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ABSTRACT

In most practical implementations of the Gough-Stewartf@ie, the octahedral form is either taken as it
stands or is approximated. The kinematics of this partidatance of the Gough-Stewart platform, com-
monly known as the octahedral manipulator, has been thowlyhgtudied. It is well-known, for example,
that its forward kinematics can be solved by computing tliésrof an octic polynomial and that its singu-
larities have a simple geometric interpretation in termghefintersection of four planes in a single point.
In this paper, using a distance-based formulation, it isvshiiat this octic polynomial can be straightfor-
wardly derived and a whole family of platforms kinematigadiquivalent to the octahedral manipulator is
obtained. Two Gough-Stewart parallel platforms are salwetkinematically equivalent if there is a one-to-
one correspondence between their squared leg lengthsfeathe configuration of their moving platforms
with respect to their bases. If this condition is satisfiedan be easily shown that both platforms have the
same assembly modes and their singularities, in the coafigurspace of the moving platform, are located
in the same place. Actually, both consequences are two &dt¢be same coin.

Keywords: octahedral manipulator, position analysis, forward kinematics, distaamedbior-
mulations, Cayley-Menger determinants, trilateration.

1 INTRODUCTION

The Stewart-Gough platform consists of a fixed base and anmgglatform connected by six ball-ended
extensible legs]. While the kinematics analysis of the general case, thahat, in which the ball-and-
socket joints are arbitrarily located on the base and thiéopia, is very complex, it gets greatly simplified
when some of these joints, either on the base or the platfooaiesce and/or are made to be collinear or
coplanar. In other words, placing constraints on the geodoadtstructure of the general Stewart-Gough
platform offers the opportunity for obtaining a simple faration for its forward kinematics and a simple
geometrical interpretation for its singularities. The fmaxm simplification is obtained when all the ball-
and-socket joints coalesce into only three multiple sgla¢joints both in the base and the platform. Only
three possibilities arise whose topologies are repredénteig. 1. These three platforms are known as the
three 3-3 Stewart-Gough platforms for obvious reasons.

One of the 3-3 Stewart-Gough platforms consists of six dedalll-ended legs thereby forming a zigzag
pattern. For symmetry reasons, this topology is eitherntaeit stands or is approximated in most im-
plementations of the Stewart-Gough platform. Since theirdigsIthat join the double-ball-joints can be
interpreted as the eight triangular faces of an octahedhentermoctahedral manipulatowas coined in
[2] to name it.

Clearly, it is advantageous to have multiple sphericaltfgiharing the same center of rotation in a parallel
manipulator to simplify its kinematics. However, diffidel$ always arise in constructing such spherical
joints. There have been several attempts to construct teemR] and the references therein), but none
of them use off-the-self mechanical elements. Anotherd¥igatage of this kind of joints is that the range
of action of the leg actuators is reduced because of the fiskechanical interference. 4], kinematic

substitutions are introduced to provide a way around thoglem where is it shown, for example, that the



Figure 1. The three possible topologies for a 3-3 Stewart-GougHagulat The rightmost
one corresponds to the octahedral manipulator.

manipulator appearing in Fi@(a), that avoids the double-ball-joints in the base, is kiagcally equiv-
alent to the octahedral manipulator. This particular ayeanent of joints is also known as the triple arm

A

Figure 2. The triple arm mechanisifa), the standard approximation to the octahedral ma-
nipulator that avoids all double-ball-joings), the Stoughton-Arai approximation intended to
also improve the dexterity of the manipulate), and the Griffis-Duffy modificatiorid).

Most implementations avoid the difficulty of constructingltiple spherical joints by approximating them
with a collection of single spherical joints with small agfs between the centers of rotation of the links, as
shown in Fig.2(b). Such offsets change the kinematics of the mechanisultirg in one of two possible
problems, as pointed out i8]l First, if the offsets are included in the kinematics of thechanism, the
kinematic equations may become very complex and thus vdfigudi to solve. Second, if the offsets
are neglected, thus simplifying the kinematic equationsre arise. These errors may have a significant



impact in precision applications, or in manipulators sustha Tetrobot] that consists in stacking multiple
octahedral manipulators resulting in the accumulatiomairs if such offsets are introduced and neglected.

The modification of the octahedral manipulator proposed tioyghton and Arai consist in separating the
six double-ball joints alternatively inward and outwardligdly [7], as shown in Fig2(c). Each double-
ball-joint is separated by the same amount into a pair of rigdilgoints whose centers are equidistant to
the original center. In this paper, we show that, if this sbuble-ball joints are alternatively separated
not radially but following the edges of the base and platftniengles, as shown in Fi@(d), the resulting
manipulator is kinematically equivalent to the originataitedral one. This fact was already acknowledged
by Griffis and Duffy in B] (without giving an explicit formulation) but it has beenenooked, even by the
same authors, in subsequent publications where alteesatiivavoid these joints are discusséf [The
formal prove to this fact can be easily derived through a fdation of the kinematics of the octahedral
manipulator fully expressed in terms of distances.

This paper is organized as follows. Sectbaummarizes some basic facts about Cayley-Menger determi-
nants and trilateration that are used throughout this p&sstion3 briefly reviews the proposed approaches
to solve the forward kinematic of the octahedral manipulattd shows how its characteristic octic poly-
nomial can be easily obtained using a distance-based fationl Then, using this formulation, it is shown
that, when there is an affine relationship between the sdueagelengths of two platforms, a one-to-one-
correspondence exits between the coefficients of theilackenistic polynomials or, equivalently, between
the solutions to their forward kinematics problems. Sec#aleals with the singularities of the octahe-
dral manipulator and the relationship between the singyléocus of two platforms whose squared leg
lengths are affine linearly related. In Sectignthe geometric transformations that lead to affine relation
ship between the squared of the leg lengths is derived. Aevaohily of parallel platforms kinematically
equivalent to the octahedral manipulator is thus obtair@de of its members has no double-ball-joints.
Section6 analyzes this case through an example. Finally, Se@tgummarizes the main results.

2 CAYLEY-MENGER DETERMINANTS AND TRILATERATION

Let P; andp; denote a point and its position vector in a given referenamé, respectively. Then, let us
define
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with s; ; = ||p; — p;||?, which is independent from the chosen reference frame. déterminant is known
as theCayley-Menger bi-determinaof the point sequences, , ..., P, andFP;, , ..., P; . When the two
point sequences are the same, it will be convenient to alattedV (i1, ..., 4,;%1,...,%,) by D(i1, ..., ip),
which is simply called th€ayley-Menger determinanf the involved points.

It can be shown that the Cayley-Menger determinaft, ..., n) is ((n — 1)!)? times the squared hyper-
volume of the simplex defined b#,, ..., P, in R*~!. Then, when working iR, all Cayley-Menger
determinants involving more than+ 2 points necessarily vanish.

Many geometric problems have an elegant and straightfara@ution when expressed in terms of Cayley-
Menger determinants. The trilateration problems is onéneffit. Given three points in space, say, P,
and P, the trilateration problem consists in finding the locatafranother point, say’,, whose distance
to these three points is known. According to F8. given the position vectorpy, p2, andps, and the
distances;, l2, andls, it can be proved thaf]:

1

PLE= D(1,2,3)

(_D(17 27 37 17 37 4)131,2 + D(17 27 37 1a 27 4)p1,3 + V D(17 2a 37 4) (p1,2 X p1,3)) )
2

Wherepm =P — Pi-

In the next section, we show how the forward kinematics mobbf the octahedral manipulator can also
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Figure 3. The trilateration problemis to find the location of a pos#y P,, given its distances
to the vertices of a triangle, sd¥; P, P3, whose location is known.

straightforwardly solved when formulated in terms of CgyMenger determinants and trilaterations.

3 FORWARD KINEMATICS OF THE OCTAHEDRAL MANIPULATOR
P

Figure 4. Octahedral manipulator and associated notation.

The forward kinematics problem is to find all poses of thefptat (relative to the base) that are compatible
with the six specified leg lengths. No closed-form solutiothtis problem is known for the octahedral ma-
nipulator, but during the late 80’s and early 90’s severs¢agchers successfully addressed it giving numer-
ical procedures that involve finding the roots of an eightlyrée univariate polynomial. 1], Nanuaet

al. derived such a polynomial through resultant eliminatiod tangent-half-angle substitution techniques.
A similar result, based on three spherical four-bar linkageas obtained by Griffis and Duffy il{]. An
alternative method was also developed by Innocenti anchBaCastelli in [L2]. In all cases the polyno-
mial variable is the tangent of one-half the angle definedheyglane supporting’ P, P, (alternatively



P, P P5, or P3P P) and the base plane. More recently, Akcali and Mutlu resdsithe problem —also
using resultant elimination and tangent-half-angle stiigin techniques— with the aim of reducing the
computational cost of evaluating the resulting univanmalynomial [L3]. Finally, it is worth to mention that
the forward kinematics of the octahedral manipulator has been solved locally using Newton-Raphson
iterative schemes. Liat al. [14], Ku [15], and Song and Kwonlfg] propose different formulations to this
end.

Using Cayley—Menger determinants, though, it is possiblddrive the following simple distance-based
formulation. Let us consider the octahedral manipulatoFimg. 4. We already know that any Cayley-
Menger determinant involving more than 4 pointsRif necessarily vanishes. Then, the distances between

Py, ..., Ps must necessarily satisfy the following six equations:
t1(82_’6, 83,4) = D(Q, 3, 4, 57 6) = O
t2(8175, 83_’4) = D(l, 3, 4, 57 6) = 0
t3(81’5,82}6) = D(1,2,4,576) =0 (3)
t4(8276, 81,5) = D(l, 2, 3, 57 6) =0
t5(83,4, 82,6) = D(l, 2,3,4, 6) = O
t6($1_’5, 83,4) = D(l, 2,3,4, 5) = O

wheres, ¢, s34, ands; 5 are unknown squared distances. All other distances are rki@eause they
correspond either to architectural parameters or leg lesngtlow, if we eliminate, for exampleg 4 from

the system formed b¥.(s15,534) = 0 andts(s1,5,3,4) = 0, an octic polynomial ins; 5 is readily
obtained. The result cannot be included here for spacedliimit reasons but it can be easily reproduce
using a computer algebra system. The roots of this polyniceamgavalues ok, 5 that satisfy 8). For each

of these real roots, we can determine the spatial positidheothree points of the platform by computing,
for example, the following sequence of trilaterations: poming p; 5 from p; 2 andp; 3, thenp; 4 from
p1,2 andp; 5, and finallyp; ¢ fromp; 4 andp; 5. This leads to up to eight locations 6. Those locations
that satisfy the distance imposed by the leg connedtingnd P; correspond to valid assembly modes.

An approach, closely related to the above one, was preséyt&kdieu and Norton inl[7]. They also
obtained the system of six polynomial equations 3 ftom which they derived three octic polynomial
equations irsg g, s34, ands; 5 which had to simultaneously solved. The use of trilatereticlearly sim-
plifies this distance-based approach by allowing us tozedkiat computing the roots of any of these three
polynomials is enough to completely solve the problem.

The coefficients of the derived distance-based octic patyabare in turn polynomials in known squared
distances. Thus, this polynomial is not linked to any patéiccoordinate system and it does not exhibit the
well-known problems derived from the tangent-half-angibstitution.

Now, let us suppose that, for a generic configuration of theingoplatform with respect to the base, the

location of the joints are modified so that the lengths of &us ifor the new locations, say;, ms, . . ., mg,
are related to those of the original ongs/», . . ., lg, through the relation:
mi i
2 2
my 5
=A| | +b, 4)
mg g

where A andb are a constant matrix and a constant vector, respectivéign,Tif such a modification on
the location of the joints exists, the resulting platfornil Wwave the same forward kinematics as the original
one in the sense that there will be a one-to-one correspordmtween the coefficients of their associated
octic polynomials through4). The effect of this kind of joint location modifications dmetsingularities of
the moving platform is discussed in the next section.



4 SINGULARITIES

For a general Stewart-Gough platform, the linear actuatetscities, (il, lo, ..., lg), can be expressed in
terms of the platform velocity vectgw, £2) as follows:

i
diag. 1) | 2| =3 (¥ 5
Iaglw-'vﬁ) - 0/ ()
ls
wherelJ is the matrix of normalized Pliicker coordinates of the sixliees. The parallel singularities of the
platform are those configurations in which @Bt = 0. This algebraic condition have a simple geometric
interpretation for the octahedral manipulator. Indeedpading to Fig.4, when the supporting planes of the

trianglesP, P, P, P> P3 P5, P3P Ps, and Py P; Ps intersect in a single point, the manipulator is in a singular
pose [L§].

Now, as in the previous section, let us suppose that theitocaf the joints are modified so that the
lengths of the legs in their new locations are related todhafshe original legs through the relatiof) (
Differentiating @) with respect to time and substituting) (n the result, we get

i

diag(ds, . .. ,ds) d,2 — AJ (g) ©6)

Then, if a modification in the location of the joints satisfyi(4) exists, the singularities of the resulting
platform are those configurations in which @&tJ) = det(A)detJ) = 0. In other words, the resulting

platform will have the same singularities as the origina pnovided that déA) # 0. As a consequence,

a modification in the location of the joints satisfyind) (eaves the singularities of the moving platform
unaltered. Next section presents the geometric transtansthat satisfy the algebraic conditiof) (

5 DERIVING KINEMATICALLY EQUIVALENT MANIPULATORS

P3

Py Py P

Figure 5. The squared distaneg 4 depends affine linearly o 3 ands, 3 provided thatP,
lies in the line defined by, Ps.

Let us take two legs in an octahedral manipulator sharinguildeball-joint and let us introduce an offset
in the location of one of the other end spherical joints, asmshin Fig. 5. Since the Cayley-Menger
determinant of?;, P», P3, andP, vanishes because they are coplafi, 2, 3,4) = 0 or, equivalently,

0823+ (d12 — 6)s1,3 — di2s34 — d126(d12 —0) = 0. 7)



Note thatss 4, depends affine linearly an 3 ands, 5. Then, if the spherical joint centered/2t is moved to
Py, the resulting leg lengths, for any configuration of the mgwvplatform, can be expressed in terms of the
original leg lengths as indj. Thus, it can be said that the introduced offset does naighthe kinematics
of the original octahedral manipulator.

2
A
A

A
A

Figure 6. Family of manipulators kinematically equivalent to theabedral manipulator
obtained by sequentially applying the geometric transédiom in Fig.5. Dotted red lines
indicate required alignments.

Itis possible to repeat the above operation on the remaguongles of legs sharing a double-ball-joint. The
family of Stewart platforms obtained from the octahedrahipalator through the sequential introduction
of these offsets is depicted in Fig. At the root is the octahedral manipulator and, at each ldwein the
tree, a set of offsets is introduced that change the topaddtiye manipulator. Twenty different topologies
up to isomorphisms is thus generated. Unfortunately, athef include at least one double-ball-joint.
Nevertheless, it is interesting to realize that these tsffsan also be introduced simultaneously, not only
sequentially. The details of how this operation is perfatnean be found in19]. Then, if an offset is
simultaneously introduced for the six sets of two legs sttad double-ball-joint, all joints are split into
single spherical joints. The result is the 6-6 platform apjye in Fig.7.



Figure 7. Contrary to what happens to the Stoughton-Arai approxonatthe proposed
modification leads to a 6-6 platform kinematically equivel® the octahedral manipulator.

According to Fig.7 and the results in1[9], the affine relation between leg lengths of the resulting 6-
platform and the original octahedral manipulator can beesged as:

mi I3
m3 12
2 2
ms | _ I3 -
m? | = A 2 b (8)
m3 12
mg g
where
S ) (g‘—;é 60 0 0 0
S A B
A = das das
0 0 0 deg—ds M 0 ©)
0 0 0 0 Gt
S 0 0 0 0  daeds
46 46
and
01 (dr2 — 01)
02(das — 92)
b— 93(da3 — 03)
d4(dse — 04)
05(d13 — 95)
96 (das — 06)

If det(A) # 0, there is a one-to-one correspondence between. .., m2) and(%,...,1%). Remind that
A is constant as it only depends on architectural parametierd, the resulting 6-6 platform is analyzed in
more detail through an example.



6 EXAMPLE

2
S5

0
‘:‘
X3

3
\

O

Q)
O\

N\

Figure 8. By properly choosing the offsets; = §; = d3 = d5 andAy, = d, = 4 = g IN

Fig 7, itis possible to reach architecturally singular platferimcluding the obvious situations
in which couples of legs coincide and the architecturaihgsiar Griffis-Duffy platform.

Let us consider a parallel manipulator with the same toposghe one depicted in Figwith the following
geometric parametersiis = doz = diz = 12, dyg = das = dsg = 6, Ay

01 = 03 = 05, and
Ay = §o = 4 = dg. Substituting these values if)(and computing its determinant, we obtain

1 1 1 1 1 1

detfA) = — — A3BA2 - A2A3 4 A3A, 4+ —AZA2 4 AN

(a) 20736 102 T 10368 0102 T 3560102 T 570102 T ggr D10 T g
1 1 1 1 1 1

AL A2 A A —AZ A - —Ay 1.

g2 T gt Tgttfet g T yA1 T g Rt

A
1 1
~ge A — gl -

Fig. 8 plots detA) as a function ofA; andA,. WhenA; + As = 12, the introduced offsets lead to an

architecturally singular platform as dét) = 0. Now, let us suppose that we want to compute its forward
kinematic solutions for the following leg lengths

6 1 1

mi = o V6170, my = = V7349, ms = 52 36210,
6 1 [

meo = 5 \/ﬁ’ my = % 674605, me = g 8153.

with Ay = % andA, = g Then, substituting these values B),(it can be verified that this problem is
equivalent to solve the forward kinematics of the octahedemipulator defined by, . . ., Ps (see Fig7)
with leg lengths

149 178

ll — ﬁ7 12 — 18’ 13 = 18, l4 = 177 l5 =

107 T 107
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Figure 9. The forward kinematic solutions of the analyzed examplee mirror reflections
with respect to the base plane are not included.

which is the same problem as the one analyzed1h [Substituting the above values in the resultant derived
in Section3, the following characteristic polynomial is obtained
6.5844 - 107 57 5 — 19.7613 - 10'% 5] ;5 + 25.7996 - 10'® 7

s

—19.1573 - 10"® 7 ; + 8.8594 - 10*" 51 5 — 2.6162 - 10** s ; (10)
+482.3818 - 10%* 57 ; — 50.8263 - 1027 51 5 + 2.3449 - 10°° = 0.

)

The above polynomial has six real roo269.2451, 328.7364, 359.5275, 463.5658, 497.9021, and513.0332.
Each of them leads to two mirror poses with respect to the plage. The resulting poses for the case in
which p; = (0,0,0)7, po = (6,1/108,0)7, andps = (12,0,0)”, appear in Fig9 where the mirror
reflections with respect to the base plane are not reprakente

7 CONCLUSIONS

Stating the kinematics analysis of the octahedral manipuia terms of poses introduces two major disad-
vantages: (a) a reference frame has to be introduced, aadl {b)mulas involve translations and rotations
simultaneously. This paper proposes a different appraaeinich, instead of directly computing the sought



Cartesian poses, a problem fully posed in terms of distaisdast solved. Then, the original problem can
be trivially solved by sequences of trilaterations.

The presented distance-based formulation also permitgriergte a family of Stewart-Gough platforms
whose members are kinematically equivalent to the octahedanipulator. One of this members has no
double-ball-joints and, hence, its important technolabjioterest. Future developments in which an octa-
hedral manipulator is required but double-ball-jointsénw be avoided can benefit from this result.
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