.35 m. Other simulation parameters are given
in Table I'V.

The results of using the APF method without active entropy-
based action selection are shown in of Figs. 13(a) and (b) and
14(a) and (b). The plots highlight the mean trajectory and mean
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Fig. 12.

TABLE IV
PARAMETERS FOR THE SIMULATION OF CONSTRAINED 3-D SLAM
WITH ARTIFICIAL POTENTIAL FIELDS

Initial [Om, Om, -1.25m,
Orad, Orad, Orad]
[0.1m, 0.05m, 0.1 m,
0.05rad, 0.01rad, 0.01 rad]

0r=0.3 m/s2, w;=0.05rad/s?

pose

Initial pose
variances

Actions

entropy estimates for the entire Monte Carlo runs. The sequence
of control inputs is given in Fig. 15.

The strategy is compared with our hybrid control law, which
takes into account obstacle avoidance, as well as reduction of
entropy. Figs. 13(c) and (d) and 14(c) and (d) show the trajec-
tories, entropy plots, and position and orientation error plots.
Note how obstacle collision is gracefully avoided, whereas the
SLAM system effectively maximizes the mutual information.

The advantage of using the hybrid technique can be observed
in the entropy plots in Fig. 13. The system spends more time
gazing to already mapped landmarks, instead of driving the
robot toward the goal, and adds landmarks to the map at later
instants in time. The entire simulation takes 900 steps, on
average, instead of the 700 steps that the pure APF system
takes. Thus, the result is a compromise between execution
time and accuracy in estimation results. Another advantage of
the hybrid approach is that the mutual information term in
the action law helps the system overcome local minima traps
common in APF navigation.

VII. CONCLUSION

Action selection strategies for guiding a video-rate visual
SLAM system have been introduced and shown using maximal
mutually informative motion commands by maximizing the
difference between innovation covariance and posterior SLAM
entropies. The resulting motion command reduces the uncer-
tainty of the state from the information given by measurements.

Our method is validated in three visual SLAM implemen-
tations: 1) a video-rate handheld SLAM system; 2) a mobile
robot with nonholonomic and terrain constraints; and 3) an

Snapshots of the GUI during the autonomous exploration of a single camera mounted on a vehicle traversing uneven terrain.

APF for obstacle avoidance. The video-rate handheld camera
system produces motion commands in real time for 6-DOF
visual SLAM and is sufficiently general to be incorporated into
any type of mobile platform, without the need for other sensors.
The action selection mechanism actively performs short-loop
closure orthogonal to the field of view of the camera.

Mounting the same wide-angle camera on a wheeled mobile
robot provides for an autonomous information-driven explo-
ration strategy that has been tested for navigation in uneven
terrains. Simulation and experimental results consistently show
a behavior in which the robot pulls back from its initial con-
figuration, having the camera search for more landmarks while
reducing its own pose uncertainty. In the end, we have a simple
principled action selection mechanism that seems to accommo-
date for unconstrained and constrained motion models, choos-
ing the most appropriate actions in each case and guaranteeing
reduced estimation uncertainty during exploration.

The reported camera trajectories are simple, because 1) the
robot is commanded by acceleration impulses that tend to drive
the robot through smooth velocity changes and 2) the real-time
constraints of the implementation allow only for the evaluation
of a very limited set of possible actions. The computational
complexity in computing entropy does not permit large maps;
in that case, submapping will be a good solution.

In a third experimental setting, our strategy is combined with
an obstacle avoidance mechanism that uses APFs. Actions are
now chosen with a compromise between navigation toward a
goal by using attractive potentials, avoiding obstacles on the
way using repulsive potentials, and enforcing reduced estima-
tion uncertainty through entropy minimization.

The real-time requirements of the task preclude using an
optimal control law that uses a continuous-valued action space.
Instead, we evaluate our information metrics for a small set of
actions carried out over a fixed amount of time and choose the
best action from those. Improvements can be done with greedy
algorithms, which consider the evaluation of n-step lookahead
and also larger sets of actions. These improvements are issues
of further study.

One possible weakness of the presented information-based
approach to action selection is that it estimates the utility of
measures, assuming correct motion and measurement models.
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(a) and (c) Vehicle trajectories and map and (b) and (d) entropies of a 100-run Monte Carlo simulation of a mobile robot moving to the goal using (a) and

(b) the APF strategy to control the vehicle and (c) and (d) APF combined with mutual information to control the vehicle. Map features are considered as obstacles.
In (a) and (c), rrea1 and rest indicate real and estimated vehicle trajectories, respectively. In (b) and (d), the label newland and the green dots and dotted vertical
lines represent the value of entropy at the instant when new landmarks are initialized. Pcam and P indicate the robot, map, and overall entropies. The mean value

of entropies is highlighted for comparison.
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Fig. 14.

(d)

(a) and (c) Camera position and (b) and (d) orientation errors for a Monte Carlo simulation with 100 runs. Standard deviation bounds are plotted at 20

for the APF strategy alone [(a) and (b)], and the hybrid method with APF and mutual information [(c) and (d)]. Position errors are plotted as x, y, and z distances
to the real camera location in meters, and orientation errors are plotted as Euler angles. The mean values are highlighted for comparison.
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Fig. 15. Control command signals for the vehicle. (a) Accelerations produced

by APF alone. (b) Accelerations produced by the combined APF with mutual
information. The desired linear velocities are set to 0.2 m/s in = and 0.1 m/s
iny.

Model discrepancies and effects of linearization in the com-
putation of estimates and control commands are not being
considered and could play a major role for large sampling
intervals. This issue is also a topic of further research.
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