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Abstract. This work presents a necessary and sufficient condition to defimgyalarity-invariant
leg rearrangement, based on an affine relation between theesigagriengths before and after the
rearrangement. This condition is then specified for four rgichponents that can occur in Stewart-
Gough platforms, leading to the characterization of singiylanvariant leg rearrangements on all
of them.
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1 Introduction

The Stewart-Gough platform is defined as a 6-DoF parallelhaieism with six
identical SF legs [1, 2]. It has remained one of the most widely studiethbse,
despite its geometric simplicity, its analysis translatee challenging mathemat-
ical problems. One important part of this analysis corresisao the characteriza-
tion of its singularities, which has only been completellwved for some specializa-
tions (for example, designs in which some spherical jointd@sce to form multiple
spherical joints [3, 4]).

Finding leg rearrangements in a given Stewart-Gough plattbat leave the sin-
gularity locus invariant does not solve the problem of chemazing singularities,
but it provides a lot of insight that proves useful in sevarays. For example, such
leg rearrangements permit simplifying the platforms geoyn® ease the task of
obtaining the sought characterization of its singularggus. On the other hand,
if this locus is already characterized, modifying the praeat of legs permits im-
proving some platform characteristics (such as stiffnagsidance of leg collisions
or elimination of multiple spherical joints) without alteg such locus. Eventually,
by analyzing all possible leg rearrangements, one coultiigeall equivalent plat-
forms.

In addition, singularity-invariant leg rearrangementevide a straightforward
characterization of architectural singularities, pramgsa common framework to
the extensive literature on this topic [5, 6, 7, 8, 9].
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Fig. 1 The four possible rigid components involving linear geometiecreents in Stewart-Gough
platforms.

Now, let us suppose that we would like to apply a singulartariant leg re-
arrangement limited to a subset of legs. Clearly, this iy @alssible if this subset
of legs defines a rigid subassembly. Kong and Gosselin reftndse subassem-
blies ascomponent$10]. The simplest component arises when two legs share an
attachment. The result is called tReint-Line componenSimilarly, the three other
components involving linear geometric entities (poinise$ and planes) are the
Point-Plane Line-LineandLine-Planecomponents (Fig. 1).

Leg rearrangements were previously proposed by the authoeach of these
components [11, 12, 13]. In this work a common framework fam all is pro-
vided in this way: all are shown to satisfy the same necesmadysufficient condi-
tion, confirming, through a unifying approach, that suchrmaa@agements are indeed
singularity-invariant.

This paper is organized as follows: Section 2 introducestmalition for singu-
larity invariance. Then, in Sections 3 to 6, this conditisrapplied to each of the
components in Fig. 1. Finally, Section 7 summarizes the mesnlts and points out
some future research directions.

2 Condition for singularity invariance

For a general Stewart-Gough platform, the linear actuatetscities, i1, |, .., s,
can be expressed in terms of the platform velocity veptof) as follows:

Iy
. l2 v
dla@K|1,...,|6) . =J (_Q) s (1)
I
whereJ is the matrix of normalized Btker coordinates of the six leg lines [1]. The
parallel singularities of the platform are those configorat in which detJ) = 0
[14].

Now, let us change the location of the leg attachments satledengths of the
legs in their new locations, saly,d», . ..,ds, are related to those of the original legs,
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I1,12,...,lg, through the relation:

d? 12
d2 |2
l=a]?|+0 2)
dg 13

whereA andb are a constant matrix and a constant vector, respectivéferénti-
ating this equation with respect to time and substitutingr(the result, we get

dy

di d2 (v)
iagds,...de) | . [=AI( ) 3)

Then, the singularities of the platform after the leg reageament leading to (2) are
those configurations in which détJ) = detfA)detJ) = 0. If det{A) # 0, the leg
rearrangement is said to Bengularity-invariant If det(A) = 0, the rearrangement
introduces ararchitectural singularity i.e., the resulting platform is always in a
singularity independently of its leg lengths [5].

Since lengths are assumed to be positive magnitudes, eqyajidefines a one-
to-one relationship between leg lengths before and afterquiarity-invariant leg
rearrangement. As a consequence, this kind of transfosnmeteaves not only the
singularities of the platform unaltered, but also the ratamd number of its assem-
bly modes.

3 Point-Line component

A general leg rearrangement on the Point-Line componergistsnn the substitu-
tion of any leg by another one going from the point to the ligeay leg on Fig.
2-left). Considering the new leg length the following relation was proved in [12]
using Heron'’s tetrahedron volume formula:

e nlZ + mi2 —mn
~ m+n

(4)

As this is an affine relation, following Section 2 we can statg any leg rearrange-
ment within a Point-Line component leaves singularitiesiiant.
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Fig. 2 A Point-Line component (left) and a Point-Plane componegh)i

4 Point-Plane component

Proceeding similarly, let us substitute a leg of the PolanE component by another
one going from the vertex of the tripod to any point on the h@age (Fig. 2-right).
The tripod contains three Point-Line components, so egu#4) can be used twice
to obtain the following affine relation between the new legghd andly, |, andls:

2_Ne(N3ta) p Mapp
— i
3

_ nl(n3+n4)|2_ NiN2(Nz+Ny)
nz(ny -+ ny) n

+nm(nz+na). (B
(M1 £ ) 2 s 4(N3+ng).  (5)

As a result, we can state that any leg rearrangement withaird-Plane component
leaves singularities invariant.

5 Line-Line component

Following the notation introduced in Fig. 3-left, suppokattwe want to compute
the length of a new leg between a point on the basedirgx,0,0) and a point on
the platform lineb = p + z.

Taking the distance equations of the four légs= ||bj — &%, fori =1,...,4,
together with that of the new led? = ||b — a||?, the subtraction of the equation
u?+Vv2 +w? = 1 cancels all quadratic termsinv andw, yielding

1 .
z;t—xipx—xipzu+§(p)2<+ e+ pi+ X +7Z—17)=0fori=1,....4
Zt—X p—X pzu+%(p§+ P+ p;+x°+Z—d?) =0,

wheret = p-i. In addition, subtracting the first equation from the othgrsadratic
terms inpy, py andp, cancel too, and the system becomes linear:
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b1 b,

Fig. 3 On the base reference frame, local coordinates of the basbrattats are; = (x;,0,0) on
the Line-Line component (left), ar@ = (x;,y;,0) on the Line-Plane component (right). In both
cases, the pose of the upper line with respect to the base plane c@stribed by the position
vectorp = (px, Py, Pz)" and the unit director vector of the line= (u,v,w)T. Thus, the coordinates
of the leg attachments in the platform line, expressed in therefseence frame, can be written as
by =p+zi,fori=1,...,4 (left)andi = 1,...,5 (right).

Z1—2Zp Xo — X1 XoZo — X121 0 t N>

Z1— 73 X3 — X1 X3Z3— X121 O Px | _ N3 ©6)
21— 24 X4 — X1 X424 — X121 O u Ng |’

-2 X—x Xz-xz 3) \d? N

whereNi = 1/2(x2 + 22 — 12— x2 —Z +12),i=1,...,4,andN = 1/2(x*> + 22 — x& —
Z +12) are constant. Now the expression fiif can be obtained by solving the
system using Cramer’s rule:

—n X}z X+z2-121
—Z X XoZp X5+ 25151
~Z3 X3 XaZz3 X5+ 25— 15 1
—24 X4 XaZa X5+ 25— 15 1
gz x % %+7 1. -
4 —2p X2 — X1 X2 — X121
21 — 73 X3 — X1 X323 — X121
2] — 24 X4 — X1 Xa4 — X12h

For any non-architecturally singular Line-Line componéhé denominator is dif-
ferent from zero (in accordance with the condition foundia]). Expanding the
determinants involved in equation (7) leads to the affinatieh

d2 = 112 + I3 + c3l3 +cal§ + co, (8)

where all the coefficients depend on known constant coaielnahus, we can also
state that any leg rearrangement within a Line-Line compbleaves singularities
invariant.
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6 Line-Plane component

Finally, let us consider the 5-legged parallel platformegmmng in Fig. 3-right. We
proceed in a similar way as for the Line-Line component feit@ the notation on
the figure. The system derived from leg lengths has now 5 emsaplus the one for
the additionally introduced leg. After the same simplificas, the following linear
system is obtained:

X2 —X1 Y2 — Y1 XZo — X121 Y2Zo — Y121 O Px
X3 —X1 Y3 — Y1 X3Z3 — X121 Y3Z3— Y121 O Py
X4 —X1 Y4 —Y1 XaZa — X121 YaZs — Y171 O u
X5 —X1 Y5 —VY1 X525 — X121 Y525 — Y121 O v
X—X1 Y—Y1 XzZ—xzz yz—yizz 3) \d? (z—z)t+N

where nowN; = 1/20¢ +y? + 72 — 12 —x2 —y2 —Z +12),i = 1,...,5, andN =
1/2(x? +y?*+ 22 — x2 —y2 — Z +12). We can always find a system matrix with a
non-zero determinant for any non-architecturally singllme-Plane component
(see [13] for detalils).

Thus, using Cramer’s rule again yields

2(rt +s)
C

whereC is the determinant of the matrix in (9) anénds are the determinants

d? = (10)

X2=X1Y2—=Y1 XL —X1 YoZp — 121 2o — 7

X3—=X1Y3—Y1X3Z3— X121 Y3aZz — Y141 Z3— 7
r=|X4—X1Ya—Y1 XaZ4 — X121 YaZa — Y121 24— 71|, (11)

X5 —X1 Y5 —VY1 X525 — X121 Y575 — Y171 Z5 — 73

X—=X1 Y—VY1 XZ—X1Z1 YZ—Y1Z4 Z—Z7

and
Xo —X1 Y2 — Y1 XeZo — X121 YoZo — Y121 Np
X3 —X1 Y3 —Y1 X323 — X121 Y3Zz3 — Y121 N3
S=|Xa — X1 Y4 — Y1 XaZa — X121 YaZs — Y121 Ng|. (12)
X5 — X1 Y5 — Y1 XsZ5 — X121 YsZ5 — Y121 Ns
X—=X1 Y=Y1 XZ-Xx1zz yz—yi1zz N

Note that this is not an affine relation because it depends blowever, if we
imposer = 0, then the resulting expression can be rewritten as

Xy xz yz X+y*+7 1
X112 Y1z X5 +Ys+ 5 —12 1
1l xnn o Xs+ys+5-151

C|X3Y3 Xz Y3zz X5+Yy5+25—151
X4 Ya XaZa Yaza Xg+ Y3+ —15 1
Xs Y5 X625 Y525 X5+ Y5+ 2 — 15 1
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Fig. 4 Singularity-invariant leg rearrangements in the Line-Blaomponent must satisfy equation
r =0, wherer is defined in equation (11).

After Laplace expansion by the elements of the 5th coluni), Igads to the affine
relation
d? = clZ + oI5 + cal5 + Cal§ + Csl2 + co, (14)

where again all the coefficients depend on known constamtiotaies.

In conclusion, the Line-Plane component is the first for Wtageneral leg rear-
rangement is not necessarily singularity-invariant. Tedahe new leg attachments
a= (x,y,0) andb = p + zi must satisfy the equatian= 0.

Specific geometric rules to perform singularity-invaribag rearrangements can
be obtained from the equation= 0. Indeed, it defines a one-to-one correspondence
between points on the platform line and lines of a pencil antibse plane (Fig.
4). Thus, base attachments can always be moved within theiesponding lines.
Furthermore, the vertex of the base pencil plays an impbrtda in the character-
ization of the kinematics and singularities of the Linesfl@laomponent (see [13]
and [15] for details).

7 Conclusions and future work

In this paper, a necessary and sufficient condition for a ésgrangement in a
Stewart-Gough platform to preserve its singularity locas heen derived. As long
as an affine relation holds between the squared leg lengfbsebend after the re-
arrangement, the platform singularities remain unchangredther words, a leg
rearrangement is singularity-invariant if, and only ififiluces an affine mapping in
the joint space of the manipulator.

It has been shown that all leg rearrangements in the Poirg; IR oint-Plane and
Line-Line components of a Stewart-Gough platform (exaigdihose leading to
an architecturally-singular configuration) satisfy thisadition, therefore all being
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singularity-invariant. In the case of the Line-Plane comgrtt, the condition holds
only for a subset of leg rearrangements that has a neat geonmétrpretation as
previously shown. Thus, the present paper provides a confraomework where
the different singularity-preserving leg transformatigaroposed by the authors in
previous works are viewed in a unified way.

As regards to future research, work on the double-planavé8teGough platform
is currently under way, suggesting interesting resultstiergeneral classification
of all Stewart-Gough platforms.

It has also been briefly shown how the condition(d¢t= 0 in Section 2 can
characterize architectural singularities, thus work is threction is in progress.
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