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Abstract— A 5-SPU robot with collinear universal joints is
well suited to handling an axisymmetric tool, since it has 5
controllable DoFs and the remaining one is a free rotation
around the tool. The kinematics of such a robot having also
coplanar spherical joints has previously been studied as a rigid
subassembly of a Stewart-Gough platform, it being denoted a
line-plane component. It was shown that this component has
8 assembly modes corresponding to the roots of a bi-quartic
polynomial. Here we identify a whole family of these 5-SPU
robots having only 4 assembly modes, which are obtained by
solving two quadratic equations. This family is defined by a
simple proportionality constraint relating the coordinates of the
base and platform attachments. A geometric interpretation of
the architectural singularities of this type of robots in terms of
conics is provided, which facilitates their avoidance at the design
stage. Parallel singularities obey also a neat geometric structure,
which permits deriving a cell decomposition of configuration
space. Two practical features of these quadratically-solvable
robots are the large maneuverability within each connected
component and the fact that, for a fixed orientation of the tool,
the singularity locus reduces to a plane.

Index Terms— Parallel manipulators, Stewart-Gough plat-
forms, robot kinematics, kinematics singularities.

I. INTRODUCTION

Over the past half-century, the Stewart-Gough platform

has been applied extensively to automate many different

tasks due to its well-known merits in terms of speed, rigidity,

dynamic bandwidth, accuracy, cost, etc. [1]. There are many

important industrial tasks requiring a tool to be perpendicular

to a 3D free-from surface along a given trajectory. They

include 5-axis milling, laser-engraving, spray-based painting,

water-jet cutting, and, in general, any manufacturing task in

which the tool is axisymmetric. These tasks can be performed

by robots with only 3 translations and 2 rotations; i.e., 5 DoF

(degrees of freedom). Since the Stewart-Gough platform has

6 DoF, some limited-DoF parallel robots have been designed

for this kind of applications with the aim of simplifying

the structure and the control of the general Stewart-Gough

platform but without losing its aforementioned merits.

The Stewart-Gough platform consists of a base and a

moving platform connected by six UPS (Universal-Prismatic-

Spherical) legs, where the underline indicates that the pris-

matic joint is actuated. Thus, it is usually referenced to as

a 6-UPS, or equivalently as a 6-SPU, parallel mechanism.

If one of these legs is eliminated to obtain a 5-DoF parallel

robot, two alternatives arise to make the moving platform
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Fig. 1. A 5-SPU parallel robot with aligned universal joints. While the
axis defined by these universal joints is rigidly linked to the base for fixed
leg lengths, any tool attached to it can freely rotate.

location controllable; namely: (1) adding an extra passive leg,

or (2) restraining the mobility of one of the five remaining

legs. Then, the challenge consists on how to perform any

of these two operations so that the resulting robot has 3

translations and 2 rotations. Y. Zhao and colleagues beat

the challenge for the first alternative. They proposed to

introduce a PRPU (Prismatic-Revolute-Prismatic-Revolute)

passive leg. The properties of the resulting mechanism,

technically referenced to as a 5-UPS+PRPU mechanism for

obvious reasons, has been analyzed in a series of papers

[4], [5], [6]. More recently, Y. Lu and colleagues opted for

the second alternative. They proposed a 4UPS+SPR parallel

platform whose static and dynamic properties are studied

in [2] and [3], respectively. Many other examples of 5-DoF

parallel robots can be found in literature but they greatly

depart from the basic 6-UPS design in the sense that they

not contain at least 4 UPS legs.

A parallel robot consisting of a base and a moving plat-

form connected by five SPU legs is clearly uncontrollable.

For example, if the universal joints are aligned as in Fig.

1, the moving platform can freely rotate around the axis

defined by these five aligned universal joints. Nevertheless,

observe that in this particular case the uncontrolled motion

is irrelevant if the rotation axis is made coincident with the

symmetry axis of the tool. This circumstance might even

be advantageous to avoid the entanglement of the wires

connected to the tool. In this context, the study of the

kinematics properties of 5-SPU parallel robots with coplanar

spherical joints and collinear universal joints becomes highly

relevant for many applications. Kong and Gosselin refer
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to this particular arrangement of five SPU legs as a line-

plane component as it can always be considered as a rigid

subassembly in a standard Stewart-Gough platform [11].

Zhang and Song solved, for the first time, the forward

kinematics of a general Stewart-Gough platform containing

a line-plane component [10]. They showed how the line in

the line-plane component of such a platform can have up

to eight configurations with respect to the plane and, as

a consequence, the platform can have up to 16 assembly

modes. The eight configurations of the line correspond to the

roots of a bi-quartic polynomial. Therefore, the existence of

an algebraic expression for these configurations as a function

of the five leg lengths was proved. Husty and Karger studied

the conditions for this subassembly to be architecturally

singular and found two algebraic conditions that must be

simultaneously satisfied [12]. More recently, Borràs and

Thomas studied the role of cross-ratios between the location

coordinates of the spherical and universal joints centers —

which will be referred to as attachments in what follows—

in the characterization of architectural singularities, and

in singularity-invariant architectural changes, in line-plane

components [9].

Herein we show that, if a simple algebraic relation holds

between the base and the platform attachment coordinates

of a line-plane component, the number of possible assembly

modes drops to 4 so that computing these assembly modes

entails calculating the roots of two quadratic polynomials.

Moreover, the singularity locus becomes so simple as to

permit its straightforward stratification.

The rest of this paper is organized as follows. Section

II presents the kinematic and singularity analysis of the

general 5-SPU platform, yielding the 8 assembly modes.

Section III introduces a family of 5-SPU robots whose

forward kinematics can be solved by just computing the

roots of two quadratic polynomials. As a consequence, the

number of assembly modes drops to 4 and the singularity

structure is greatly simplified, leading to a cell decomposition

of configuration space, as presented in Section IV. Finally,

Section V points out the extent of the robot family considered

as well as some future research directions.

II. 5-SPU ROBOT WITH PLANAR BASE AND LINEAR

PLATFORM

Let us consider the 5-legged parallel platform appearing

in Fig. 2, whose base and platform attachments lie on plane

Π and line Λ, respectively. Let Π coincide with the xy-plane

of the base reference frame. Thus, the leg attachments in the

base have coordinates ai = (xi, yi, 0)T , for i = 1, . . . , 5.

The pose of Λ with respect to Π can be described by the

position vector p = (px, py, pz)
T and the unit vector i =

(u, v, w)T in the direction of Λ. Thus, the coordinates of

the leg attachments in platform Λ, expressed in the base

reference frame, can be written as bi = p + zii. With this

notation, the attachments of the i-th leg are determined by

the three coordinates (xi, yi, zi).
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Fig. 2. Schematic representation of the 5-SPU parallel robot in Fig. 1.

A. Singularity Analysis

It has previously been shown [9] that the Jacobian determi-

nant of a general Stewart-Gough platform containing a line-

plane component factors into two terms: one that vanishes

when the sixth leg lies on the platform plane, and the other

being the determinant of the following matrix:

T =

















wpz w(pzu − pxw) w(pzv − pyw)
z1 x1 y1

z2 x2 y2

z3 x3 y3

z4 x4 y4

z5 x5 y5

pz(pxw − pzu) pz(pyw − pzv) −w2

x1z1 y1z1 1
x2z2 y2z2 1
x3z3 y3z3 1
x4z4 y4z4 1
x5z5 y5z5 1

















(1)

which depends exclusively on the 5-legged 5-DoF compo-

nent.

Thus, the singularity locus of the 5-SPU manipulator

studied in this paper corresponds to the root locus of the

polynomial resulting from expanding such determinant, i.e.,

C1wpz + C2w(pzu − pxw) + C3w(pzv − pyw)+

C4pz(pxw − pzu) + C5pz(pyw − pzv) − C6w
2 = 0, (2)

where Ci, for i = 1, . . . 6, is the cofactor of the (1, i) entry

of T, which depends only on leg attachments.

Architectural singularities occur when all the cofactors are

zero, Ci = 0, for i = 1, . . . 6.

B. Forward Kinematics

Similarly to [10], the forward kinematics of our 5-legged

parallel robot can be solved by writing the leg lengths as

li = ‖bi − ai‖, for i = 1, . . . , 5. Then, subtracting from the

expression for l2i , i = 1, . . . , 5, the equation ‖i‖ = u2 +v2 +
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w2 = 1, quadratic terms in u, v and w cancel out yielding

zit − xipx − yipy − xiziu − yiziv

+
1

2
(p2

x + p2
y + p2

z + x2
i + y2

i + z2
i − l2i ) = 0,

(3)

for i = 1, . . . , 5, where t = p · i.
Subtracting the third equation from the others, quadratic

terms in px, py and pz cancel out as well. Then, the resulting

system of equations can be written in matrix form as









x1 − x3 y1 − y3 x1z1 − x3z3 y1z1 − y3z3

x2 − x3 y2 − y3 x2z2 − x3z3 y2z2 − y3z3

x4 − x3 y4 − y3 x4z4 − x3z3 y4z4 − y3z3

x5 − x3 y5 − y3 x5z5 − x3z3 y5z5 − y3z3

















px

py

u
v









=









(z1 − z3)t + N1

(z2 − z3)t + N2

(z4 − z3)t + N4

(z5 − z3)t + N5









, (4)

where

Ni =
1

2
(x2

i + y2
i + z2

i − l2i − x2
3 − y2

3 − z2
3 + l23). (5)

Now, using simple row/column operations, the determinant

associated with the linear system (4) can be written as
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x1 y1 x1z1 y1z1 1
x2 y2 x2z2 y2z2 1
x3 y3 x3z3 y3z3 1
x4 y4 x4z4 y4z4 1
x5 y5 x5z5 y5z5 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (6)

which coincides with C1 in (2). If (6) vanishes, either

px, py , u, or v, can be chosen as parameter, instead of

t, to reformulate the linear system (4). Since for a non-

architecturally singular robot not all cofactors are zero, it

can be shown that a non-singular linear system of the form

(4) can always be found by choosing either t, px, py , u, or

v as parameter.

Solving (4) by Crammer’s rule yields

px = (−C2t + E2)/C1,

py = (−C3t + E3)/C1,

u = (−C4t + E4)/C1,

v = (−C5t + E5)/C1,

(7)

where Ei results from substituting the (i−1)th column vector

of C1 by (N1, . . . , N5)
T .

From equation u2 + v2 + w2 = 1 and equation (3) for

i = 3, it can be concluded that:

p2
zw

2 = (1 − u2 − v2)

[2(−z3t + x3px + y3py + z3y3v + z3x3u)

−p2
x − p2

y − x2
3 − y2

3 − z2
3 + l33

]

.

(8)

One the other hand, from t = p · i,
(pzw)2 = (t − pxu − pyv)2. (9)

Equating the right hand sides of equations (8) and (9), the

following polynomial in t is finally obtained:

n4t
4 + n3t

3 + n2t
2 + n1t + n0 = 0, (10)

where n4 = − (C4C3−C2C5)
2

C4

1

and

n3 = − 2

C4
1

(C2
1 (C5C3 + C4C2)

+ C1(C
2
5 + C2

4 )(C2x3 + (C1 + C4x3 + C5y3)z3 + y3C3)

+ (C4C3 − C5C2)(E5C2 + E2C5 − E4C3 − E3C4))

must simultaneously vanish for the forward kinematics of the

proposed manipulator to become quadratically-solvable.

Each of the four roots of (10) determines a single value

for px, py , u, and v through (7) and two sets of values for

pz and w by simultaneously solving ‖i‖ = 1 and t = p · i.
Thus, up to 8 assembly modes are obtained for a given set

of leg lengths.

Finally, note that, if C4 = C5 = 0, then n4 = n3 = 0.

Under this circumstance, the maximum simplification of the

forward kinematics of the analyzed robot is obtained: the

maximum number of assembly modes drops to 4. This is

discussed in the next section where a family of parallel robots

satisfying this condition is studied in detail.

III. A FAMILY OF QUADRATICALLY-SOLVABLE 5-SPU

ROBOTS

Let us consider the 5-SPU parallel robot whose leg attach-

ment coordinates are ai = (xi, yi, 0) and bi = p+ zii, with

p = (px, py, pz) and i = (u, v, w) as before, and subject to

the constraint that

zi = δxi, (11)

where δ is, thus, a proportionality factor between platform

attachments and the x-coordinates of the base attachments.

To ease readability of the equations, we set x3 = y3 = 0
without losing generality. Then δ, xi and yi, i = 1, 2, 4, 5,

are left as parameters that characterize the family of 5-SPU

robots analyzed in this section.

A. Forward Kinematics

With the attachment coordinates given in (11), the cofac-

tors of the elements of the first row of T are:

C1 = δ2F,

C2 = −δ3F,

C3 = C4 = C5 = C6 = 0,

(12)

where F can be written as

F =

∣

∣

∣

∣

∣

∣

∣

∣

x2
1 x1y1 x1 y1

x2
2 x2y2 x2 y2

x2
4 x4y4 x4 y4

x2
5 x5y5 x5 y5

∣

∣

∣

∣

∣

∣

∣

∣

(13)

and the coefficients of polynomial (10) are:

n4 = n3 = 0

n2 =
(δ2 + 1)δ2F 2

− 2δFE4 − E2

5

δ2F 2

n1 = 2
E2δ

4F 2
− Fδ(E4E2 + E5E3) − E5(E2E5 − E3E4)

δ5F 3

n0 =
(E2

2 + E2

3 + l23(E
2

4 + E2

5))F 2δ4
− (E2E5 − E4E3)

2

δ8F 4
− l

2

3
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Fig. 3. An attachment should not be located on the conic defined by the other four attachments and the point at infinity p∞ as the platform would then
become architecturally singular. In this example the attachments are a1 = (−2, 1), a2 = (−1,−2), a4 = (1,−2) and a5 = (2, 2), with corresponding

zi = 1

2
xi for i=1,. . . , 5 (i.e., δ = 1

2
).

Then, polynomial (10) becomes quadratic and, as a con-

sequence, its two roots can be simply expressed as:

t =
1

δ3F (2δFE4 + E2
5 − (δ2 + 1)δ2F 2)

·
[

δ4F 2E2 − δF (E2E4 + E5E3)

+ E5(E3E4 − E2E5) ±
√

∆
]

,

(14)

where the discriminant is

∆ =δF (E2
5 + E2

4 − δ4F 2)

[2δ4F 2E4l
2
3 + δ3F (E2

5 l23 + E2
3) + δF (E2

2 + E2
3)

− (δ2 + 1)δ5F 3l23 + 2E3(E2E5 − E4E3)].
(15)

Each of the two above roots, say t1 and t2, determines a

single value for px, py , u, and v through (7) and two sets of

values for pz and w by simultaneously solving ‖i‖ = 1 and

t = p · i. The resulting four assembly modes are explicitly

given by:

p =















δ3Fti+E2

δ2F

E3

δ2F

± (E4−δF )δ3Fti+E4E2+E5E3

δ2F
√

δ4F 2
−E2

5
−E2

4















, (16)

and

i =















E4

δ2F

E5

δ2F

±
√

δ4F 2
−E2

5
−E2

4

δ2F















. (17)

B. Singularity Analysis

Substituting the values of the cofactors (12) into (2), the

singular configurations of the studied 5-SPU platform are the

solutions of the following equation

δ2wF (δpxw − (uδ − 1)pz) = 0. (18)

Observe that, except for δ, all other design parameters are

embedded in F , whereas the robot pose appears only in the

remaining two factors. Thus, if F = 0, the manipulator is

architecturally singular, i.e., it is always singular indepen-

dently of its leg lengths. In turn, non-architecturally singular

manipulators will reach a singular configuration whenever

the other factors nullify. Below we give a geometric inter-

pretation of these two types of singularities, architectural and

parallel.

Any set of five points on a plane defines a conic; the one

defined by the five base attachments can be expressed, in
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homogeneous coordinates (x,y,s)H , as:

C =































(x,y,s) |

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x2 xy y2 sx sy s2

x2
1 x1y1 y2

1 x1 y1 1
x2

2 x2y2 y2
2 x2 y2 1

0 0 0 0 0 1
x2

4 x4y4 y2
4 x4 y4 1

x2
5 x5y5 y2

5 x5 y5 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0































. (19)

Then, F = 0 if and only if p∞ = (0, 1, 0)H ∈ C. In

other words, if the point p∞ belongs to the conic defined by

the five base attachments, the parallel robot is architecturally

singular. As a consequence, it is possible to assign any value

to yi, for i = 1, . . . , 5, provided that each ai = (xi, yi)
does not lie on the conic formed by the other four base

attachments and p∞ (see Fig. 3).

In particular, if any four base attachments are collinear,

the parallel robot would be architecturally singular because

the fifth one and p∞ would define a second line, and two

intersecting lines can be seen as a degenerate conic.

Let us now turn to the case F 6= 0, and study the parallel

singularities of non-architecturally singular manipulators. A

singular configuration p, i ∈ R
3 × S2, with p = (px, py, pz)

and i = (u, v, w), is that satisfying either w = 0 or

(δwpx − (δu − 1)pz) = 0. The first condition holds for

configurations where the platform is parallel to the base

plane, while the second relates platform position coordinates

(px, pz) to orientation coordinates (u,w) through the slope

equality pz/px = w/(u − 1/δ).
Note that singularities can also be expressed in joint space

R
5 by using the discriminant (15), whose expression only

depends on the leg lengths li, i=1,. . . , 5. When ∆ = 0 the

two solutions (14) coincide, yielding a singularity. Note that

∆ also consists of two factors, the first one E2
5 + E2

4 −
δ4F 2 = 0 corresponds to the condition w = 0 and the other

is equivalent to (δwpx − (δu − 1)pz) = 0.

An interesting practical consideration is that, if we fix the

orientation of the tool, singularities define a plane in position

space:

c1px + c2pz = 0, (20)

with c1 = δw2 and c2 = w(1 − uδ). For example, if the

tool is orthogonal to the base plane, i.e. (u, v, w) = (0, 0, 1),
then the robot will reach a singularity when its position, i.e.

(px, py, pz), satisfies:

δpx + pz = 0. (21)

It follows from the above singularity analysis that, for a

fixed value of δ, the whole family of non-architecturally

singular 5-SPU robots considered have exactly the same

singularity locus. In other words, given a member of the

family, one can freely move its leg attachments without

modifying the singularity locus, provided two constraints are

maintained, namely the proportionality between xi and zi,

and the conics condition above that precludes architecturally

singular leg arrangements. In the next section, the common

structure of the singularity locus is studied, and the influence

of δ on its topology is analyzed.

px

pz

www

ww

www

uuu

uu

uuu

Fig. 4. Representation of the sphere of orientations for eight positions
around the origin. The four connected components are marked with different
colors.

IV. CELL DECOMPOSITION OF CONFIGURATION SPACE

The singularity locus of the 5-SPU robots studied consists

of two hypersurfaces in R
3 × S2 –the robot configuration

space (C-space)–, namely:

w = 0 and wpx − (u − 1

δ
)pz = 0. (22)

Note that, since py and v do not appear in the hypersurface

equations, they do not need to be taken into account when

analyzing the topology of singularities. C-space can thus be

schematically represented by drawing the sphere of orienta-

tions in each point of the plane pxpz . Furthermore, only the

projection of the sphere in the direction of the v axis needs

to be displayed. Figure 4 shows such representation for eight

positions around the origin in the plane pxpz , for the case δ =
11. Observe that only the relation pz/px is relevant, therefore

each disk stands for all positions in the half-line starting at

the origin and having the same pz/px value. Color encodes

where the region lies in relation to the two hypersurfaces.

For example, yellow points (the brightest grey level ones)

are those where w < 0 and wpx − (u − 1/δ)pz < 0. Lines

separating two colors correspond to the two hypersurfaces.

Hence, the two singular hypersurfaces divide C-space

into four connected components, corresponding to the four

assembly modes in (16) and (17). Note that the symmetry

in these equations shows up neatly in the figure. It is worth

mentioning that for platform positions in the first quadrant,

namely where px > 0 and pz > 0, all the hemisphere of

orientations with w > 0 is reachable. Similarly, there is a

whole hemisphere reachable in the other quadrants.

By exploiting the C-space symmetry mentioned above,

together with the simplicity of the singular hypersurfaces,

it is easy to derive a cell decomposition of C-space. Without

1The cases δ < 1 and δ > 1 follow easily from this one, as we will
sketch at the end of this section.
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going into details, let us just refer to Fig. 5 where a diagram

of cells for a single connected component is shown. The

5D cell is bounded by patches of the two 4D singular

hypersurfaces, which intersect at two types of 3D patches:

(w = 0, u = 1) and (w = 0, pz = 0). The former

corresponds to a fixed orientation of Λ perpendicular to the

plane px = 0 in addition to parallel to Π (3 translational

DoFs), while the latter corresponds to Λ lying on Π (3 DoFs

in the plane). Two such 3D patches in turn intersect at a 2D

cell corresponding to Λ lying on Π and being perpendicular

to the plane px = 0 (2 translational DoFs). Finally, a 2D cell

is bounded by a 1D cell where, in addition to the preceding

conditions, px = 0.

5D

4D

3D

2D

1D

px

px

px

px

px

px

px

py

py

py

py

py

py

py

pz

pz

pz

pz

pz

pz

pz

w = 0
pz

px

= w
u−1

w = 0
u = 1

w = 0
pz = 0

w = 0
u = 1
pz = 0

w = 0
u = 1
pz = 0
px = 0

Fig. 5. Diagram showing the relative position of Λ and Π in each C-space
cell.

The four C-space connected components are glued to-

gether through some of the lower-dimensional cells, so that

the cell decomposition has in total four 5D, six 4D, six 3D,

two 2D and one 1D cells.

Let us remind that this decomposition is for δ = 1. Those

for δ < 1 and δ > 1 can be easily derived by noting that their

C-space representations differ only slightly from that in Fig.

4. The four skew line segments standing for the singular

hypersurface (u − 1/δ)pz − wpx = 0 maintain the same

slopes, while their positions vary as a function of δ, so that

they intersect hypersurface w = 0 at pz = 0 and u = 1/δ
for δ > 1, and only at pz = 0 for δ < 1. Consequently, the

cell decomposition in the former case has in total four 5D,

eight 4D, eight 3D, two 2D and one 1D cells, while in the

latter case it reduces to four 5D, six 4D, two 3D and one

2D cells.

V. CONCLUSIONS

This paper has presented a family of 5-SPU platforms,

with collinear attachments on the platform and coplanar

on the base, whose forward kinematics can be solved by

computing the roots of two quadratic polynomials, yielding

only 4 assembly modes. This important complexity reduction

with regards to a general such 5-SPU platform is attained

by imposing a simple proportionality relation between the

coordinates of the base and platform attachments.

The presented analysis of the 5-SPU robot is useful for the

study of 6-SPU Stewart-Gough platforms that contain a line-

plane component satisfying the mentioned proportionality

relation. The kinematics of such a 6-DoF platform becomes

greatly simplified, having a total of 8 assembly modes. A

cell decomposition of its singularity locus can be readily

derived from that obtained in Section IV, by just considering

the additional singular hypersurface corresponding to the

platform attachment of the 6th leg lying on the base plane.

This work has also a direct application to the design of

reconfigurable robots. It suffices to place base attachments

on actuated guides, so as to enlarge the usable workspace

or increase platform stiffness, while maintaining the same

well-behaved singularity structure.
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