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Abstract— In general, rearranging the legs of a Stewart-Gough
platform, i.e., changing the locations of its leg attachments,
modifies the platform singularity locus in a rather unexpected
way. Nevertheless, some leg rearrangements have been recently
found to leave singularities invariant but, unfortunately, these
rearrangements are only valid for Stewart-Gough platforms
containing rigid components. In this work, the authors go a step
further presenting singularity-invariant leg rearrangements that
can be applied to any Stewart-Gough platform whose base and
platform attachments are coplanar. The practical consequences
of the presented theoretical results are illustrated with several
examples including well-known architectures.

I. I NTRODUCTION

Even when there is no known solution to a given mathe-
matical problem, it is always possible to try to find the set of
transformations to the problem that leave its solution invariant.
Although this does not solve the problem itself, it providesa
lot of insight into its nature. This way of thinking is at the
root of the development of Group Theory and it is the one
applied herein for the characterization of the singularityloci
of Stewart-Gough platforms.

The Stewart-Gough platform is defined as a 6-DoF parallel
mechanism with six identical SPS legs [14], [6]. It triggered
the research on parallel manipulators, and it has remained
one of the most widely studied because, despite its geometric
simplicity, its analysis translates into challenging mathematical
problems. One important part of this analysis corresponds to
the characterization of its singularities.

The geometric and topological characterization of the sin-
gularity locus of a given Stewart-Gough platform in its six-
dimensional configuration space is, in general, a huge task
which has only been completely solved for some specializa-
tions —i.e., designs in which some spherical joints in the
platform, the base, or both, coalesce to form multiple spherical
joints [2], [1]. In this context, it seems reasonable to find leg
rearrangements in a given Stewart-Gough platform that leave
its singularity locus invariant for two main reasons:

(a) If the singularity locus of the platform at hand has already
been characterized, it could be interesting to modify the
location of its legs to optimize some other platform
characteristics without altering such locus.

(b) If the singularity locus of the analyzed platform has not
been characterized yet, it could be of interest to simplify
the platform’s geometry by changing the location of its
legs, thus easing the task of obtaining this characterization.

Fig. 1. The four possible rigid components involving linear geometric
elements in Stewart-Gough platforms.

Let us suppose that we want to apply a singularity-invariant
leg rearrangement limited to a subset of legs. Clearly, this
is only possible if this subset of legs defines a rigid sub-
assembly. Kong and Gosselin refer to these subassemblies as
components [12]. The simplest component arises when two
legs share an attachment. The result is called the Point-Line
component. Similarly, the three other components involving
linear geometric entities (points, lines and planes) are the
Point-Plane, Line-Line and Line-Plane components (Fig.1).
The singularity-invariant leg rearrangements for each of these
four components have already been fully characterized [4],
[3], [5]. In this paper, the authors go a step further presenting
the rules for the leg rearrangements that can be applied to any
Stewart-Gough platform whose base and platform attachments
are coplanar (i.e., the equivalent to a Plane-Plane component).

We will show that, for a leg rearrangement to be singularity-
invariant, it is necessary and sufficient that the linear actuators’
velocities, before and after the rearrangement, are linearly
related. By integrating this differential condition, the above
statement can be reformulated as follows: a leg rearrangement
is singularity-invariant if the squared leg lengths, before and
after the rearrangement, are affinely related. It is important
to realize that, if this condition is satisfied, a one-to-one
correspondence between the elements of the platform forward
kinematics solution sets, before and after the rearrangement,
arises. Actually, the invariance in the singularities and the
assembly modes of a parallel platform are two faces of the
same coin. These ideas are closely related to those that made
possible the development of kinematic substitutions [8]. They
are general in the sense that they can be applied to any kind of
mechanism, not only parallel platforms. We will also show that
their application to well-studied platforms leads to interesting
new results. For example, we will see that it is not necessary
that a platform has collinear attachments to behave like a
Griffis-Duffy type II manipulator.

This paper is organized as follows. In Section II, a nec-



essary and sufficient condition that must be satisfied by any
singularity-invariant leg rearrangement in a Stewart-Gough
platform is presented. Then, the challenge becomes that of
finding the geometric transformations that satisfy this condi-
tion. This is discussed in Sections III and IV for any doubly-
planar Stewart-Gough platform. Section V presents some cases
that exemplify the potentialities of the obtained transformation.
Finally, Section VI summarizes the main results.

II. GENERAL CONDITION FOR A LEG REARRANGEMENT TO

BE SINGULARITY-INVARIANT

In general, if we change the location of the leg attachments
in a Stewart-Gough platform, its singularity locus is modified.
However, it is shown below that the singularity locus remains
invariant if, and only if, the squared lengths of the legs in their
new location can be expressed in terms of those in the original
location through an affine relation (for any arbitrary pose of
the platform with respect to the base).

Let us consider a general Stewart-Gough platform,i.e., a
6-DoF parallel mechanism with six identical SPS legs [14],
[6]. For this kind of platform, the linear actuators’ velocities,
l̇1, l̇2, . . . , l̇6, can be expressed in terms of the platform velocity
vector (v,Ω) as follows:

diag(l1, . . . , l6)





l̇1
l̇2
...
l̇6




= J

(
v

Ω

)
, (1)

whereJ is the matrix of normalized Plücker coordinates of the
six leg lines [14]. The parallel singularities of the platform are
those configurations in which det(J) = 0 [13].

Now, let us change the location of the leg attachments
so that the lengths of the legs in their new locations, say
d1, d2, . . . , d6, are related to those of the original legs,
l1, l2, . . . , l6, through the relation:





d2
1

d2
2

...
d2
6




= A





l21
l22
...
l26




+ b, (2)

whereA and b are a constant matrix and a constant vector,
respectively. Differentiating this equation with respectto time
and substituting (1) in the result, we get

diag(d1, . . . , d6)





ḋ1

ḋ2

...

ḋ6




= AJ

(
v

Ω

)
. (3)

Then, the singularities of the platform after the leg rear-
rangement leading to (2) are those configurations in which
det(AJ) = det(A)det(J) = 0. If det(A) 6= 0, the leg
rearrangement is said to besingularity-invariant. If det(A) =
0, the rearrangement introduces anarchitectural singularity,

i.e., the platform is always in a singularity irrespective of its
leg lengths.

Since lengths are assumed to be positive magnitudes, equa-
tion (2) defines a one-to-one relationship between leg lengths
before and after a singularity-invariant leg rearrangement. As
a consequence, this kind of transformations leaves not only
the singularities of the platform unaltered, but also the nature
and number of its assembly modes.

III. L EG REARRANGEMENTS

It has been shown in the preceding section that any
singularity-invariant leg rearrangement results in an affine
relation between the leg lengths before and after the rear-
rangement. In this section this idea is exploited to define the
singularity-invariant conditions for the doubly-planar general
Stewart-Gough platform.

In a doubly-planar Stewart-Gough platform, thei-th leg
joins a base attachment with coordinatesai = (xi, yi, 0)T

with a platform attachment whose local coordinates areb̂i =
(zi, ti, 0)T . Given the positionp = (px, py, pz)

T and the
rotation

R = (i, j,k) =




ix jx kx

iy jy ky

iz jz kz



 , (4)

the coordinates of the platform attachments in the base refer-
ence frame arebi = p + R(zi, ti, 0)T , for i = 1 . . . , 6.

Let li be the length of the originali-th leg, thenl2i = ‖bi−
ai‖2, for i = 1, . . . , 6.

We define a leg rearrangement of a single leg,i.e., the
substitution of any of the legs by another one going from
the base attachment located ata = (x, y, 0)T to the platform
attachment atb = p + R(z, t, 0)T . We will call it leg rear-
rangement towards(x, y, z, t). Now we proceed to compute
the length of that newly introduced legd2 = ‖b − a‖2.

Subtracting from the expressions ford2 andl2i , i = 1, . . . , 6,
the equationsi2x + i2y + i2z = 1 andj2

x + j2
y + j2

z = 1, and using
the relationi · j = ixjx + iyjy + izjz = 0, quadratic terms in
the rotation variables cancel out, yielding

− 1

2
(p2

x + p2
y + p2

z) − ziu − tiv + xipx + yipy

+ xiziix + yiziiy + xitijx + yitijy − ki = 0 (5)

− 1

2
(p2

x + p2
y + p2

z) − zu − tv + xpx + ypy

+ xzix + yziy + xtjx + ytjy − k + d2/2 = 0 (6)

where u = p · i, v = p · j, and the constant factorski =
1

2
(x2

i + y2
i + z2

i + t2i − l2i ) andk = 1

2
(x2 + y2 + z2 + t2).

If we subtract the first equation from the others, quadratic
terms inpx, py andpz cancel too, yielding six linear equations
in the 9 unknownspx, py, u, v, ix, iy , jx, jy andd2 [equation
(7)]. Note thatki depends onli.

From the matrixQ of the system (7), let us callQijk the
square matrix obtained fromQ after deleting columnsi, j and
k, andQijk its determinant. The system can be solved if we







z1 − z2 t1 − t2 x2 − x1 y2 − y1 x2z2 − x1z1 y2z2 − y1z1 x2t2 − x1t1 y2t2 − y1t1 0
z1 − z3 t1 − t3 x3 − x1 y3 − y1 x3z3 − x1z1 y3z3 − y1z1 x3t3 − x1t1 y3t3 − y1t1 0
z1 − z4 t1 − t4 x4 − x1 y4 − y1 x4z4 − x1z1 y4z4 − y1z1 x4t4 − x1t1 y4t4 − y1t1 0
z1 − z5 t1 − t5 x5 − x1 y5 − y1 x5z5 − x1z1 y5z5 − y1z1 x5t5 − x1t1 y5t5 − y1t1 0
z1 − z6 t1 − t6 x6 − x1 y6 − y1 x6z6 − x1z1 y6z6 − y1z1 x6t6 − x1t1 y6t6 − y1t1 0
z1 − z t1 − t x − x1 y − y1 xz − x1z1 yz − y1z1 xt − x1t1 yt − y1t1

1

2





︸ ︷︷ ︸
Q





u
v
px

py

ix
iy
jx

jy

d2





=





k2 − k1

k3 − k1

k4 − k1

k5 − k1

k6 − k1

k − k1





(7)

take three unknowns as parameters, for exampleu, v, px. The
resulting linear system is:

Q123





py

ix
iy
jx

jy

d2




=





(z2 − z1)u + (t2 − t1)v − (x2 − x1)px + k2 − k1

(z3 − z1)u + (t3 − t1)v − (x3 − x1)px + k3 − k1

(z4 − z1)u + (t4 − t1)v − (x4 − x1)px + k4 − k1

(z5 − z1)u + (t5 − t1)v − (x5 − x1)px + k5 − k1

(z6 − z1)u + (t6 − t1)v − (x6 − x1)px + k6 − k1

(z − z1)u + (t − t1)v − (x − x1)px + k − k1




.

Solving the system ford2 using Crammer’s rule and then
applying multi-linear properties of determinants to splitthe
determinant of the resulting matrix into 4 determinants yields

d2 =
Q239u + Q139v + Q129px + Q∗

123

1

2
Q123

, (8)

where Q∗
123 is the determinant ofQ123 except for the last

column that contains the elementski − k1 for i = 2, . . . , 6
and k − k1. As a result, if we imposeQ239 = Q139 =
Q129 = 0, then equation (8) becomes affine inl21, . . . , l

2
6.

Indeed, expandingQ∗
123 leads to an expression of the form

d2 = c1l
2
1 + c2l

2
2 + c3l

2
3 + c4l

2
4 + c5l

2
5 + c6l

2
6 + c0,

where all coefficients are known constants. Then, following
Section II, any leg rearrangement satisfyingQ239 = Q139 =
Q129 = 0 leaves singularities invariant.

In other words, if we substitute any leg by a new leg
with base attachment located ata = (x, y, 0)T and platform
attachment atb = p + R(z, t, 0)T , the singularities will
remain invariant as long as(x, y, z, t) satisfies the system
Q239 = Q139 = Q129 = 0, where Qijk can be simplified
into a 7× 7 determinant using simple row/column operations,
yielding the following system:

Q239 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 x1z1 y1z1 x1t1 y1t1 z1 1

y2 x2z2 y2z2 x2t2 y2t2 z2 1

y3 x3z3 y3z3 x3t3 y3t3 z3 1

y4 x4z4 y4z4 x4t4 y4t4 z4 1

y5 x5z5 y5z5 x5t5 y5t5 z5 1

y6 x6z6 y6z6 x6t6 y6t6 z6 1

y xz yz xt yt z 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (9)

Q139 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 x1z1 y1z1 x1t1 y1t1 t1 1

y2 x2z2 y2z2 x2t2 y2t2 t2 1

y3 x3z3 y3z3 x3t3 y3t3 t3 1

y4 x4z4 y4z4 x4t4 y4t4 t4 1

y5 x5z5 y5z5 x5t5 y5t5 t5 1

y6 x6z6 y6z6 x6t6 y6t6 t6 1

y xz yz xt yt t 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (10)

Q129 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

y1 x1z1 y1z1 x1t1 y1t1 −x1 1

y2 x2z2 y2z2 x2t2 y2t2 −x2 1

y3 x3z3 y3z3 x3t3 y3t3 −x3 1

y4 x4z4 y4z4 x4t4 y4t4 −x4 1

y5 x5z5 y5z5 x5t5 y5t5 −x5 1

y6 x6z6 y6z6 x6t6 y6t6 −x6 1

y xz yz xt yt −x 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (11)

A. Generalizing and simplifying the condition

The above reasoning fails ifQ123 = 0 but, for a non-
architecturally singular manipulator, a6× 6 matrix Qijk with
non-zero determinant can always be found (otherwise, the 6
leg length equations would be linearly dependent). However,
this may change the expression of the singularity-invariant leg
rearrangement condition in equations (9)-(11).

To avoid such ambiguity, we can reformulate the condition
in terms of rank deficiency of the matrixQ9 (that is, the
matrix Q in equation (7) without the last column). The 5 first
rows of Q9 are full rank for any non-architecturally singular
manipulator. Furthermore,Q9 is rank defective if, and only
if, all its submatrices have null determinant. However, it is
only necessary to check 3 of its submatrix determinants. Thus,
the condition in equations (9)-(11) is equivalent to the rank
deficiency ofQ9. The advantage of this formulation is that
any set of 3 submatrices could be used instead of the three
determinants in (9)-(11).

To simplify the notation, we consider the following simpler
matrix:

P =





−z1 −t1 x1 y1 x1z1 y1z1 x1t1 y1t1 1
−z2 −t2 x2 y2 x2z2 y2z2 x2t2 y2t2 1
−z3 −t3 x3 y3 x3z3 y3z3 x3t3 y3t3 1
−z4 −t4 x4 y4 x4z4 y4z4 x4t4 y4t4 1
−z5 −t5 x5 y5 x5z5 y5z5 x5t5 y5t5 1
−z6 −t6 x6 y6 x6z6 y6z6 x6t6 y6t6 1
−z −t x y xz yz xt yt 1





.

(12)
Let us denote byPij the determinant of the submatrix ob-
tained fromP after deleting columnsi and j, and Pijk the
determinant of the submatrix formed by the first 6 rows ofP

after deleting columnsi, j andk.
Note thatPij = Qij9 for i, j 6= 9 and Pijk = 1

2
Qijk for

k 6= 9. Using these relations it can be proved thatQ9 is rank
defective if, and only if,P is also rank defective. Thus, a
much simpler condition can now be stated: a leg rearrangement



towards(x, y, z, t) leaves singularities invariant as long as the
matrix P is rank defective.

One practical methodology to check rank deficiency is to
apply Gaussian elimination onP. The last row of the resulting
matrix has 3 nonzero terms dependent onx, y, z and t.
The corresponding 3 equations are equivalent to the system
{(9), (10), (11)}. Different equations arise depending on the
order of the columns. For example, Gaussian elimination on
matrixP as it appears in equation (12) leads to a matrix whose
last row is

1

P789

(
0 0 0 0 0 0 P89 P79 P78

)
.

Then, as long asP789 6= 0, the singularity-invariant leg
rearrangements are defined by the system

{P89 = 0, P79 = 0, P78 = 0}. (13)

Alternatively, if the matrix P columns are sorted as
[y, xz, yz, xt, yt, 1,−z,−t, x], then the corresponding system
is {(9), (10), (11)} andP123 should be non-zero.

IV. GEOMETRIC INTERPRETATION OF THE CONDITION

Note that any equation consisting of a submatrix determi-
nant Pij equated to zero will be bilinear in the unknowns,
but with different monomials. Let us consider the system of
equations (13), which after cofactor expansion, leads to

−P891z + P892t + P893x − P894y + P895xz

−P896yz + P897xt = 0

−P791z + P792t + P793x − P794y + P795xz

−P796yz + P798yt = 0

−P781z + P782t + P783x − P784y + P785xz

−P786yz + P789 = 0






(14)

As the system is linear both in(x, y) and in (z, t), it can
be rewritten in matrix form as

Sb




z
t
1



 =




0
0
0



 , (15)

whereSb is the matrix



P895x − P896y − P891 P892 + P897x P893x − P894y
P795x − P796y − P791 P792 + P798y P793x − P794y
P785x − P786y − P781 P782 P783x − P784y + P789



 ,

that only depends onx andy (the b refers tobase, asx and
y are the coordinates of the base plane). The other way round,
the system can also be written as

Sp




x
y
1



 =




0
0
0



 , (16)

where now matrixSp is



P893 + P895z + P897t −P894 − P896z P892t − P891z

P793 + P795z P798t − P794 − P796z P792t − P791z

P783 + P785z −P784 − P786z P782t − P781z + P789



 ,

that only depends onz and t (andp refers toplatform, as
z and t are the coordinates of the platform plane).

a1

a2

a3

a4

a5

a6

b1
b2 b3

b4

b5

b6

Fig. 2. Scheme of the platform described in Table I.

From equation (15) it is clear that the system has a solution
on (z, t) only for those (x, y) that satisfy det(Sb) = 0,
and this solution is unique (assuming that the matrixSb

has rank 2). In the same way, there exists a solution on
(x, y) only for those (z, t) that makedet(Sp) = 0. Both
determinants define cubic curves on the base and platform
planes, respectively. In other words, the system (14) defines a
one-to-one correspondence between points on the two cubic
curves. However, the correspondence may be not one-to-one
for singular points on the cubics, as will be seen in the example
of Section V-B.

Depending on the geometric placement of the attachments,
these curves can be generic curves of degree 3, or a line and a
conic, or even 3 lines crossing 2 by 2. This will be exemplified
in the following section.

V. EXAMPLES

A. Classic Stewart-Gough platform

In [9] Husty et al. analyzed the classic Stewart-Gough
platform, searching where additional legs could be placed
without changing the forward kinematics solution, to obtain
a redundant manipulator. The same example is analyzed here.
The local coordinates of the attachments are listed in TableI.

TABLE I

COORDINATES OF THE ATTACHMENTSai = (xi, yi, 0) AND

bi = p + R(zi, ti, 0)
T FOR THE ANALYZED ROBOT

i xi yi zi ti

1 −3 0 −5 0
2 3 0 5 0
3 10 10 7 3
4 6 16 2 10
5 −6 16 −2 10
6 −10 10 −7 3

After substituting the corresponding numerical values, the



a1

a2

a3

a4

a5

a6

b1
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b6
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Fig. 3. Scheme of the platform described in Table II (left), and the equivalent platform after moving the 3rd leg (right).

system of equations (14) results in:

2430z − 4050x + 255yz + 188xt = 0

−280t + 45y + 13yt = 0

−70t + 43y − 4xz + 60 = 0






and, thus, matricesSb andSp are:

Sb =




2430 + 255y 188x −4050x

0 13y − 280 45y
−4x −70 60 + 43y



 ,

Sp =




188t − 4050 255z 2430z

0 13t + 45 −280t
−4z 43 60 − 70t



 ,

whose determinants equated to zero give the two cubic curves

−16296x2y + 9503y3 + 302400x2

− 47312y2 − 1599420y − 2721600 = 0,

20598z2t − 8554t3 + 21870z2

+ 275173t2 − 1932795t − 546750 = 0;

(17)

plotted in Fig. 4. The cubic in the base coincides with the
one appearing in [9], whereas the cubic in the platform is not
given explicitly there.

By definition, all attachment coordinates are solutions of the
system, and therefore belong to the curves, as shown in Fig.4.

b1 b2

b3

b4
b5

b6

t

z

a1 a2

a3

a4a5

a6

Fig. 4. The base and the platform curves defined in (17).

In [9], the authors propose to add additional legs to ob-
tain redundant manipulators. Instead, here we propose to
substitute any leg by another leg satisfying the one-to-one
correspondence between the base and platform cubics defined
by (17). The singularity locus will remain unchanged, and
other performance indices can be improved, such as stiffness,
or maneuverability, or the workspace can be enlarged by
reducing the risk of leg collisions.

B. Degenerate cubic curves

Interesting cases appear when one or both of the curves
are degenerate. Consider the example given in Table II, where
two of the attachments on the platform are made coincident,
b2 = b3 [Fig. 3-(left)]. The two legs sharing an endpoint form
a Point-Line component, and it was proved in [4] that the base
attachmentsa2 anda3 can be rearranged on any point on the
line a2a3 without modifying the singularity locus.

TABLE II

COORDINATES OF THE ATTACHMENTSai = (xi, yi, 0) AND

bi = p + R(zi, ti, 0)
T FOR THE ANALYZED ROBOT

i xi yi zi ti

1 3 −4 −2 −2
2 5 −2 2 −1/2
3 5 2 2 −1/2
4 3 4 −2 2
5 −4 1 −3 1
6 −4 −1 −3 −1

After applying Gaussian elimination to the matrixP given
in equation (12) corresponding to this example, the following
equations are obtained:

372z + 18988t + 1302x − 5656y + 527xz

+2828yz + 1212xt = 0

5172z + 808t − 2502x + 404y + 257xz

+404yz + 2424yt = 0

74z − 44x − 13xz + 202 = 0






(18)
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Fig. 5. The base and the platform curves defined in (19).

and the corresponding cubic curves are defined by

1713768(x − 5)

(31x2 − 280y2 + 631x + 2308) = 0,

1713768(−132z3 + 124z2t + 476zt2 + 191z2

+ 620zt + 1528t2 + 1259z + 744t − 1606) = 0.
(19)

In other words, the cubic curve in the base factorizes into
a conic (an hyperbola) and a line, while the platform curve
remains a cubic, but with a singular point (called node) on
the vertex of the Point-Line component,b2 = (2,−1/2). Fig.
5 shows the plot of these two curves and the corresponding
location of the attachments.

The correspondence between the base line and the platform
cubic curve can be derived by solving system (18) for any
point on the base linea2a3 (i.e., x = 5), leading to

3007z + 25048t + 6510 − 5656y + 2828yz = 0

+6457z + 808t − 12510 + 404y + 404yz + 2424yt = 0

9z − 18 = 0






From the last equation,z = 2. Substituting this value into the
first two equations and factorizing the result yields

12524(1 + 2t) = 0,

404(1 + 3y)(1 + 2t) = 0.

The solution of the system is{x = 5, y = y, z = 2, t =
−1/2}, that is, any point on the linex = 5 corresponds to the
vertexb2 = b3 in accordance with previous results [4].

For the rest of the points on the cubic curve, the correspon-
dence can be written in terms of a single parameterz. Given
a point on the platform cubic

(
z,

−31z2 − 155z − 186 ±
√

∆

2(119z + 382)

)
,

the corresponding point on the base hyperbola is
(

2(37z + 101)

44 + 13z
,

3(z − 2)(16669z2 + 103981z + 162022) ∓ (26z + 88)
√

∆

4(2 − z)(44 + 13z)2 ± 2(39z + 132)
√

∆

)
,

(20)

where the discriminant∆ = (16669z2 + 103981z +
162022)(z − 2)2 determines whether points are real or com-
plex. Real points on the platform always correspond to real

points on the base, and vice versa. Observe that, on the singular
point z = 2, (20) is undefined. However, terms(z − 2) can
be simplified and then the resulting point gives the inter-
section between the line and the hyperbola. In other words,
this parametrization represents the one-to-one correspondence
between points on the platform cubic and the base hyperbola,
except for the singular platform point(2,−1/2), a double
point that corresponds to two points on the hyperbola (the
two intersections of the line with the conic).

To avoid multiple spherical joints, here the Point-Line
component can be split by substituting any of its legs by
another leg going from the conic to the base cubic. For
example, take the point on the platform cubic given byz = 0

and t = −93+
√

162022

382
, and solve system (18) after evaluating

it on this point, or equivalently, evaluate expression (20)for
z = 0. The result is:

x =
101

22
andy =

243033 − 44
√

162022

−3872 + 132
√

162022
.

Hence, we can substitute the 3rd leg by a new leg going
from the base point( 101

22
, 243033−44

√
162022

−3872+132
√

162022
, 0) to the platform

attachment with local coordinates(0, −93+
√

162022

382
, 0) and the

resulting Jacobian is the same as before, multiplied by a
constant 15990+93

√
162022

67232
= 0.794, and with no coincident

attachments (Fig. 3-right).

C. Griffis-Duffy platforms

In 1993, Griffis and Duffy patented two manipulators named
thereafter Griffis-Duffy type I and II platforms [7]. Both
platforms have their attachments distributed on triangles, three
attachments on the vertices and three on the midpoints of the
edges. Type I platforms are formed by joining the attachments
on the midpoints on the base to the vertices on the platform,
and the vertices on the base to midpoints on the platform
(Fig. 6-left). Type II join midpoints to midpoints and vertices
to vertices (Fig. 7-left).

A type I Griffis-Duffy platform is shown to be singularity
equivalent to the octahedral manipulator [4]. In [11], typeII
Griffis-Duffy manipulators are shown to be always non-
architecturally singular.

Consider the two examples specified in Table III, where the
same triangles define two manipulators of type I and type II,
respectively.

TABLE III

COORDINATES OF THE ATTACHMENTSai = (xi, yi, 0) AND

bi = p + R(zi, ti, 0)
T FOR THE ANALYZED ROBOT

i zi ti

1 1 0
2 1/2 0
3 −1 0

4 −1/2
√

3/2

5 0
√

3

6 1/2
√

3/2

i i
Type I Type II xi yi

2 1 2 0
3 2 2/3 0
4 3 −2 0

5 4 −2/3 (4/3)
√

3

6 5 0 2
√

3

1 6 1
√

3
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Fig. 6. Scheme of the platform described in Table III of a Griffis-Duffy type I platform (left), and its equivalent octahedral manipulator after applying a leg
rearrangement (right).

The computation of the base and platform curves factorizes
into the 3 same lines for both type I and type II platforms:

(
√

3z − t +
√

3)︸ ︷︷ ︸
LP1

(
√

3z + t −
√

3)︸ ︷︷ ︸
LP2

t︸︷︷︸
LP3

= 0,

(−3x +
√

3y − 6)︸ ︷︷ ︸
LB1

(3x +
√

3y − 6)︸ ︷︷ ︸
LB2

y︸︷︷︸
LB3

= 0;

but the system obtained by applying Gaussian elimination on
matrix P results in different equations. The system corre-
sponding to the type I platform is:

2t − y + yz + xt = 0

(
√

3z + t −
√

3)y = 0

−2
√

3z + 4t +
√

3x − y +
√

3xz + 3yz − 2
√

3 = 0






whereas for the type II platform is:

2t − y + xt − yz = 0

3
√

3y − 8
√

3t +
√

3yz + yt = 0

10
√

3z − 16t − 5
√

3x + 9y +
√

3xz + yz − 2
√

3 = 0





(21)

The resolution of these systems gives correspondences be-
tween base and platform attachments that leave the singulari-
ties invariant.

For the type I platform, the correspondence is between
points and lines (in accordance with results in [4]), that is,
to each vertex of the base (platform) triangle corresponds a
line on the platform (base) triangle, in the same way as in the
preceding section the vertex of the Point-Line component was
in correspondence with a line on the base. Thus, by moving
the six midpoint attachments along their supporting lines,the
manipulator can be rearranged into the equivalent octahedral
manipulator depicted in Fig. 6-right (a result concordant with
that in [4]).

On the other hand, for the type II platform, there is a one-to-
one correspondence between points on lineLPi andLBi, for
i = 1, 2, 3. That is, the same geometrical elements determine

the invariance of the singularity locus, but in the first casethe
correspondence is between points and lines and in the second
case it is point-to-point between lines.

The legs of the type II manipulator can be rearranged
following the correspondenceLBi ↔ LPi. But some rear-
rangements must be avoided, for example, placing four legs
in the same line-line correspondence leads to an architecturally
singular manipulator (as it contains a Line-Line componentin
projective correspondence [4, 10]).

An interesting rearrangement consists in removing all
collinearities from the type II manipulator. As a result, an
equivalent platform such as that shown in Fig. 7-right is
obtained.

To remove collinearities, all legs from vertex to vertex need
to be rearranged. The 1st leg can be placed going from a point
on LB2 to the corresponding point onLP2. In other words,
take a point on the lineLB2, substitute the values on system
(21) and the solution gives a point on the lineLP2:

x = 1/2

y = (3/2)
√

3
︸ ︷︷ ︸

on LB2

Substitute on (21)
−→

and solve

z = 1/4

t = (3/4)
√

3
︸ ︷︷ ︸

on LP2

The same can be done to substitute the 3rd leg by a leg going
from LB3 to LP3:

x = −2/3
y = 0

︸ ︷︷ ︸
on LB3

Substitute on (21)
−→

and solve

z = −1/7
t = 0

︸ ︷︷ ︸
on LP3

and finally, the 5th leg is substituted by a leg going from a
point onLB1 to a point onLP1

x = −3/2

y = (1/2)
√

3
︸ ︷︷ ︸

on LB1

Substitute on (21)
−→

and solve

z = −6/7

t = (1/7)
√

3
︸ ︷︷ ︸

on LP1
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Fig. 7. Scheme of the platforms described in Table III of a Griffis-Duffy type II platform (left), and its equivalent platform after removing all collinearities
(right).

The resulting manipulator depicted in Fig. 7-right is equiv-
alent to the one in Fig.7-left, as regards to both its kinematics
and its singularity locus.

In conclusion, we have seen that it is not necessary that
a platform has collinear attachments to behave like a Griffis-
Duffy type II manipulator, and what is more important, we
have found a general doubly-planar Stewart-Gough platform
equivalent to a Griffis-Duffy type II manipulator.

VI. CONCLUSIONS AND FUTURE WORK

In this work we have started to analyze the singularity-
invariant leg rearrangements that can be applied to Stewart-
Gough platforms with coplanar attachments on the base and on
the platform. It has been shown that the resulting attachments
need to obey a one-to-one correspondence between two cubic
curves, one on the base and another on the platform. The
presented approach generalizes previous results.

Many promising possibilities open up for future research.
There exist 15 different types of non-degenerate cubic curves,
so we can classify all Stewart-Gough platforms according to
the type of cubic curves they generate. Furthermore, many
interesting cases can be studied that have degenerate cubic
curves. In addition, efficient parameterizations of cubic curves
available in literature would allow us to define the attachments
using less parameters, thus simplifying the analysis.

On the other hand, we are working on the relation between
the coefficients of the Jacobian polynomial and the minors of
matrixP in equation (12), similarly as it was done in previous
works for particular cases [3]. Based on the analysis of theP

matrix, the number of assembly modes of the general Stewart-
Gough platform can be lowered by imposing simple relations
between the attachments, as it was done in [5].

The usefulness of the proposed method has been shown with
three examples. The derived leg rearrangements permit reduc-
ing the number of multiple spherical joints as well as devising
reconfigurable robots that maintain the same singularity locus
at each reconfiguration state.
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