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Abstract— In general, rearranging the legs of a Stewart-Gough
platform, i.e, changing the locations of its leg attachments,
modifies the platform singularity locus in a rather unexpected
way. Nevertheless, some leg rearrangements have been recentl
found to leave singularities invariant but, unfortunately, these

rearrangements are only valid for Stewart-Gough platforms

containing rigid components. In this work, the authors go a step fig 1. The four possible rigid components involving line@ometric
further presenting singularity-invariant leg rearrangements that  elements in Stewart-Gough platforms.

can be applied to any Stewart-Gough platform whose base and

platform attachments are coplanar. The practical consequence

of the presented theoretical results are illustrated with several

examples including well-known architectures. Let us suppose th"_ﬂ we want to apply a singularity-invariar?t
leg rearrangement limited to a subset of legs. Clearly, this
. INTRODUCTION is only possible if this subset of legs defines a rigid sub-

E hen th : K lution t . th assembly. Kong and Gosselin refer to these subassemblies as
ven when there 1S no known solution to a given ma omponents [12]. The simplest component arises when two
matical problem, it is always possible to try to find the set

¢ f i to th blem that | " \uition riave gs share an attachment. The result is called the Poim-Lin
ranstormations to the problem that leave its solution nrard. component. Similarly, the three other components invgvin

Although this does not solve the problem itself, it provmlaesIinear geometric entities (points, lines and planes) ae th

lot of insight into its nature. This way of th|nk|n'g.|s at thePoint-PIane, Line-Line and Line-Plane components (Fig.1)
root of the development of Group Theory and it is the o

. . o . 1€ ONEhe singularity-invariant leg rearrangements for eactheté
applied herein for the characterization of the singulakity four components have already been fully characterized [4],
of Stewart-Gough platforms.

h h olatf is defined | 3], [5]. In this paper, the authors go a step further presgnt
The S.tewar'F-Goyg_ platiorm is defined as a 6'D_OF paralifie ryles for the leg rearrangements that can be appliedyto an
mechanism with six identical SPlegs [14], [6]. It triggered Stewart-Gough platform whose base and platform attachsnent

the re;sterz]arch otn pdarfllle[[ rg_azlpt))ulators, a(ljnd I'tt his remai e coplanarife., the equivalent to a Plane-Plane component).
one ot the most widely studied because, despite 1ts geamelrl\ye il show that, for a leg rearrangement to be singularity-

S|mEII|C|ty, 'tg anegS|sttraTslat(tas :cnttrc]).challelng!ng ' mﬂatmalj invariant, it is necessary and sufficient that the lineanaicirs’
problems. une important part of this analysis correspon S\}elocities, before and after the rearrangement, are lipear

the characterization of its singularities. related. By integrating this differential condition, thbeoae

Th? geometric anql topological characterization .Of _the Sl8tatement can be reformulated as follows: a leg rearrangeme
gularity locus of a given Stewart-Gough platiorm in its SIXjg singularity-invariant if the squared leg lengths, befand

dimensional configuration space is, in general, a hugg t r the rearrangement, are affinely related. It is impurta
which has only been completely solved for some specializgy o5jize that, if this condition is satisfied, a one-to-one

tions —i.e., designs in which some spherical joints in th":(‘:orrespondence between the elements of the platform fdrwar

plfatform, the base,_or both, co_alesce to form multiple SPhbr kinematics solution sets, before and after the rearranggeme
joints [2], [1]. In this context, it seems reasonable to fiag | arises. Actually, the invariance in the singularities ahée t

Fearfange”_‘e“ts in a givqn Stewart-Gough platform th"’“‘C“Ieagssembly modes of a parallel platform are two faces of the

its singularity locus invariant for two main reasons: same coin. These ideas are closely related to those that made

(a) If the singularity locus of the platform at hand has altea possible the development of kinematic substitutions [8ley
been characterized, it could be interesting to modify thge general in the sense that they can be applied to any kind of
location of its legs to optimize some other platforninechanism, not only parallel platforms. We will also shoatth
characteristics without altering such locus. their application to well-studied platforms leads to ieing

(b) If the singularity locus of the analyzed platform has nafew results. For example, we will see that it is not necessary
been characterized yet, it could be of interest to simplifhat a platform has collinear attachments to behave like a
the platform’s geometry by changing the location of it&riffis-Duffy type I manipulator.

IegS, thus eaSing the task of Obtaining this characteorzati This paper is Organized as follows. In Section ||' a nec-



essary and sufficient condition that must be satisfied by ang., the platform is always in a singularity irrespective of its
singularity-invariant leg rearrangement in a Stewart-@ou leg lengths.

platform is presented. Then, the challenge becomes that oSince lengths are assumed to be positive magnitudes, equa-
finding the geometric transformations that satisfy thisdion tion (2) defines a one-to-one relationship between leg kengt
tion. This is discussed in Sections Ill and IV for any doublybefore and after a singularity-invariant leg rearrangemas
planar Stewart-Gough platform. Section V presents somescaa consequence, this kind of transformations leaves not only
that exemplify the potentialities of the obtained transfation. the singularities of the platform unaltered, but also theirea
Finally, Section VI summarizes the main results. and number of its assembly modes.

Il. GENERAL CONDITION FOR A LEG REARRANGEMENT TO Ill. L EG REARRANGEMENTS

BE SINGULARITY-INVARIANT It has been shown in the preceding section that any

In general, if we change the location of the leg attachmergmgularity-invariant leg rearrangement results in annaffi
in a Stewart-Gough platform, its singularity locus is maatifi relation between the leg lengths before and after the rear-
However, it is shown below that the singularity locus remsairrangement. In this section this idea is exploited to defiree th
invariant if, and only if, the squared lengths of the legshieit singularity-invariant conditions for the doubly-planagrgral
new location can be expressed in terms of those in the otigirgtewart-Gough platform.
location through an affine relation (for any arbitrary pose o In a doubly-planar Stewart-Gough platform, ti¢h leg
the platform with respect to the base). joins a base attachment with coordinates = (a:i,yi,AO)T

Let us consider a general Stewart-Gough platfore, a with a platform attachment whose local coordinateslare-
6-DoF parallel mechanism with six identical SRegs [14], (z;,t;,0)”. Given the positionp = (p,,p,,p.)" and the
[6]. For this kind of platform, the linear actuators’ veltes, rotation

l1,ls,...,ls can be expressed in terms of the platform velocity iy Jor Ka
vector (v, ) as follows: R=(@jk) =iy jy ky]|, 4)
. iz Jr ke
2 v the coordinates of the platform attachments in the base-refe
diagly,....le) | . | =J (Q> , (1) ence frame ard; = p + R(z;,t;,0)T, fori=1...,6.
: Let /; be the length of the originaltth leg, then? = ||b; —
l@ ai||2,f0ri:1,...,6.

wherelJ is the matrix of normalized Pliicker coordinates of the We define a leg rearrangement of a single leg, the

; . . o Substitution of any of the legs by another one going from
six leg lines [14]. The parallel singularities of the platfoare i T
those configurations in which ddt — 0 [13]. the base attachment locatedsat (z,y,0)" to the platform

?étachment ab = p + R(z,t,0)T. We will call it leg rear-

Now, let us change the location of the leg attachmen
so that the lengths of the legs in their new locations Srangement towardsz, y, 2, £). Now we proceed to compute
9 9 '+ SHe length of that newly introduced letf = ||b — a||?.

di,do,...,ds, are related to those of the original legs

o I through the relation: ' Subtracting from the expressions férandi?,i = 1,.. .6,
AR 9 ' the equations? +i2 +i2 = 1 and;2+j2 + ;2 = 1, and using
&2 12 the relationi - j = i,j, + iyj, + i.j. = 0, quadratic terms in
d> 12 the rotation variables cancel out, yielding
Sl =A] .| +b, 2
: : 1, 5 9 9

where A andb are a constant matrix and a constant vector, +@izite + Yizily + Titie + Yitijy — ki =0 (5)

respectively. Differentiating this equation with respectime

and substituting (1) in the result, we get 1
— (3 + Py +p2) = 2u—to+ap, + ypy

: 2
3.1 + xziy + yziy + atj, +ytj, — k + d*/2=0 (6)
. 2 v
diag(di,....ds) | . | =AJ (Q) : () whereu = p-i, v = p-j, and the constant factors, =
) L@?+y?+ 22 +t2—12) andk = (22 + y? + 22 + 12).
ds If we subtract the first equation from the others, quadratic

Then, the singularities of the platform after the leg reaf€'™Ms inpz, p, @ndp. cancel too, yielding six Iinezar equations
rangement leading to (2) are those configurations in whidhthe 9 unknowns., p,, u, v, iz, iy , jz, j, andd” [equation

_ _ (7)]. Note thatk; depends ori;.
defAJ) = det(A)dgt(J) N 0. h.c dgt(A? 7 0, the leg From the matrixQ of the system (7), let us call);;;. the
rearrangement is said to Isengularity-invariant If det(A) = square matrix obtained fro® after deleting columns, ; and

0, the rearrangement introduces architectural singularity %, and@;;;, its determinant. The system can be solved if we



21— 2 t1i—ty Tog— X1 Yo — Y1 Tazz — X121 Y222 — Y121 Tata — a1ty yata —yity O » ko — kq
Z1—2z3 ti—1t3 T3 — X1 Y3 — Y1 T3z3 — 121 Y323 — Y121 T3tz — a1ty ystz —yity O px ks — ki
21— 24 b1 =14 Ty —T1 Ya— Y1 TaZa —T121 Yaza — Y121 Taly — 1ty Yatsa —yit1 O v ky — k1
21— 25 t1—1s 5 — X1 Ys — Y1 Ts2s — T121 Y525 — Y121 Tsls — ity Ysts —yit1 O ks — k1
0
1
2

v — (26 — x1)px + ke — k1
’U—($—$1)pa:+k’—k;1

1 z6 —z1)u+ (t6 — t1
d? (z—z1)u+ (t—t1

21— 26 l1—1tg Te—T1 Y6 — Y1 Teze — T121 YeZ6 — Y121 Tele — T1t1 Yele — Y1t1 jy ke — k1
21—z t1—t x—x1 Y—y1 TZ—x121 YZ— Y121 ot — x1t yt —yty jx k —kq
Q d%
(1)
Y1 w1z yizr xity ogatn —wx 1
ﬁzl;elmre?_ #ggrngwsrgg r%s_sparameters, for exaraplg p,. The Yo Toza yoza aoly Yotz —x2 1
ufting i y 1S Ys x323 Yszz w3tz ystz —wx3 1
Dy (22 — z1)u+ (t2 — t1)v — (v2 — 21)pe + k2 — k1 Qu20 = |ya @aZa Yaza Tala yalta —xza 1) =0, (11)
i (23 —z1)u+ (t3 — t1)v — (3 — 21)pz + k3 — k1 Ys  Tszs Yszs st ysts  —as 1
Q iy | | (4 —2z1)u+ (b4 — t1)v — (x4 — 21)pz + ka — k1 Y6 Teze Ye26 Tele Yele —Te 1
1231 o | T | (25 —z1)u+ (ts — t1)v — (x5 — x1)pe + ks — k1 | y  xz yz xt yt —x 1
j ( )
)

A. Generalizing and simplifying the condition

Solv!ng the _sy_stem forl? using Crammer_'s rule and t_hen The above reasoning fails i)12; — 0 but, for a non-
applying multi-linear properties of determinants to Sphe , cpitecturally singular manipulator,éax 6 matrix Q5. with
determinant of the resulting matrix into 4 determinantddge non-zero determinant can always be found (otherwise, the 6
_ Qa39u + Q1390 + Qr20ps + Qo3 3 leg length equations would be linearly dependent). However
- %leg ’ (®) this may change the expression of the singularity-invatizg

rearrangement condition in equations (9)-(11).
where Q7,3 is the determinant ofQ,,3 except for the last 1o avoid such ambiguity, we can reformulate the condition
column that contains the elemenits— k; for i = 2,...,6 in terms of rank deficiency of the matriQ, (that is, the
and k — k1. As a result, if we imposeQz2z9 = Q39 = matrix Q in equation (7) without the last column). The 5 first
Qi29 = 0, then equation (8) becomes affine ify....15. rows of Qq are full rank for any non-architecturally singular
Indeed, expanding7,; leads to an expression of the form manipulator. Furthermoreq is rank defective if, and only
if, all its submatrices have null determinant. However,sit i
only necessary to check 3 of its submatrix determinantss;Thu
where all coefficients are known constants. Then, followirigie condition in equations (9)-(11) is equivalent to thekran
Section I, any leg rearrangement satisfyi@gsy = Q139 = deficiency ofQg. The advantage of this formulation is that
Q129 = 0 leaves singularities invariant. any set of 3 submatrices could be used instead of the three

In other words, if we substitute any leg by a new legeterminants in (9)-(11).

with base attachment located at= (z,4,0)" and platform  To simplify the notation, we consider the following simpler
attachment atb = p + R(z,¢,0)7, the singularities will matrix:
remain invariant as long aér,y, z,t) satisfies the system

d2

d® = 11} + eol3 + sl + calf + es12 + l§ + co,

Q230 = Q139 = Q120 = 0, Where Q;;;, can be simplified —z1 —ti m oy miz iz mitr ot 1
into a7 x 7 determinant using simple row/column operations, —29 —ta To Y2 Toza Ya2zo Tate Yate 1
yielding the following system: —z3 —t3 ®3 Y3 X323 Yszz sl ysts 1
yi Tz owz zih oyt a1 P=|—-24 —ts w4 ys x424 yszg w4ty ysty 1
Yo Taza Yaze Tty yale 2o 1 —z5 —t5 T5 Y5 Tsz5 Y525 sls ysts 1
Ys T3zs yszs Tats ysts zz 1 —z6 —le Te Yo TeZe Yeze Tele Yele 1
Q230 = |ya Tazs Ysa2a Tals yals 24 1) =0, (9) -z -t x y xz yz xt oyt 1
Ys T525 Yszs Tsts  ysts  zs 1 ( 2)
Yo 6% Yo Tols Yolo Z 1 Let us denote byP;; the determinant of the submatrix ob-
Y Tz Yz xt yt z 1 . . . .
tained fromP after deleting columng and j, and P;;;, the
Y1 r12z1 iz wtt gt tr 1 determinant of the submatrix formed by the first 6 rowsPof
Y2  TaZa Yazz Xaly Yol ta 1 after deleting columns, j andk.
ys T3zz yszz sty ysty Ly 1 Note thatP;; = Qijo for 4,j # 9 and Pyjx = Qi for
Q139 = |Y4 Taza Yaza Talsa yats ta 1| =0, (20) . . ; k
vs wszs uyszs wsts ysts fs 1 k # 9. Using these relations it can be proved tlgf is rank
Ve Tore yess wote yete to 1 defective if, and only if,P is also rank defective. Thus, a
y xzz yz wxt oyt ot 1 much simpler condition can now be stated: a leg rearrangemen



towards(z, y, z, t) leaves singularities invariant as long as the
matrix P is rank defective.

One practical methodology to check rank deficiency is to
apply Gaussian elimination dA. The last row of the resulting
matrix has 3 nonzero terms dependent ony, z and t.
The corresponding 3 equations are equivalent to the system
{(9),(10), (11)}. Different equations arise depending on the
order of the columns. For example, Gaussian elimination on
matrix P as it appears in equation (12) leads to a matrix whose
last row is

1

— (0 0 0 0 0 0 Py Prg Prs).
Prgg

Then, as long asP7s9 # 0, the singularity-invariant leg
rearrangements are defined by the system

{Pgg =0, Prg = 0, Prg = 0}. (13)

Fig. 2. Scheme of the platform described in Table I.

Alternatively, if the matrix P columns are sorted as ) o )
[y, w2, yz at, yt, 1, —z, —t, z], then the corresponding system From equation (15) itis clear that the system has a solution

is {(9), (10), (11)} and P53 should be non-zero. on (z,t) only for those (z,y) that satisfydet(S;) = 0,
and this solution is unique (assuming that the matix

IV. GEOMETRIC INTERPRETATION OF THE CONDITION  has rank 2). In the same way, there exists a solution on
Note that any equation consisting of a submatrix deterniz,y) only for those(z,t) that makedet(S,) = 0. Both
nant P;; equated to zero will be bilinear in the unknownsgeterminants define cubic curves on the base and platform
but with different monomials. Let us consider the system @ilanes, respectively. In other words, the system (14) define
equations (13), which after cofactor expansion, leads to  one-to-one correspondence between points on the two cubic
curves. However, the correspondence may be not one-to-one

—Pgo12 + Pgoat + Prozw — Proay + Pros2 . X ! s .
for singular points on the cubics, as will be seen in the examp
~Prosyz + Prorat = 0 of Section V-B.
—Pro12 + Proot + Prosx — Proay + Prosxz (14) Depending on the geometric placement of the attachments,
—Pro6yz + Progyt = 0 these curves can be generic curves of degree 3, or a line and a
—Prg12 + Prsot + Prgsx — Prsay + Prssxz conic, or even 3 lines crossing 2 by 2. This will be exemplified
in the following section.
—Prgeyz + Prgg = 0

As the system is linear both ifr,y) and in(z,t), it can

. . . V. EXAMPLES
be rewritten in matrix form as

0 A. Classic Stewart-Gough platform
Se[t]=10], (15) )
0 In [9] Husty et al. analyzed the classic Stewart-Gough

platform, searching where additional legs could be placed
without changing the forward kinematics solution, to obtai
( Psost — Psogy — Pso1 Psoz + Psorw Psgzx — Psoay ) a redundant manipulator. The same example is analyzed here.

where S, is the matrix

Prosz — Prosy — Pro1 Pro2 + Prosy Prozz — Proay The local coordinates of the attachments are listed in Table
Prgsx — Prgey — Prs: Prga Prgsx — Prgay + Prgo

TABLE |
COORDINATES OF THE ATTACHMENTSa; = (x4, yi,0) AND
b; = p + R(zi,t;,0)” FOR THE ANALYZED ROBOT

that only depends om andy (the b refers tobase, asxz and
y are the coordinates of the base plane). The other way round,
the system can also be written as

T 0 .
(] @ [wil 2z [ti]
Sply]=10]. (16) I] 3]0 5[0
1 0 2 3 0 5 0
where now matrixS,, is 2 160 18 ; 130
Pgos + Pgosz + Pgort — Pgoa — Psogz Pggot — Pgo12 > —6 16 | =2 | 10
Prg3 + Prosz Prost — Prgy — Prog2 Prgat — Pro1z , 6 | —-10 | 10 | =7 | 3
Prg3 + Prgsz —Prg4 — Prgez Prgat — Prg1z + Prgg

that only depends on andt (andp refers toplat form, as
z andt are the coordinates of the platform plane). After substituting the corresponding numerical valueg, th



Fig. 3. Scheme of the platform described in Table Il (left)d dhe equivalent platform after moving the 3rd leg (right).

system of equations (14) results in: In [9], the authors propose to add additional legs to ob-
tain redundant manipulators. Instead, here we propose to

2430z — 4050z + 255y + 188zt = 0 substitute any leg by another leg satisfying the one-to-one
—280¢ + 45y + 13yt = 0 correspondence between the base and platform cubics defined

—70t + 43y — 42z + 60 = 0 by (17). The singularity locus will remain unchanged, and

other performance indices can be improved, such as stiffnes

and, thus, matriceS, andS,, are: or maneuverability, or the workspace can be enlarged by

2430 + 255y 1882 — 4050 reducing the risk of leg collisions.
Sy = 0 13y — 280 45 .
b Ay y,70 60+€13y ’ B. Degenerate cubic curves
188+ — 4050 2552 24302 Interesting cases appear when one or both of the curves
S, = 0 13t +45 —280t |, are degenerate. Consider the example given in Table Il,avher
—4z 43 60 — 70t two of the attachments on the platform are made coincident,

_ ' . by = by [Fig. 3-(left)]. The two legs sharing an endpoint form
whose determinants equated to zero give the two cubic cur¢epoint-Line component, and it was proved in [4] that the base
1629622y + 9503y° + 30240022 attachmenta, andaz can be rearranged on any point on the

line asaz without modifying the singularity locus.
— 4731242 — 1599420y — 2721600 — 0, 2

2059822t — 8554t + 2187022
+ 275173t — 1932795t — 546750 = 0;

an TABLE I

COORDINATES OF THE ATTACHMENTSa; = (x4, yi,0) AND
b; = p + R(zi,t;,0)” FOR THE ANALYZED ROBOT

plotted in Fig. 4. The cubic in the base coincides with the

one appearing in [9], whereas the cubic in the platform is not ([ v s 6]

(2
given explicitly there. T 3 [ 4] -2 -2
By definition, all attachment coordinates are solutionshef t 2] 5 | -2] 2 | —1/2
system, and therefore belong to the curves, as shown in.Fig.4 N 2
5 4] 1 | -3 1
6

After applying Gaussian elimination to the mati#x given
[‘g“ in equation (12) corresponding to this example, the folfayvi
a6 a3 equations are obtained:

409 40
—4 —1 -3 —1
Y 304 304 ¢
209
g ] Q as

o o 0w G WY i@y jag 0 (0 @
372z + 18988t 4 1302x — 5656y + 52Txz
+2828yz + 12122t = 0
5172z 4 808t — 2502z + 404y + 257xz (18)
+404yz + 2424yt = 0
Fig. 4. The base and the platform curves defined in (17). T4z — 44x — 1322z +202 =0




y q 109 ¢ . . .
v points on the base, and vice versa. Observe that, on thelaingu
ag | — point z = 2, (20) is undefined. However, ternfs — 2) can
- ba . - . . . .
~ aV a3 i by §o_ by =15 be simplified and then the resulting point gives the inter-
57T N T -5 0 by € L, section between the line and the hyperbola. In other words,
ag as 6 . . .
S~ 7 by this parametrization represents the one-to-one corregnue
a; |~ /“ between points on the platform cubic and the base hyperbola,
~104 -104 except for the singular platform poin2, —1/2), a double

point that corresponds to two points on the hyperbola (the
two intersections of the line with the conic).
To avoid multiple spherical joints, here the Point-Line
and the corresponding cubic curves are defined by component can be split by substituting any of its legs by
another leg going from the conic to the base cubic. For
1713768(z — 5) example, take the point on the platform cubic givenzby 0

Fig. 5. The base and the platform curves defined in (19).

(312® — 280y” + 631z + 2308) = 0, andt = ~23+x/162022 anq solve system (18) after evaluating
1713768(—1322% + 12422t + 4762t + 19122 it on this point, or equivalently, evaluate expression (&)
+ 6202t + 1528¢2 + 1250z + 744t — 1606) = 0. # = U- The resultis:
(19) 101 an 243033 — 44+4/162022
= — y = .
In other words, the cubic curve in the base factorizes into 22 —3872 + 132162022

a conic (an hyperbola) and a line, while the platform curve Hence, we can substitute the 3rd leg by a new leg going
remains a cubic, but with a singular point (called node) afiom the base pointlll, 243033-44v162022 ) tq the platform

the vertex of the Point-Line componet; = (2, —1/2). Fig. . 22 3872152 162022\/,
P 2 = (2,-1/2). Fig achment with local coordinatés, =22+162022 ) and the

5 shows the plot of these two curves and the correspondi eti . T .
b P resulting Jacobian is the same as before, multiplied by a

location of the attachments. 1599019362092 ) N
The correspondence between the base line and the platfGRsStant 67232 = 0.794, and with no coincident

cubic curve can be derived by solving system (18) for argrachments (Fig. 3-right).

point on the base linasa; (i.e, x = 5), leading to C. Griffis-Duffy platforms
3007z + 25048t + 6510 — 5656y + 2828yz = 0 In 1993, Griffis and Duffy patented two manipulators named
+6457z 4+ 808t — 12510 + 404y + 404y z + 2424yt = 0 thereafter Griffis-Duffy type | and Il platforms [7]. Both
92— 18 = 0 platforms have their attachments distributed on trianglese

attachments on the vertices and three on the midpoints of the
edges. Type | platforms are formed by joining the attachment
on the midpoints on the base to the vertices on the platform,
12524(1 4 2t) = 0, and the vertices on the base to midpoints on the platform
404(1 + 3y)(1 + 2t) = 0. (Fig. 6_—Ieft). T_ype Il join midpoints to midpoints and ventis
) ) to vertices (Fig. 7-left).
The solution of the system i$z = 5,y = y,z = 2,t = A type | Griffis-Duffy platform is shown to be singularity
—1/2}, that is, any point on the ling = 5 corresponds to the gqivalent to the octahedral manipulator [4]. In [11], type
vertexb, = bs in accordance with previous results [4]. Griffis-Duffy manipulators are shown to be always non-
For the rest of the points on the cubic curve, the COrrespQiychitecturally singular.
dence can be written in terms of a single parameteBiven  consider the two examples specified in Table I1I, where the
a point on the platform cubic same triangles define two manipulators of type | and type II,

From the last equation; = 2. Substituting this value into the
first two equations and factorizing the result yields

—312%2 — 1552 — 186 + VA respectively.
Z, ,
2(1192 + 382) BLE
the corresponding point on the base hyperbola is COORDINATES OF THE ATTACHMENTSa; = (74, i, 0) AND

b; = p + R(zi,t;,0)” FOR THE ANALYZED ROBOT

2(37z + 101)
44413z

g (2 7
3(z — 2)(1666922 + 103981z + 162022) F (262 + 88)vVA ‘ ; ' Zl | to || Typet | Typell | o yi
4(2 — 2)(44 + 132)2 £ 2(39z + 132)VA " zaE o 2 . 233 0
0 |31 -1 0 2 3 —2 0
41 -1/2 | V3/2 5 4| —2/3 | (4/3)v3
where the discriminantA = (1666922 + 103981z + 5] 0 V3 5 : 0 273
162022)(z — 2)? determines whether points are real or com-| 6 | 1/2 | V3/2 1 6 1 /3

plex. Real points on the platform always correspond to real



Fig. 6. Scheme of the platform described in Table Il of a Ggiffiuffy type | platform (left), and its equivalent octahaimanipulator after applying a leg
rearrangement (right).

The computation of the base and platform curves factorizéee invariance of the singularity locus, but in the first ctse
into the 3 same lines for both type | and type Il platforms: correspondence is between points and lines and in the second

B case it is point-to-point between lines.
(V32— t+V3) (V32 4+t~ \/g)\t/ =0 The legs of the type Il manipulator can be rearranged
LP LP, LPs following the correspondencéB; < LP;. But some rear-
(—3x + V3y — 6) (3z + V3y—6) y =0; rangements must be avoided, for example, placing four legs
~~

in the same line-line correspondence leads to an architdigtu

. ) ) ~singular manipulator (as it contains a Line-Line component
but the system obtained by applying Gaussian elimination Bhojective correspondence [4, 10]).

matrix_P results in different equations. The system corre- 5, interesting rearrangement consists in removing all
sponding to the type | platform is: collinearities from the type Il manipulator. As a result, an

LBl LB2 LBS

A —y+yz+at=0 equivalent platform such as that shown in Fig. 7-right is
(V32 4+t -3y =0 obtained. _ N
To remove collinearities, all legs from vertex to vertex chee
—2V3z + 4t +V3x —y + V3uz +3yz —2V3=0 to be rearranged. The 1st leg can be placed going from a point
whereas for the type Il platform is: on LB, to the corresponding point ohP;. In other words,

take a point on the lind. B,, substitute the values on system
2 —y+at—yz=0 (21) and the solution gives a point on the lifé:

3V3y — 8V3t +V3yz +yt =0 _
Substitute on (21)

10v3z — 16t — 5v/3x + 9y + V3zz +yz — 2v/3 =0 r=1/2 - z=1/4
_ . (21) y=(3/2)V3 and solve t=(3/4)V3
The resolution of these systems gives correspondences be- ~———— e S
on LB on LP>

tween base and platform attachments that leave the simgular

ties invariant. The same can be done to substitute the 3rd leg by a leg going
For the type | platform, the correspondence is betwe@&m LB; to LPs:

points and lines (in accordance with results in [4]), that is

to each vertex of the base (platform) triangle corresponds a v = —2/3 Substitute on (21) 17
line on the platform (base) triangle, in the same way as in the y=0 — F=0
preceding section the vertex of the Point-Line componerg wa N and solve —_—
in correspondence with a line on the base. Thus, by moving on LB on LPs

the six midpoint attachments along their supporting liries,
manipulator can be rearranged into the equivalent octahecﬁ
manipulator depicted in Fig. 6-right (a result concordaithw

nd finally, the 5th leg is substituted by a leg going from a
oint on LB, to a point onL P,

that in [4]). _ 4/ Substituteon (21) .
On the other hand, for the type Il platform, there is a one-to- z=-3/ . z=—6/
one correspondence between points on lif& and L B;, for y=(1/2)V3 and solve t=(1/7)V3

i =1,2,3. That is, the same geometrical elements determine on LB, on LP,



Fig. 7. Scheme of the platforms described in Table Il of a Gribuffy type Il platform (left), and its equivalent platforafter removing all collinearities
(right).
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