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Abstract. This work presents a necessary and sufficient condition to define asingularity-invariant
leg rearrangement, based on an affine relation between the squared leg lengths before and after the
rearrangement. This condition is then specified for four rigidcomponents that can occur in Stewart-
Gough platforms, leading to the characterization of singularity-invariant leg rearrangements on all
of them.
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1 Introduction

The Stewart-Gough platform is defined as a 6-DoF parallel mechanism with six
identical SPS legs [1, 2]. It has remained one of the most widely studied because,
despite its geometric simplicity, its analysis translatesinto challenging mathemat-
ical problems. One important part of this analysis corresponds to the characteriza-
tion of its singularities, which has only been completely solved for some specializa-
tions (for example, designs in which some spherical joints coalesce to form multiple
spherical joints [3, 4]).

Finding leg rearrangements in a given Stewart-Gough platform that leave the sin-
gularity locus invariant does not solve the problem of characterizing singularities,
but it provides a lot of insight that proves useful in severalways. For example, such
leg rearrangements permit simplifying the platforms geometry to ease the task of
obtaining the sought characterization of its singularity locus. On the other hand,
if this locus is already characterized, modifying the placement of legs permits im-
proving some platform characteristics (such as stiffness,avoidance of leg collisions
or elimination of multiple spherical joints) without altering such locus. Eventually,
by analyzing all possible leg rearrangements, one could identify all equivalent plat-
forms.

In addition, singularity-invariant leg rearrangements provide a straightforward
characterization of architectural singularities, promising a common framework to
the extensive literature on this topic [5, 6, 7, 8, 9].
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Fig. 1 The four possible rigid components involving linear geometric elements in Stewart-Gough
platforms.

Now, let us suppose that we would like to apply a singularity-invariant leg re-
arrangement limited to a subset of legs. Clearly, this is only possible if this subset
of legs defines a rigid subassembly. Kong and Gosselin refer to these subassem-
blies ascomponents[10]. The simplest component arises when two legs share an
attachment. The result is called thePoint-Line component. Similarly, the three other
components involving linear geometric entities (points, lines and planes) are the
Point-Plane, Line-LineandLine-Planecomponents (Fig. 1).

Leg rearrangements were previously proposed by the authorsfor each of these
components [11, 12, 13]. In this work a common framework for them all is pro-
vided in this way: all are shown to satisfy the same necessaryand sufficient condi-
tion, confirming, through a unifying approach, that such rearrangements are indeed
singularity-invariant.

This paper is organized as follows: Section 2 introduces thecondition for singu-
larity invariance. Then, in Sections 3 to 6, this condition is applied to each of the
components in Fig. 1. Finally, Section 7 summarizes the mainresults and points out
some future research directions.

2 Condition for singularity invariance

For a general Stewart-Gough platform, the linear actuators’ velocities, l̇1, l̇2, . . . , l̇6,
can be expressed in terms of the platform velocity vector(v,Ω) as follows:

diag(l1, . . . , l6)











l̇1
l̇2
...
l̇6











= J
(

v
Ω

)

, (1)

whereJ is the matrix of normalized Plücker coordinates of the six leg lines [1]. The
parallel singularities of the platform are those configurations in which det(J) = 0
[14].

Now, let us change the location of the leg attachments so thatthe lengths of the
legs in their new locations, sayd1,d2, . . . ,d6, are related to those of the original legs,
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l1, l2, . . . , l6, through the relation:
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+b (2)

whereA andb are a constant matrix and a constant vector, respectively. Differenti-
ating this equation with respect to time and substituting (1) in the result, we get

diag(d1, . . . ,d6)











ḋ1

ḋ2
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ḋ6










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(

v
Ω

)

. (3)

Then, the singularities of the platform after the leg rearrangement leading to (2) are
those configurations in which det(AJ) = det(A)det(J) = 0. If det(A) 6= 0, the leg
rearrangement is said to besingularity-invariant. If det(A) = 0, the rearrangement
introduces anarchitectural singularity, i.e., the resulting platform is always in a
singularity independently of its leg lengths [5].

Since lengths are assumed to be positive magnitudes, equation (2) defines a one-
to-one relationship between leg lengths before and after a singularity-invariant leg
rearrangement. As a consequence, this kind of transformations leaves not only the
singularities of the platform unaltered, but also the nature and number of its assem-
bly modes.

3 Point-Line component

A general leg rearrangement on the Point-Line component consists in the substitu-
tion of any leg by another one going from the point to the line (gray leg on Fig.
2-left). Considering the new leg lengthd, the following relation was proved in [12]
using Heron’s tetrahedron volume formula:

d2 =
nl21 +ml22 −mn

m+n
. (4)

As this is an affine relation, following Section 2 we can statethat any leg rearrange-
ment within a Point-Line component leaves singularities invariant.
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Fig. 2 A Point-Line component (left) and a Point-Plane component (right).

4 Point-Plane component

Proceeding similarly, let us substitute a leg of the Point-Plane component by another
one going from the vertex of the tripod to any point on the baseplane (Fig. 2-right).
The tripod contains three Point-Line components, so equation (4) can be used twice
to obtain the following affine relation between the new leg lengthd andl1, l2 andl3:

d2 =
n2(n3 +n4)

n3(n1 +n2)
l2
1 −

n4

n3
l2
2 +

n1(n3 +n4)

n3(n1 +n2)
l2
3 −

n1n2(n3 +n4)

n3
+n4(n3 +n4). (5)

As a result, we can state that any leg rearrangement within a Point-Plane component
leaves singularities invariant.

5 Line-Line component

Following the notation introduced in Fig. 3-left, suppose that we want to compute
the length of a new leg between a point on the base linea = (x,0,0) and a point on
the platform lineb = p+zi.

Taking the distance equations of the four legsl2
i = ‖bi − ai‖

2, for i = 1, . . . ,4,
together with that of the new legd2 = ‖b− a‖2, the subtraction of the equation
u2 +v2 +w2 = 1 cancels all quadratic terms inu, v andw, yielding

zi t −xi px−xi pzu+
1
2
(p2

x + p2
y + p2

z +x2
i +z2

i − l2
i ) = 0, for i = 1, . . . ,4

z t−x px−x pzu+
1
2
(p2

x + p2
y + p2

z +x2 +z2−d2) = 0,

wheret = p · i. In addition, subtracting the first equation from the others, quadratic
terms inpx, py andpz cancel too, and the system becomes linear:
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Fig. 3 On the base reference frame, local coordinates of the base attachments areai = (xi ,0,0) on
the Line-Line component (left), andai = (xi ,yi ,0) on the Line-Plane component (right). In both
cases, the pose of the upper line with respect to the base plane can be described by the position
vectorp = (px, py, pz)

T and the unit director vector of the linei = (u,v,w)T . Thus, the coordinates
of the leg attachments in the platform line, expressed in the basereference frame, can be written as
bi = p+zi i, for i = 1, . . . ,4 (left) andi = 1, . . . ,5 (right).
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


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




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


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
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

, (6)

whereNi = 1/2(x2
i +z2

i − l2
i −x2

1−z2
1+ l2

1), i = 1, . . . ,4, andN = 1/2(x2+z2−x2
1−

z2
1 + l2

1) are constant. Now the expression ford2 can be obtained by solving the
system using Cramer’s rule:

d2 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−z1 x1 x1z1 x2
1 +z2

1− l2
1 1

−z2 x2 x2z2 x2
2 +z2

2− l2
2 1

−z3 x3 x3z3 x2
3 +z2

3− l2
3 1

−z4 x4 x4z4 x2
4 +z2

4− l2
4 1

−z x xz x2 +z2 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

∣

∣

∣

∣

. (7)

For any non-architecturally singular Line-Line component, the denominator is dif-
ferent from zero (in accordance with the condition found in [11]). Expanding the
determinants involved in equation (7) leads to the affine relation

d2 = c1l2
1 +c2l2

2 +c3l2
3 +c4l2

4 +c0, (8)

where all the coefficients depend on known constant coordinates. Thus, we can also
state that any leg rearrangement within a Line-Line component leaves singularities
invariant.
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6 Line-Plane component

Finally, let us consider the 5-legged parallel platform appearing in Fig. 3-right. We
proceed in a similar way as for the Line-Line component following the notation on
the figure. The system derived from leg lengths has now 5 equations plus the one for
the additionally introduced leg. After the same simplifications, the following linear
system is obtained:













x2−x1 y2−y1 x2z2−x1z1 y2z2−y1z1 0
x3−x1 y3−y1 x3z3−x1z1 y3z3−y1z1 0
x4−x1 y4−y1 x4z4−x1z1 y4z4−y1z1 0
x5−x1 y5−y1 x5z5−x1z1 y5z5−y1z1 0
x−x1 y−y1 xz−x1z1 yz−y1z1

1
2

























px

py

u
v
d2













=













(z2−z1)t +N2

(z3−z1)t +N3

(z4−z1)t +N4

(z5−z1)t +N5

(z−z1)t +N













, (9)

where nowNi = 1/2(x2
i + y2

i + z2
i − l2

i − x2
1 − y2

1 − z2
1 + l2

1), i = 1, . . . ,5, andN =
1/2(x2 + y2 + z2 − x2

1 − y2
1 − z2

1 + l2
1). We can always find a system matrix with a

non-zero determinant for any non-architecturally singular Line-Plane component
(see [13] for details).

Thus, using Cramer’s rule again yields

d2 =
2(rt +s)

C
(10)

whereC is the determinant of the matrix in (9) andr andsare the determinants

r =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2−x1 y2−y1 x2z2−x1z1 y2z2−y1z1 z2−z1

x3−x1 y3−y1 x3z3−x1z1 y3z3−y1z1 z3−z1

x4−x1 y4−y1 x4z4−x1z1 y4z4−y1z1 z4−z1

x5−x1 y5−y1 x5z5−x1z1 y5z5−y1z1 z5−z1

x−x1 y−y1 xz−x1z1 yz−y1z1 z−z1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (11)

and

s=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2−x1 y2−y1 x2z2−x1z1 y2z2−y1z1 N2

x3−x1 y3−y1 x3z3−x1z1 y3z3−y1z1 N3

x4−x1 y4−y1 x4z4−x1z1 y4z4−y1z1 N4

x5−x1 y5−y1 x5z5−x1z1 y5z5−y1z1 N5

x−x1 y−y1 xz−x1z1 yz−y1z1 N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (12)

Note that this is not an affine relation because it depends ont. However, if we
imposer = 0, then the resulting expression can be rewritten as

d2 =
1
C

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x y xz yz x2 +y2 +z2 1
x1 y1 x1z1 y1z1 x2

1 +y2
1 +z2

1− l2
1 1

x2 y2 x2z2 y2z2 x2
2 +y2

2 +z2
2− l2

2 1
x3 y3 x3z3 y3z3 x2

3 +y2
3 +z2

3− l2
3 1

x4 y4 x4z4 y4z4 x2
4 +y2

4 +z2
4− l2

4 1
x5 y5 x5z5 y5z5 x2

5 +y2
5 +z2

5− l2
5 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (13)
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Fig. 4 Singularity-invariant leg rearrangements in the Line-Plane component must satisfy equation
r = 0, wherer is defined in equation (11).

After Laplace expansion by the elements of the 5th column, (13) leads to the affine
relation

d2 = c1l2
1 +c2l2

2 +c3l2
3 +c4l2

4 +c5l2
5 +c0, (14)

where again all the coefficients depend on known constant coordinates.
In conclusion, the Line-Plane component is the first for which a general leg rear-

rangement is not necessarily singularity-invariant. To beso, the new leg attachments
a = (x,y,0) andb = p+zi must satisfy the equationr = 0.

Specific geometric rules to perform singularity-invariantleg rearrangements can
be obtained from the equationr = 0. Indeed, it defines a one-to-one correspondence
between points on the platform line and lines of a pencil on the base plane (Fig.
4). Thus, base attachments can always be moved within their corresponding lines.
Furthermore, the vertex of the base pencil plays an important role in the character-
ization of the kinematics and singularities of the Line-Plane component (see [13]
and [15] for details).

7 Conclusions and future work

In this paper, a necessary and sufficient condition for a leg rearrangement in a
Stewart-Gough platform to preserve its singularity locus has been derived. As long
as an affine relation holds between the squared leg lengths before and after the re-
arrangement, the platform singularities remain unchanged. In other words, a leg
rearrangement is singularity-invariant if, and only if, itinduces an affine mapping in
the joint space of the manipulator.

It has been shown that all leg rearrangements in the Point-Line, Point-Plane and
Line-Line components of a Stewart-Gough platform (excluding those leading to
an architecturally-singular configuration) satisfy this condition, therefore all being
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singularity-invariant. In the case of the Line-Plane component, the condition holds
only for a subset of leg rearrangements that has a neat geometric interpretation as
previously shown. Thus, the present paper provides a commonframework where
the different singularity-preserving leg transformations proposed by the authors in
previous works are viewed in a unified way.

As regards to future research, work on the double-planar Stewart-Gough platform
is currently under way, suggesting interesting results forthe general classification
of all Stewart-Gough platforms.

It has also been briefly shown how the condition det(A) = 0 in Section 2 can
characterize architectural singularities, thus work in this direction is in progress.
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