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Abstract

The position analysis of planar linkages has been dominated by resultant elimination and
tangent-half-angle substitution techniques applied to sets of kinematic loop equations.
This analysis is thus reduced to finding the roots of a polynomial in one variable, the
characteristic polynomial of the linkage. In this paper, by using a new distance-based
technique, it is shown that this standard approach becomes unnecessarily involved when
applied to the position analysis of the three seven-link Assur kinematic chains. Indeed,
it is shown that the characteristic polynomials of these linkages can be straightforwardly
derived without relying on variable eliminations nor trigonometric substitutions, and
using no others tools than elementary algebra.

Keywords: Assur kinematic chains, position analysis, distance-based formulations,
Cayley-Menger determinants, bilateration.

1. Introduction

A planar linkage is a set of rigid bodies, also called links, pairwise articulated through
revolute or slider joints, all lying in a plane. A linkage configuration is an assignment
of positions and orientations to all links that respects the kinematic constraints imposed
by all joints. The position analysis of a linkage consists in obtaining a complete charac-
terization of its valid configurations.

At the beginning of the twentieth century, the Russian mathematician L.W. Assur
proposed a structural classification of planar linkages based on the smallest kinematic
chains which, when added to, or subtracted from a linkage, results in a linkage that
has the same mobility. Thereafter, these elementary linkages have been called Assur
groups. The relevance of these chains become evident when analyzing a complex planar
linkage, because it is always possible to decompose it into Assur groups which can be
analyzed one-by-one. A linkage, with no mobility, from which an Assur kinematic group
is obtained by removing any one of its links is defined as an Assur kinematic chain (AKC)
or Baranov truss when no slider joints are considered. Hence an AKC corresponds to
multiple Assur groups.

Considering only revolute pairs —a prismatic pair can be modeled as a limit case of
a revolute pair—, the simplest AKC is the well-known triad, a one-loop structure with

Preprint submitted to Mechanism and Machine Theory October 4, 2010



Alpha

Type I Type II Type III

Figure 1: The three seven-link Assur kinematic chains.

three links and two assembly modes. There is one AKC with two loops, the pentad, a
five-link structure whose position analysis leads to up to 6 assembly modes. E. Peysah is
credited to be the first researcher in obtaining an analytic form solution for this problem
in 1985 [1], the same result was obtained independently at least by G. Pennock and D.
Kassner [2], K. Wohlhart [3], and C. Gosselin et al. [4]. More recently, N. Rojas and
F. Thomas [5] showed that this result can be obtained, in a straightforward way, using
bilaterations. Regarding three loops, or seven links, there are three types of AKCs (see
Fig. 1), namely, I) a linkage with three binary links and four ternary links with one
ternary link connected to the other three, II) a linkage with three binary links and four
serially-connected ternary links, and III) a linkage with four binary links, two ternary
links, and one quaternary link. The position analysis of these linkages leads to up to 14,
16, and 18 assembly modes, respectively. C. Innocenti, in [6], [7] and [8], obtained these
results using resultant elimination techniques. Alternatively, for the type I seven-link
AKC, a solution based on homotopy continuation was presented by A. Liu and T. Yang
in [9]. We show herein, by extending the ideas presented in [5], that a formulation based
on bilaterations leads to the same results presented by C. Innocenti in his three articles
in a more straightforward way.

The position analysis of planar linkages has been dominated by resultant elimina-
tion and tangent-half-angle substitution techniques applied to sets of kinematic loop
equations. This analysis is thus reduced to finding the roots of a polynomial in one
variable, the characteristic polynomial of the linkage. A. Dhingra and col. used reduced
Gröbner bases and Sylvester’s elimination to obtain these polynomials [10]. J. Nielsen
and B. Roth also gave an elimination-based method that uses Dixon’s resultant to de-
rive the lowest degree characteristic polynomials [11]. This technique was later improved
by C. Wampler [12], who used a complex-plane formulation to reduce the size of the
final eigenvalue problem by half. The position analysis of planar linkages has also been
tackled using general continuation-based solvers [13, 14], that start with a system whose
solutions are known, and then transform it gradually into the system whose solutions
are sought, while tracking all solution paths along the way [15]. Interval-based methods
has also been successfully applied to solve the equations resulting from position analysis
problems [16, 17]. Herein, we propose an alternative approach based on bilaterations.
The use of bilaterations reduces the number of equations to the point in which no variable
elimination is required for the position analysis of the three seven-link Assur kinematic
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chains. Moreover, since a bilateration operation is entirely posed and solved in terms of
distances, no tangent-half-angle substitutions are needed.

The rest of the paper is organized as follows. A coordinate-free formula for bilateration
expressed in terms of Cayley-Menger determinants is presented in Section 2. In Section
3, it is shown how the distance ratio between any two couples of vertices in a tree of
triangles can be obtained by a set of bilaterations. This result is used in Sections 4, 5,
and 6 to derive a distance-based characteristic polynomial for the three seven-Link Assur
kinematic chains of type I, II, and III, respectively. Finally, Section 7 summarizes the
main points and gives prospects for further research.

2. Cayley-Menger determinants and bilateration

Let Pi and pi denote a point and its position vector in a given reference frame,
respectively. Then, let us define
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with si,j = d2i,j = ‖pij‖
2
, where pij = pj −pi =

−−→
PiPj . This determinant is known as the

Cayley-Menger bi-determinant of the point sequences Pi1 , . . . , Pin , and Pj1 , . . . , Pjn and
its geometric interpretation plays a fundamental role in distance geometry, the analytical
study of Euclidean geometry in terms of invariants. When the two point sequences are
the same, it is convenient to abbreviate D(i1, . . . , in; i1, . . . , in) by D(i1, . . . , in), which
is simply called the Cayley-Menger determinant of the involved points.

The evaluation of D(i1, . . . , in) gives (n− 1)!
2
times the squared hypervolume of

the simplex spanned by the points Pi1 , . . . , Pin in R
n−1. Therefore, the squared dis-

tance between Pi and Pj can be expressed as D(i, j) and the signed area1 of the trian-

gle PiPjPk as ± 1

2

√

D(i, j, k). It can also be verified that D(i1, i2; j1, j2) is equivalent
to the dot product between the vectors (pi2 − pi1) and (pj2 − pj1). Then, cos(θ) =

D(i, j; i, k)/
√

D(i, j)D(i, k), θ being ∠PjPiPk. For a brief review of the properties of
Cayley-Menger determinants, see [18] and the references therein.

Many geometric problems can be elegantly formulated using Cayley-Menger deter-
minants. The bilateration problem is one of them. It consists of finding the feasible
locations of a point, say Pk, given its distances to two other points, say Pi and Pj , whose
locations are known. Then, according to Fig. 2, the position vector of the orthogonal
projection of Pk onto the line defined by PiPj can be expressed as

p = pi +

√

D(i, k)

D(i, j)
cos θ(pj − pi) = pi +

D(i, j; i, k)

D(i, j)
(pj − pi). (2)

1For a triangle PiPjPk in the Euclidean plane with area A, the signed area is defined as +A (respec-
tively, −A) if the point Pj is to the right (respectively to the left) of the line PiPk, when going from Pi

to Pk
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Figure 2: The bilateration problem in R
2.

Moreover, the position vector of Pk can be expressed as

pk = p±

√

D(i, j, k)

D(i, j)
S(pj − pi) (3)

where S =

(

0 −1
1 0

)

and the ± sign accounts for the two mirror symmetric locations of

Pk with respect to the lines supporting the segment defined by PiPj . Then, substituting
(2) in (3) and expressing the result in matrix form, we obtain

pik = Zi,j,k pij (4)

where

Zi,j,k =
1

D(i, j)

[

D(i, j; i, k) ∓
√

D(i, j, k)

±
√

D(i, j, k) D(i, j; i, k)

]

,

which will be called bilateration matrix. Now, it is important to observe that this kind of
matrices constitute an Abelian group under product and addition and if v = Zw, where
Z is a bilateration matrix, then ‖v‖2 = det(Z) ‖w‖2.

In what follows, in order to simplify the notation, we will abbreviate the product
Zi,j,kZi,k,l by Ωi,j,k,l.

3. Distance ratios in trees of triangles

A tree of triangles is defined as a set of triangles that are connected by their edges
such that any two triangles are connected by a single strip of triangles, i.e. a series of
connected triangles that share one edge with one neighbor and another with the next
[Fig. 3(left)]. Note that this definition includes cases in which edges are shared by more
than two triangles.

In a tree of triangles, it is straightforward to find the ratio between any two distances
involving any couple of vertices using sequences of bilaterations. This is better explained
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Figure 3: Left: In a tree of triangles the distance ratio between two couples of vertices can be obtained by
a set of bilaterations (see text for details). Right: The same is possible for arbitrary couples of vertices
belonging to two trees of triangles sharing two vertices.

through an example. Let us suppose that we are interested in finding
s5,7
s1,2

in the tree

of triangles in Fig. 3(left). The corresponding edges are connected by the strip of tri-
angles {P1P2P3, P1P3P4, P1P4P5, P5P4P6, P5P6P7}. Then, taking the segment P1P2 as
reference, we can perform the following sequence of bilaterations:

p1,3 = Z1,2,3 p1,2 (5)

p1,4 = Z1,3,4 p1,3 = Z1,3,4 Z1,2,3 p1,2 (6)

p1,5 = Z1,4,5 p1,4 = Z1,4,5 Z1,3,4 Z1,2,3 p1,2 (7)

p5,6 = Z5,4,6 p5,4 = Z5,4,6 (p1,4 − p1,5) (8)

= Z5,4,6 (I− Z1,4,5)Z1,3,4 Z1,2,3 p1,2 (9)

p5,7 = Z5,6,7 p5,6 = Z5,6,7 Z5,4,6 (I− Z1,4,5)Z1,3,4 Z1,2,3 p1,2. (10)

As a consequence,

s5,7
s1,2

= det(Z5,6,7 Z5,4,6 (I− Z1,4,5)Z1,3,4 Z1,2,3).

Now, let us suppose that we want to compute
s2,7
s1,2

. In this case P2P7 is not an edge

of any triangle but clearly

p2,7 = −p1,2 + p1,5 + p5,7.

Then, the substitution of (7) and (10) in the above equation yields:

p2,7 = (−I+ (Z1,4,5 + Z5,6,7 Z5,4,6 (I− Z1,4,5)) Z1,3,4 Z1,2,3) p1,2.
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Therefore,

s2,7
s1,2

= det (−I+ (Z1,4,5 + Z5,6,7 Z5,4,6 (I− Z1,4,5)) Z1,3,4 Z1,2,3) .

By proceeding in a similar way, it is possible to obtain the distance ratio between any
two couples of points.

The possibility of computing distance ratios that involve arbitrary couples of vertices,
using sequences of bilaterations, is not limited to trees of triangles. Observe how this
can also be applied to two triangular trees sharing any two vertices [see Fig. 3(right)].
This is the case of the three seven-Link Assur kinematic chains of type I, II, and III, as
shown in the next three sections.

4. Position analysis of the type I seven-link AKC

Fig. 4 shows the general seven-link AKC of type I. If the central ternary link is as-
sumed to be connected to the ground, the centers of its revolute pairs define the base
triangle P3P5P4, the revolute pair centers of the other three ternary links define the
moving triangles P5P8P9, P4P7P2, and P3P1P6. The position analysis problem for this
linkage consists in, given the dimensions of every link and the position of the centers
P3, P4, and P5, calculating the Cartesian pose of the moving ternary links. Next, a
coordinate-free formula for the position analysis of this linkage, without using trigono-
metrical functions nor resultant methods, is derived. To this end, instead of directly
computing the Cartesian pose of the moving ternary links, we will compute the set of
values of s2,3 compatible with the binary and ternary links side lengths. Thus, this pro-
cedure is entirely posed in terms of distances. Actually, we will show how this boils down
to compute the distance ratio

s6,8
s2,3

which can be obtained by considering the two threes of

triangles defined by {P1P3P6, P1P2P3, P2P4P3, P2P7P4, P3P4P5} and {P5P7P9, P5P9P8}.

4.1. Scalar equation derivation

According to Fig. 4, we have

p2,7 = Z2,4,7p2,4 = −Z2,4,7Z2,3,4p3,2 = −Ω2,3,4,7p3,2 (11)

p3,5 = Z3,4,5p3,4 = Z3,4,5Z3,2,4p3,2 = Ω3,2,4,5p3,2 (12)

p3,6 = Z3,1,6p3,1 = Z3,1,6Z3,2,1p3,2 = Ω3,2,1,6p3,2 (13)

p5,8 = Z5,9,8p5,9 = Z5,9,8Z5,7,9p5,7 = Ω5,7,9,8p5,7. (14)

Since
p6,8 = −p3,6 + p3,5 + p5,8 (15)

and
p5,7 = −p3,5 + p3,2 + p2,7, (16)

then

p6,8 = −Ω3,2,1,6p3,2 +Ω3,2,4,5p3,2 +Ω5,7,9,8p5,7

= [−Ω3,2,1,6 +Ω3,2,4,5 −Ω5,7,9,8 (Ω3,2,4,5 +Ω2,3,4,7 − I)]p3,2.
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Figure 4: The general seven-link AKC of type I. p6,8 can be expressed in function of p3,2 by computing
eight bilaterations.

Therefore,

det (−Ω3,2,1,6 +Ω3,2,4,5 −Ω5,7,9,8 (Ω3,2,4,5 +Ω2,3,4,7 − I)) =
s6,8
s2,3

. (17)

The left hand side of the above equation is a function of the unknown squared distances
s2,3 and s5,7. Since, from equation (16),

s5,7 = det (Ω3,2,4,5 +Ω2,3,4,7 − I) s2,3, (18)

then the substitution of (18) in (17) yields a scalar equation in a single variable: s2,3.
The roots of this equation, in the range in which the signed areas of the triangles P1P3P2

and P3P2P4 are real, that is, the range

[

max{(d1,2 − d1,3)
2 , (d2,4 − d3,4)

2},min{(d1,2 + d1,3)
2 , (d2,4 + d3,4)

2}
]

determine the assembly modes of the seven-link AKC of type I. These roots can be readily
obtained for the four possible combinations of signs for the signed areas of the triangles
P1P3P2 and P3P2P4 using, for example, an interval Newton method. For each of these
roots, we can determine the Cartesian position of the six revolute pair centers of the
moving ternary links using equations (11)-(14) and the equation p2,3 = Z3,4,2p3,4. This
process leads up to eight combinations of locations for P6 and P8, and at least one of
them must satisfy the distance imposed by the binary link connecting them.

If a polynomial representation is preferred, despite the previous derivation completely
solves the position analysis problem, we can proceed as described next.
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4.2. Polynomial derivation

By expanding all the Cayley-Menger determinants involved in equation (18), we get

s5,7 = Γ1 + Γ2 A3,2,4 (19)

where

A3,2,4 = ±
1

2

√

[

s2,3 − (d2,4 − d3,4)
2
] [

(d2,4 + d3,4)
2
− s2,3

]

,

and Γ1,Γ2 are polynomials in s2,3 whose coefficients are algebraic functions of the known
squared distances s3,4, s3,5, s4,5, s4,7, s2,7, and s2,4. On the other hand, by expanding
equation (17), we obtain

Υ1 +Υ2 A3,2,1 +Υ3 A3,2,4 +Υ4A5,7,9 +Υ5 A3,2,1 A3,2,4

+Υ6 A3,2,1 A5,7,9 +Υ7A3,2,4 A5,7,9 +Υ8A3,2,1 A3,2,4 A5,7,9 − s6,8s2,3s5,7 = 0 (20)

where

A3,2,1 = ±
1

2

√

[

s2,3 − (d1,2 − d1,3)
2

] [

(d1,2 + d1,3)
2 − s2,3

]

,

A5,7,9 = ±
1

2

√

[

s5,7 − (d5,9 − d7,9)
2
] [

(d5,9 + d7,9)
2
− s5,7

]

and Υi, i = 1, . . . , 8, are polynomials in s2,3 and s5,7 whose coefficients are algebraic
functions of known distances.

Now, by properly squaring equation (20), we obtain a polynomial equation in s5,7
whose coefficients are radical expressions in s2,3. Therefore, by replacing (19) into this
polynomial equation, we get

Φ1 +Φ2 A3,2,1 +Φ3 A3,2,4 +Φ4 A3,2,1 A3,2,4 = 0 (21)

where Φ1, Φ2, Φ3 and Φ4 are polynomials in s2,3 of degree 6, 5, 5, and 4, respectively.
Finally, the square roots in (21) can be eliminated by properly twice squaring it. This
operation yields

− Φ4

4A
4

3,2,1A
4

3,2,4 + 2Φ2

4Φ
2

2A
4

3,2,1A
2

3,2,4 + 2Φ2

4Φ
2

3A
2

3,2,1A
4

3,2,4 − Φ4

2A
4

3,2,1

+
(

2Φ2

2
Φ2

3
− 8Φ2Φ3Φ4Φ1 + 2Φ2

4
Φ2

1

)

A2

3,2,1A
2

3,2,4 − Φ4

3
A4

3,2,4

+ 2Φ2

1
Φ2

2
A2

3,2,1 + 2Φ2

1
Φ2

3
A2

3,2,4 − Φ4

1
= 0 (22)

which, when fully expanded, leads to

s4
2,3 s

3

5,7∆I = 0 (23)

where ∆I is a 14th-degree polynomial in s2,3. The extraneous roots at s2,3 = 0 and
s5,7 = 0 were introduced when clearing denominators to obtain equation (20), so they
can be dropped. The degree of polynomial ∆I concurs with the result presented by C.
Innocenti in [6].
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Figure 5: The assembly modes of the analyzed type I seven-link AKC.
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4.3. Example

According to the notation used in Fig. 4, let us suppose that s1,2 = 101, s1,3 = 17,
s1,6 = 34, s2,4 = 25, s2,7 = 36, s3,4 = 37, s3,5 = 25, s3,6 = 17, s4,5 = 20, s4,7 = 13,
s5,8 = 25, s5,9 = 20, s6,8 = 61, s7,9 = 45, and s8,9 = 25. Substituting these values in
(21), we obtain

Φ1 +Φ2 A3,2,1 +Φ3 A3,2,4 +Φ4 A3,2,1 A3,2,4 = 0 (24)

where

Φ1 = 3.6378 105 s6
2,3 − 8.2798 107 s5

2,3 − 6.2189 108 s4
2,3 + 1.4591 1012 s3

2,3

− 1.2227 1014 s22,3 + 2.8811 1015 s2,3 − 5.5415 1015

Φ2 = −9.9850 105 s52,3 + 3.1519 108 s42,3 − 3.2834 1010 s32,3 + 1.2528 1012 s22,3

− 1.5430 1013 s2,3 + 6.0248 1013

Φ3 = 9.9850 105 s5
2,3 − 4.1383 108 s4

2,3 + 6.1116 1010 s3
2,3 − 3.7134 1012 s2

2,3

+ 6.6516 1013 s2,3 + 4.2174 1014

Φ4 = 1.4551 106 s42,3 − 3.5852 108 s32,3 + 3.4064 1010 s22,3 − 1.5972 1012 s2,3

+ 2.1990 1013

A3,2,1 = ±
1

2

√

(s2,3 − 200.8734) (35.1266− s2,3)

A3,2,4 = ±
1

2

√

(s2,3 − 122.8276) (1.1724− s2,3)

Equation (24) is a scalar equation in s2,3 which can be numerically solved for the
four possible combinations of signs of the two involved squared roots. Alternatively,
substituting the above values in ∆I , the following characteristic polynomial is obtained:

119.5503 1012 s14
2,3 − 132.8081 1015 s13

2,3 + 67.7507 1018 s12
2,3 − 20.9729 1021 s11

2,3

+ 4.3875 1024 s10
2,3 − 654.0472 1024 s9

2,3 + 71.4151 1027 s8
2,3 − 5.7830 1030 s7

2,3

+ 347.7941 1030 s62,3 − 15.4050 1033 s52,3 + 492.8930 1033 s42,3 − 11.0051 1036 s32,3

+ 161.4709 1036 s22,3 − 1.3884 1039 s2,3 + 5.2641 1039.

The real roots of this polynomial are 39.8353, 41.6616, 42.6537, 78.9181, 81.8425,
106.0000, 121.9444, and 122.6125. The corresponding configurations for the case in
which p3 = (0, 0)T , p4 = (6,−1)T , and p5 = (4, 3)T appear in Fig. 5.

5. Position analysis of the type II seven-link AKC

Fig. 6 shows the general seven-link AKC of type II. If the central ternary link is
assumed to be connected to the ground, the centers of its revolute pairs define the base
triangle P2P4P5, the revolute pair centers of the other three ternary links define the
moving triangles P4P6P7, P7P9P8, and P2P3P1. The position analysis problem for this
linkage consists in, given the dimensions of every link and the position of the centers P2,
P4, and P5, calculating the Cartesian pose of the moving ternary links. Next, following
the same strategy as the one used in the previous section, a polynomial in s4,8 is derived.
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P4

P5

P6

P7

P8

P9p8,4

p8,9 = Ω8,4,7,9p8,4
p4,2 = −Ω4,8,5,2p8,4

p4,6 = −Ω4,8,7,6p8,4

p2,9 = (Ω4,8,5,2 +Ω8,4,7,9 − I)p8,4

p2,1 = Ω2,9,3,1p2,9

Figure 6: The general seven-link AKC of type II. p1,6 can be expressed in function of p8,4 by computing
eight bilaterations.

5.1. Scalar equation derivation

According to Fig. 6, we have

p4,2 = Z4,5,2p4,5 = −Z4,5,2Z4,8,5p8,4 = −Ω4,8,5,2p8,4 (25)

p4,6 = Z4,7,6p4,7 = −Z4,7,6Z4,8,7p8,4 = −Ω4,8,7,6p8,4 (26)

p8,9 = Z8,7,9p8,7 = Z8,7,9Z8,4,7p8,4 = Ω8,4,7,9p8,4 (27)

p2,1 = Z2,3,1p2,3 = Z2,3,1Z2,9,3p2,9 = Ω2,9,3,1p2,9. (28)

Since
p1,6 = −p2,1 − p4,2 + p4,6 (29)

and
p2,9 = −p4,2 − p8,4 + p8,9 (30)

then

p1,6 = −Ω2,9,3,1p2,9 +Ω4,8,5,2p8,4 −Ω4,8,7,6p8,4

= [−Ω2,9,3,1 (Ω4,8,5,2 +Ω8,4,7,9 − I) +Ω4,8,5,2 −Ω4,8,7,6]p8,4.

Therefore,

det (−Ω2,9,3,1 (Ω4,8,5,2 +Ω8,4,7,9 − I) +Ω4,8,5,2 −Ω4,8,7,6) =
s1,6
s4,8

. (31)
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The left hand side of the above equation is a function of the unknown squared distances
s2,9 and s4,8. Since, from equation (30),

s2,9 = det (Ω4,8,5,2 +Ω8,4,7,9 − I) s4,8, (32)

then the substitution of (32) in (31) yields a scalar equation in s4,8 whose roots in the
range in which the signed areas of the triangles P4P8P5 and P8P4P7 are real, that is, the
range

[

max{(d5,8 − d4,5)
2
, (d4,7 − d7,8)

2
},min{(d5,8 + d4,5)

2
, (d4,7 + d7,8)

2
}
]

determine the assembly modes of the analyzed linkage. These roots can be obtained, as
in the previous section, for the four possible combinations of signs for the signed areas
of the triangles P4P8P5 and P8P4P7. For each real root, we can determine the Cartesian
position of the six revolute pair centers of the moving ternary links using equations (25)-
(28) and the equation p4,8 = Z4,5,8p4,5. This process leads up to eight combinations of
locations for P1 and P6, and at least one of them must satisfy the distance imposed by
the binary link connecting them.

If a polynomial representation is still preferred, we can proceed as described next.

5.2. Polynomial derivation

By expanding all the Cayley-Menger determinants involved in equation (32), we get

s2,9 =
1

s4,8
(Γ1 + Γ2 A4,8,5 + Γ3 A8,4,7 + Γ4 A4,8,5 A8,4,7) (33)

where

A4,8,5 = ±
1

2

√

[

s4,8 − (d5,8 − d4,5)
2
] [

(d5,8 + d4,5)
2
− s4,8

]

,

A8,4,7 = ±
1

2

√

[

s4,8 − (d4,7 − d7,8)
2
] [

(d4,7 + d7,8)
2
− s4,8

]

,

and Γi, i = 1, . . . , 4, are polynomials in s4,8 whose coefficients are algebraic functions of
the known squared distances s2,4, s2,5, s4,5, s4,7, s5,8, s7,8, s7,9, and s8,9. On the other
hand, by expanding equation (31), we obtain

Υ1 +Υ2 A2,9,3 +Υ3 A4,8,5 +Υ4A8,4,7 +Υ5 A2,9,3 A4,8,5

+Υ6 A2,9,3 A8,4,7 +Υ7A4,8,5 A8,4,7 +Υ8A2,9,3 A4,8,5 A8,4,7 − s1,6s2,9s4,8 = 0
(34)

where

A2,9,3 = ±
1

2

√

[

s2,9 − (d3,9 − d2,3)
2
] [

(d3,9 + d2,3)
2
− s2,9

]

and Υi, i = 1, . . . , 4, are polynomials in the unknown distances s2,9 and s4,8 whose
coefficients are algebraic functions of known squared distances.
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Now, by properly squaring equation (34), we obtain a polynomial equation in s2,9
whose coefficients are radical expressions in s4,8. Therefore, by replacing (33) in this
polynomial equation, we get

1

s2
4,8

(Φ1 +Φ2 A4,8,5 +Φ3 A8,4,7 +Φ4 A4,8,5A8,4,7) = 0, (35)

where Φ1, Φ2, Φ3, and Φ4 are polynomials in s4,8 of degree 8, 7, 7, and 6, respectively.
Finally, to obtain a polynomial equation, the square roots in (35) can be eliminated by
properly twice squaring it. When the result is fully expanded, we obtain

s24,8 s2,9 ∆II = 0, (36)

where ∆II is a 16th-degree polynomial in s4,8. The extraneous roots at s2,9 = 0 and
s4,8 = 0 were introduced when clearing denominators to obtain equation (34), so they
can be dropped. The degree of polynomial ∆II concurs with the result presented by C.
Innocenti in [7].

5.3. Example

According to the notation used in Fig. 6, let us suppose that s1,2 = 25, s1,3 = 100,
s1,6 = 97, s2,3 = 45, s2,4 = 13, s2,5 = 36, s3,9 = 97, s4,5 = 25, s4,6 = 13, s4,7 = 20,
s5,8 = 16, s6,7 = 17, s7,8 = 13, s7,9 = 37, and s8,9 = 20. Substituting these values in
∆II , the following characteristic polynomial is obtained

18.8825 1024 s16
4,8 − 5.9735 1027 s15

4,8 + 818.5722 1027 s14
4,8 − 64.1837 1030 s13

4,8

+ 3.2137 1033 s124,8 − 108.7285 1033 s114,8 + 2.5531 1036 s104,8 − 41.5239 1036 s94,8

+ 452.6824 1036 s84,8 − 3.1196 1039 s74,8 + 12.6154 1039 s64,8 − 28.2936 1039 s54,8

+ 38.9353 1039 s4
4,8 − 36.1341 1039 s3

4,8 + 25.5007 1039 s2
4,8 − 15.1151 1039 s4,8

+ 5.2854 1039.

The real roots of this polynomial are 1.1161, 1.2002, 7.3517, 10.4180, 17.0000, 27.5995,
52.9281, 53.7863, 56.0905 and 61.5796. The corresponding configurations for the case in
which p2 = (0, 0)T , p4 = (2, 3)T , and p5 = (6, 0)T appear in Fig. 7.

6. Position analysis of the type III seven-link AKC

Fig. 8 shows the general seven-link AKC of type III. If the quaternary link is assumed
to be connected to the ground, the centers of its revolute pairs define the base quadrilat-
eral P1P2P6P7, the revolute pair centers of the other two ternary links define the moving
triangles P3P5P4, and P8P5P9. The position analysis problem for this linkage consists
in, given the dimensions of every link and the position of the centers P1, P2, P6, and P7,
calculating the Cartesian pose of the moving ternary links.
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Figure 7: The assembly modes of the analyzed type II seven-link AKC.
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P1

P2

P3

P4

P5

P6

P7

P8

P9

p4,1

p4,5 = Ω4,1,3,5p4,1

p1,7 = −Ω1,4,2,7p4,1

p1,6 = −Ω1,4,2,6p4,1

p5,6 = − (Ω4,1,3,5 +Ω1,4,2,6 − I)p4,1

p5,9 = Ω5,6,8,9p5,6

Figure 8: The seven-link AKC of type III. p7,9 can be expressed in function of p1,4 by computing eight
bilaterations.

6.1. Scalar equation derivation

According to Fig. 8, we have

p1,6 = Z1,2,6p1,2 = −Z1,2,6Z1,4,2p4,1 = −Ω1,4,2,6p4,1, (37)

p1,7 = Z1,2,7p1,2 = −Z1,2,7Z1,4,2p4,1 = −Ω1,4,2,7p4,1, (38)

p4,5 = Z4,3,5p4,3 = Z4,3,5Z4,1,3p4,1 = Ω4,1,3,5p4,1, (39)

p5,8 = Z5,6,8p5,6 = Z5,8,9Z5,6,8p5,6 = Ω5,6,8,9p5,6. (40)

Since
p7,9 = p1,6 − p1,7 − p5,6 + p5,9 (41)

and
p5,6 = −p4,5 + p4,1 + p1,6, (42)

then

p7,9 = −Ω1,4,2,6p4,1 +Ω1,4,2,7p4,1 − p5,6 +Ω5,6,8,9p5,6

= [−Ω1,4,2,6 +Ω1,4,2,7 − (Ω5,6,8,9 − I) (Ω4,1,3,5 +Ω1,4,2,6 − I)]p4,1.

Therefore,

det (−Ω1,4,2,6 +Ω1,4,2,7 − (Ω5,6,8,9 − I) (Ω4,1,3,5 +Ω1,4,2,6 − I)) =
s7,9
s1,4

. (43)

The left hand side of the above equation is a function of the unknown squared distances
s1,4 and s5,6. Since, from equation (42),

s5,6 = det (Ω4,1,3,5 +Ω1,4,2,6 − I) s1,4, (44)
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then the substitution of (44) in (43) yields a scalar equation in s1,4 whose roots in the
range in which the signed areas of the triangles P1P4P2 and P4P1P3 are real, that is, the
range

[

max{(d2,4 − d1,2)
2 , (d1,3 − d3,4)

2},min{(d2,4 + d1,2)
2 , (d1,3 + d3,4)

2}
]

determine the assembly modes of the analyzed linkage. As mentioned in previous sections,
these roots can be obtained for the four possible combinations of signs for the signed areas
of the triangles P1P4P2 and P4P1P3 but, if a polynomial representation is preferred, we
can proceed as described next.

6.2. Polynomial derivation

Following the procedure described in the previous section for the polynomial deriva-
tion, from equations (43) and (44), we obtain

1

s2
1,4

(Φ1 +Φ2A1,4,2 +Φ3A4,1,3 +Φ4A1,4,2A4,1,3) = 0 (45)

where

A1,4,2 = ±
1

2

√

[

s1,4 − (d2,4 − d1,2)
2
] [

(d2,4 + d1,2)
2
− s1,4

]

,

A4,1,3 = ±
1

2

√

[

s1,4 − (d1,3 − d3,4)
2
] [

(d1,3 + d3,4)
2
− s1,4

]

,

and Φ1, Φ2, Φ3, and Φ4 are polynomials in s1,4 of degree 8, 7, 7, and 6, respectively.
Finally, by properly twice squaring the above equation, we get

s2
1,4 s5,6∆III = 0 (46)

where ∆III is a 18th-degree polynomial in s1,4. The extraneous roots at s1,4 = 0 and
s5,6 = 0 were introduced when clearing denominators in this polynomial derivation, so
they can be dropped. The degree of polynomial ∆III concurs with the result presented
by C. Innocenti in [8].

Each of real roots of ∆III determine the Cartesian position of the five revolute pair
centers of the moving ternary links using equations (37)-(40) and the equation p1,4 =
Z1,2,4p1,2. This process leads to up eight combinations of locations for P7 and P9, and at
least one of them must satisfy the distance imposed by the binary link connecting them.

6.3. Example

According to the notation used in Fig. 8, let us suppose that s1,2 = 20, s1,3 = 40,
s1,6 = 65, s1,7 = 144, s2,4 = 13, s2,6 = 17, s2,7 = 68, s3,4 = 17, s3,5 = 40, s4,5 = 13,
s5,8 = 18, s5,9 = 29, s6,7 = 17, s6,8 = 25, s7,9 = 37, and s8,9 = 5. Substituting these
values in ∆III , the following characteristic polynomial is obtained
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Figure 9: The assembly modes of the analyzed type III seven-link AKC.
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− 702.0669 1012 s181,4 + 440.9551 1015 s171,4 − 126.5260 1018 s161,4 + 21.9306 1021 s151,4

− 2.5592 1024 s14
1,4 + 212.2835 1024 s13

1,4 − 12.8945 1027 s12
1,4 + 583.5044 1027 s11

1,4

− 19.9010 1030 s10
1,4 + 517.8331 1030 s9

1,4 − 10.4725 1033 s8
1,4 + 168.7340 1033 s7

1,4

− 2.1961 1036 s61,4 + 22.5420 1036 s51,4 − 171.4717 1036 s41,4 + 898.7415 1036 s31,4

− 3.0279 1039 s21,4 + 5.9942 1039 s1,4 − 5.5218 1039.

The real roots of this polynomial are 5.2357, 6.7320, 9.8004, 16.9536, 39.1049, 45.3566,
48.4498, and 61.0000. The corresponding configurations for the case in which p1 =
(0, 0)T , p2 = (4, 2)T , p6 = (8, 1)T , and p7 = (12, 0)T appear in Fig. 9.

7. Conclusion

The three seven-link Assur kinematic chains contain three independent kinematic
loops. The standard approach for the position analysis of these chains consists in de-
riving the closure conditions for these three loops and obtaining an algebraic resultant.
Nevertheless, formulating the position analysis in terms of kinematic loop equations in-
troduces a major disadvantage: the resulting equations involve translations and rotations
simultaneously. We have presented a different approach in which, instead of dealing with
the Cartesian poses of the involved links, the position analysis problem is fully posed
in terms of distances. Then, under this approach, the closure conditions boil down to
a single distance ratio computable by bilaterations. An important simplification is thus
obtained.

How the proposed approach scales to more complex Assur kinematic chains is an
open problem. It is well-known that there are 28 AKCs with four loops or nine links
[19]. The position analysis of some of these AKCs, based on either resultant elimination
[20, 21, 22, 23] or homotopy continuation methods [9, 24], has already been reported
in the literature. It can be checked that the required distances ratios for most of these
chains can also be obtained by considering trees of triangles sharing only two vertices.
Thus, the application of the proposed technique to the position analysis of the AKCs
with nine links seems advantageous but this is certainly a point that deserves further
attention.
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