Segmenting color images into surface patches by exploiting sparse depth data
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Abstract

We present a new method for segmenting color images
into their composite surfaces by combining color segmenta-
tion with model-based fitting utilizing sparse depth data, ac-
quired using time-of-flight (Swissranger, PMD CamCube)
and stereo techniques. The main target of our work is the
segmentation of plant structures, i.e., leaves, from color-
depth images, and the extraction of color and 3D shape in-
formation for automating manipulation tasks. Since seg-
mentation is performed in the dense color space, even
sparse, incomplete, or noisy depth information can be used.
This kind of data often represents a major challenge for
methods operating in the 3D data space directly. To achieve
our goal, we construct a three-stage segmentation hierarchy
by segmenting the color image with different resolutions -
assuming that “true” surface boundaries must appear at
some point along the segmentation hierarchy. 3D surfaces
are then fitted to the color-segment areas using depth data.
Those segments which minimize the fitting error are selected
and used to construct a new segmentation. Then, an addi-
tional region merging and a growing stage are applied to
avoid over-segmentation and label previously unclustered
points. Experimental results demonstrate that the method is
successful in segmenting a variety of domestic objects and
plants into quadratic surfaces. At the end of the procedure,
the sparse depth data is completed using the extracted sur-
face models, resulting in dense depth maps. For stereo, the
resulting disparity maps are compared with ground truth
and the average error is computed.

1. Introduction

The identification and segmentation of 3D surfaces from
an image is an important step towards solving robotic
object-manipulation tasks as it facilitates object recognition,
grasp-point selection, and, in consequence, the execution of
appropriate grasping movements. We are interested in de-
veloping efficient tools for representing and manipulating
domestic objects, including deformable ones. In particu-
lar, we aim to segment plants into their composite struc-

tures, i.e., leaves or part of leaves, and to extract color and
3D-shape descriptors to find points of interest with which
the robot can interact. However, the characterization and
classification of surfaces is only possible if appropriate 3D
information is available. Various techniques for 3D data
acquisition exist, but there is also always a critical trade-
off between the accuracy of the method and its efficiency
in terms of computation time, applicability (active versus
passive methods), and cost. Laser range scanning for ex-
ample delivers accurate and dense depth information, but
has the drawback that it is very time consuming and thus
not practical in the context of our task. Photonic mixer de-
vices (PMDs) or Swissranger cameras deliver depth images
in real time using the time-of-flight principle, but are of low
resolution and afflicted with uncertainties. Stereo vision
has the advantage that it is applicable in most environments
but tends to fail in untextured areas (due to correspondence
problems) and hence often only delivers sparse and noisy
results. This problem motivated us to develop a method for
surface segmentation that is also applicable to sparse depth
information. It further should allow us to complete missing
information.

The segmentation of 3D information is the task of di-
viding the image into regions so that all the points of the
same surface belong to the same region. The regions shall
not overlap and, taken together, generate the entire image.
Many algorithms for solving this task have been proposed
in the past [2, 11, 1, 6, 7, 8]. We roughly distinguish be-
tween two main groups: region-based and edge-based seg-
mentation algorithms. Algorithms of the first group seg-
ment the image into initial regions which are then merged
or extended [I, 7, 8]. Since segmentation is applied at a
region level, these methods often produce distorted bound-
aries. Algorithms of the second group find jump boundaries
in the depth image, providing an initial segmentation, which
is then refined by fitting quadratic functions to the initial
segments [ 1, 6]. A drawback of these methods is that dis-
continuities in the depth data are hard to detect and may
result in an initial under-segmentation of the image, which
cannot be corrected at later steps.

Depth acquisition techniques having the advantage of be-



ing fast and economic (stereo, Swissranger, PMD), or non-
invasive (stereo), only provide sparse and noisy depth data,
constituting a major problem for the segmentation algo-
rithms described above, which have been developed for 3D
information acquired with laser range scanners or structured
light. In the case of sparse data, information from other sen-
sors, e.g., color, is required to tackle the given task. Walhoff
et al. (2007) combined depth information of a PMD cam-
era with color images to segment objects from their back-
ground [12]. In a related work by Bleiweiss and Werman
(2009), depth from time-of-flight was fused with color data
to improve object segmentation and tracking [3]. Real-time
foreground segmentation was also achieved by Crabb et al.
(2008), combining range and color imaging [4]. Our goal,
however, is the segmentation of images into surface patches,
which was not approached by these works.

In this paper, we propose to segment dense color im-
ages at different resolutions and to select those segments
for which a best fit to the sparse depth data can be obtained
using quadratic surface models. In some sense, our method
is related to edge-based segmenters, with the important dif-
ference that we find “edges” in the color space, not in the
depth image. The selected segments are then merged and
optionally grown using both their respective surface model
and color information. The method is based on the as-
sumption that true surface boundaries must emerge at some
point along the segmentation hierarchy. It has the advantage
that segmentation can be performed in a dense space even
though the data of interest are sparse. Under- and over-
segmentation are avoided by considering segmentations at
various resolutions. Since segmentation in color space usu-
ally provides sharp edges, accurate surface boundaries can
be obtained in most cases. Furthermore, the obtained (ex-
plicit) surface models can be used to interpolate depth data
into regions that are initially undefined.

2. Algorithm

We describe an algorithm for the segmentation of color
images into surface patches utilizing sparse depth data. The
core idea of the method is based on the notion that surface
boundaries are in most cases represented by an edge in the
color image (the reverse is often not true). Since we are
dealing with sparse depth data, it is further desirable to have
as large segments as possible - otherwise model fitting be-
comes impracticable due to lack of data inside segments.
We thus segment the color image with different resolutions
(see Fig. 1A). Quadratic surface models are fitted to each
segment, and we select those segments from the hierarchy
which minimize the total fitting error, while taking into ac-
count the hierarchy level, i.e., segments obtained at lower
resolutions are given preference to segments at higher ones.

The algorithm thus consists of the following steps (see
also Fig. 1B). In step 1, the color image and the correspond-

ing sparse depth data is acquired (see Section 4). Then, in
step 2, color segmentation is applied to the color image and
segmentations at three different resolutions are obtained,
creating a segmentation hierarchy as illustrated in Fig. 1A
(see also Section 2.1). In step 3 of the algorithm, surface
models (quadrics) are fitted to each segment utilizing the
sparse depth data, and, for each segment, the best fitting
model is selected (see Section 2.2). Then, in step 4, those
segments are selected from the hierarchy that produce the
total best fit to the data, as illustrated in detail in Fig. 1C
(see also Section 2.3). Segments at lower resolutions are
given preference to segments at higher resolutions to avoid
over-segmentation. The resulting new segmentation is then
further improved by applying an additional region merging
step (step 5) through which segments having highly differ-
ent color values can be merged if they describe the same
surface (see Section 2.4). Then, in a final step (6), unclus-
tered points are assigned to the closest surface, using both
depth and color information (see Section 2.5).

2.1. Hierarchical color segmentation

The color image is segmented using the method of su-
perparamagnetic clustering of data employed in [5] which
allows a segmentation hierachy to be generated by segment-
ing with different resolutions. For this purpose, we var-
ied the interaction strength by multiplying the mean dis-
tance A by a factor between 1.4 and 0.6. Segments smaller
than a threshold (here 10 pixels) are considered being unla-
beled and are excluded from the steps 3-5 of the algorithm.
The segmentation algorithm can be replaced by any other
method as long as different resolutions result in a segmen-
tation hierarchy similar to the one illustrated in Fig. 1A.

2.2. Model fitting and selection

For each color segment s; and model type (see Section 3)
we perform a minimization of the mean square distance

Ei modet = 1/N Z(ZJ — Zjm)’ ey
J

of measured depth points z; ,, from the estimated model
depth z; = fi model(€,Yy;), where f; model is the data-model
function and N is the number of measured depth points in
the area of segment s;. The optimization is performed with
a Nelder-Mead simplex search algorithm provided in MAT-
LAB.

The mean square errors for two different model types,
i.e. B planar and E; curved, are computed. We select the pla-
nar model if E; planar < Fjs curved + 71, and the curved model
otherwise.

2.3. Color-segment selection procedure

We define the following selection procedure considering
first only two levels u and w + 1, where a higher level de-
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Figure 1. Surface segmentation algorithm. A Hierarchical segmentation of an image and resulting segmentation hierarchy. B Flow chart of
the algorithm. The last step is optional. C Detailed schematic of step 4 of the algorithm.

notes a higher resolution. Let s}’ be a segment at level u of
the hierarchy having a fitting error £/} (see Section 2.2). At
the level w + 1 of the hierarchy, segment s} is composed
of k segments s%*1 (i) with respective fitting errors E;-LH.

J
The composite error of the & segments s}“l (i) at level u is
then defined as
B! =) ai BT D ot @
J J

where a;-‘“ is the number of valid depth points in the area
of segment s}”l. We select s at level w if

E!'<CE!'+ 1 3)

and the k segments s;‘"’l(i) from level u + 1 otherwise.

Parameter 75 is introduced in order to avoid an over-
segmentation of the image by preferring segments obtained

at lower resolutions. The procedure is applied to each seg-
ment at level u. In this way a new segmentation is con-
structed which replaces the initial segmentation at u by a
segmentation u*.

Let us now consider a segmentation hierarchy consisting
of p levels. We apply the selection procedure to the initial
segmentations v = p — 1 and u = p. The selection proce-
dure is applied to the initial segmentation v = p — 2 and
u* = p — 1, and so on, until the end of the hierarchy is
reached. In this paper, we choose a three-level hierarchy.
More levels can be included if desired. The procedure for a
three-level hierarchy is illustrated in Fig. 1C.

2.4. Region merging

Let us consider two segments s; and s; having fitting
errors F; and E;. Both segments are merged if E;n; <



Figure 2. Illustrative example: Segmentation results for a carton box using Swissranger time-of-flight depth. A Color image. B Sparse
depth data, transformed to the color space. C Color segmentations at different resolutions (levels 0-2), respectively. D Selected segments
before merging (after step 4 of the method). E. Selected segments after merging (after step 5). F Segments after applying region growing
(step 6). G Fitted depth using surface models. Unclustered points are shown in white.

(a;E; + a;E;)/(a; + aj) + T2, where E;n; is the fitting
error of the merged segments and a; and a; is number of
valid depth points in the area of the segments s; and s;,
respectively. This procedure allows segments that have dif-
ferent colors to be merged. The procedure is applied to all
segments that are neighbors of each other (i.e. their closest
pixels have to be less than 8 pixels apart). When accepting
a merge, segments are updated and the new segmentation is
used when evaluating the remaining segment pairs.

2.5. Region growing
2.5.1 Time-of-flight

Let p; be a previously unclustered point with coordinates
(x4,9i, 2;) and color c;. We find all segment neighbors
of this pixel within a radius of 5 pixels. We compute the
distance of p; to the surface of segment s; as dist] =
|zi— f(xs,y:)|, where f; is the explicit surface-model func-
tion of segment s;, and assign p; to the closest segment in
the neighborhood. For points for which no depth value was
originally measured we use the local mean depth value com-
puted over a small area around the point.

2.5.2 Stereo

Let p; be a previously unclustered point with image coor-
dinates (z;,y;). We find all neighboring segments of this
pixel within a radius of 10 pixels. We compute the distance
of p; to the surface of segment s; as dist! = |I(x;) —

Ir(z; — fj(zi,9:))|, where f; is the explicit surface-model
function of segment s;, and I, and I are the left and right
color images, respectively. According to this distance mea-
sure, we assign p; to the closest segment in the neighbor-
hood.

3. Surface types

We choose two types of surfaces as surface models:
planes and a quadratic function, which allows (among oth-
ers) the modeling of spherical and cylindrical shapes. If
desired, higher-order terms can be included. Here we use
quadratic functions that allow computing depth z explicitly
for the z-y coordinates in the form of z = f(z,vy).

3.1. Planes

Planar surfaces are described by three parameters a, b,
and ¢, where the depth z can be expressed as a function of
x and y through

z=ar+by+c . @

3.2. Curved surfaces

Curved surfaces are described by five parameters a, b, c,
d, and e, where the depth z can be expressed as a function
of x and y through

z=az’ +byP+cx+dy+e . (&)
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Figure 3. Segmentation results for several domestic objects. Left
panels: Original color image. Middle panels: Initial Swissranger
sparse depth plotted together with final segment boundaries. Right
panels: Fitted depth using segment surface models.

This function has sufficient complexity to allow modelling
of basic curved shapes, including spherical, cylindrical, and
conical shapes.

4. Data Acquisition
4.1. Time-of-flight depth

We acquire color images together with depth images
and combine them by bringing both sensor-pixel matri-
ces in correspondence. For our experiments a Swissranger
SR3100 camera and a PMD CamCube camera have been
used. The camera is provided with its own illumination sys-
tem, composed of a set of modulated infra-red LEDs. The
SR3100 camera has a low pixel resolution of 176 x 144,
while the PMD camera has a resolution of 204 x 204, which
is however still far below the resolutions of standard RGB
cameras. Both cameras have a high frame rate average of
25 fps. This high frame rate makes these cameras suitable
for real time applications. Depth and RGB color, provided
by a PointGrey Flea camera, can be easily combined for a
specific depth range thanks to the precise intrinsic and ex-

trinsic camera calibration. To perform a good data regis-
tration reducing partial occlusions, both cameras have to be
close to each other (few centimeters) and share the same
field of view. By means of using multiple images from both
cameras with the same calibration pattern, intrinsic and ex-
trinsic parameters for each camera can be computed. Once
this information is achieved, both sensor pixel matrices can
be put in correspondence using the calibration pattern as a
reference frame and hence registering depth and color in-
formation.

Due to the different viewpoints of the two cameras, oc-
clusions can occur in particular for close objects. These oc-
clusions are detected and removed using a buffer approach:
The 3D point cloud is transferred to the RGB camera refer-
ence space using extrinsic parameters and, if several points
are detected along the same line of view, the closest point to
the camera is selected. Since the ToF camera has a smaller
resolution than the RGB camera, the 3D points are collected
from a region around the line of view.

4.2. Stereo disparity

We acquire sparse stereo disparity using a recent algo-
rithm proposed in [5], which is applicable to weakly tex-
tured images and thus combines well with color-based seg-
mentation. In this method, stereo segments are found for
stereo images and segment silhouettes are computed in both
frames. Unique correspondences of silhouette-edge points
are searched, and the respective disparities are calculated.
Occluded edges are identified and removed from the edge
disparity map. Additionally, texture inside segments is ex-
ploited by applying a window-based stereo algorithm which
operates strictly inside stereo segments. Confidence values
are computed and only those disparities that have a high
confidence are used, resulting in sparse disparity maps. In
our method, we use these sparse disparity maps directly as
input without employing the interpolation process described
in [5]. We further use a phase-based method to establish ini-
tial correspondences [9].

5. Results

The algorithm is tested using both time-of-flight depth
data (see Section 4) and stereo disparity. In the case of
time-of-flight depth, color images and depth images are ac-
quired together and combined by bringing both sensor-pixel
matrices in correspondence using the respective camera-
calibration information (see also Section 4). The simula-
tions were performed using MATLAB with an Intel Duo
Core Processor T2250 of 1.73GHz. Total run time of the al-
gorithm using non-optimized code for segmenting the time-
of-flight data in the carton box example (Fig. 2) is 88 s
(including computation times for getting color segmenta-
tions). Parameters for segmenting time-of-flight data are



71 = 2cm? and 5 = 0.25 cm?. For stereo disparity, we
have 7, = 0.3 pixels? and 75 = 0.1 pixels?.

5.1. Time-of-Flight

We first illustrate the algorithm on the example of images
of a carton box taken with the RGB and the Swissranger
depth camera. In Fig. 2A-B, the color image and the cor-
responding Swissranger depth are presented, respectively.
Points for which no depth is computed (due to occlusions
and the smaller size of the depth images compared to the
color images) are plotted in white. The results of color
segmentation at different resolutions (levels 0-2) are dis-
played in Fig. 2C. Unclustered points are plotted in white
color. The results after step 4 of the algorithm are dis-
played in Fig. 2D. We observe that those color segments
corresponding best to the surface structure of the objects
got selected. Remaining over-segmentations are removed
by applying step 5 of the algorithm. The result is shown
in Fig. 2E. Region growing assigns previously unclustered
points to the closest surface (see Fig. 2F). The surface mod-
els that have been determined can now be used to fit depth
to the segment regions, as shown in Fig. 2G. We obtained a
total fitting error of 1.1 cm. Fitting errors of the following
examples are in a similar range.

Next, we apply the algorithm to color images with Swiss-
ranger depth of several domestic objects, i.e., boxes, a cup, a
basket, a ball, and a water can, containing planar, spherical,
cylindrical shapes, and other curved shapes (Fig. 3A-F). In
the left panels, the original color images are shown. In the
middle panel, final segment boundaries (after region grow-
ing) are presented together with the initial depth data. In the
right panels, the final fitted depth is shown. We observe that
the algorithm successfully segments most of the prominent
surfaces, including curved ones. Only in areas of highly
complex structure or insufficient depth information, failures
are observed, e.g., the handle of the cup (Fig. 3B) (which
was lost during the procedure) and the edge of the cylinder
in Fig. 3A. In the example shown in Fig. 3D, we have some
problems with false points in the depth map which suggest
the upper segment of the box to be curved even though we
would expect it to be planar.

In the next step, we apply the method to color-depth im-
ages of plants. Here depth is recorded with a PMD camera.
Plant images are challenging because they contain many
depth layers and occlusions, caused by overlapping leaves,
and weak contrast boundaries separating adjacent leaves.
The results are presented in Fig. 4A-E. In the left panels, the
original color images are shown. In the middle panels, fi-
nal segment boundaries (after region growing) are presented
together with the initial depth data. In the right panels, the
final fitted depths are shown together with the final segment
boundaries. Even though plants exhibit complicated shapes
and have many occlusions, most of the main surfaces have

Scene ‘ Eﬁn ‘ Emerge ‘ Pmerge ‘ pr ‘
Tsukuba 0.67 | 0.56 81 0.72
Venus 0.34 | 0.31 83 0.73
Teddy 1.05 | 0.75 79 3.61
Cones 1.51 1.1 73 2.3
Babyl 1.61 1.18 65 3.78
Lampshade2 | 2.95 | 2.67 87 6.79
Plastic 331 | 3.14 87 6

Table 1. Average error in pixels for Middlebury images of final
disparity maps Ejy, disparities after merging Fierge (With densities
Pmerge), and of the phase-based approach Ep [9].

been found, often corresponding to leaves or at least part
of leaves, and curved shapes could be modelled correctly
in most cases (for example the large leaf at the bottom in
Fig. 4A). Basic segment properties such as mean color, size,
and mean fitting error are computed, and, based on these cri-
teria, candidate segments (e.g. for robot manipulation) are
selected representing leaf structures. An exemplary candi-
date segment has been marked red for each plant (Fig. 4,
left panels). Also the center point of the segments has been
marked red.

5.2. Stereo disparity

Next we apply the algorithm to stereo images
from the Middlebury stereo database (URL: vi-
sion.middlebury.edu/stereo/) [10]. Three examples are
shown in Fig. SA-C, left panels (Lampshade2, Venus, and
Teddy). A sparse disparity map of the scene is computed
using a recent algorithm proposed in [5]. We use disparity
as input for z. The initial sparse disparity maps are
shown together with computed final segment boundaries in
Fig. 5A-C, middle panels. Points for which no disparity
could be found are shown in white color. The extracted
surface models of the segments can then be used to create
dense disparity maps, as presented in Fig. 5A-C, right
panels. The basic structure of the scene could be captured
and surfaces identified. Results of our method for Tsukuba,
Venus, Teddy, and Cones have been evaluated using the
Middlebury evaluation, summarized in Fig. 6 [10]. We
further provide the average disparity error for several Mid-
dlebury images in Table 1. These results demonstrate that
the method can be used to find dense disparity maps even
in cases where little information is given at the beginning,
e.g., in case of weakly textured images.

6. Discussion

We proposed a novel algorithm for the segmentation of
color images into surface patches using sparse depth data,
acquired using either time-of-flight or stereo techniques.
The color image is segmented with different resolutions, 3D



Figure 4. Segmentation results for plants. Left panels: Original color image together with an exemplary candidate segment boundary
(marked in red) (see text). Middle panels: Initial PMD sparse depth plotted together with final segment boundaries. Right panels: Fitted
depth using segment surface models plotted together with the final segment boundaries.



Figure 5. Segmentation results using stereo disparity for A Lamp-
shade2, B Venus, and C Teddy. Left panels: Left color image.
Middle panels: Initial disparity with final segment boundaries.
Right panels: Fitted disparities using surface models.
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Figure 6. Middlebury evaluation (main columns from left to
right: Tsukuba, Venus, Teddy, and Cones) for an error thresh-
old of 2 pixels (for further explanation of the table, see URL:
vision.middlebury.edu/stereo/). The percentage of bad pixels is
given for nonoccluded areas, all areas, and discontinuities, in the
subcolumns from left to right.

surfaces are fitted to the color-segment areas using sparse
depth data, and a new segmentation is found by minimizing
the total fitting error while giving preference to segments
at lower resolutions. The method has been demonstrated to
segment a variety of images of domestic objects and plants
into their composite surfaces and shown to be applicable
to different kinds of depth information, i.e., time-of-flight
and stereo. The method showed robust results for the given
parameter set and also was demonstrated to work well for
images of plants that contain many depth layers, occlusions,
and leaf boundaries of weak contrast. Textured areas could
be treated to some extent. Our future goal is to apply the
algorithm in robotic settings using color images combined
with time-of-flight depth for recognition of domestic ob-

jects and plants. The method can also be used to describe
objects in a viewpoint-invariant manner through relational
graphs of surface segments (nodes), where the edges are
surface relations, e.g., relative orientation, as proposed by
Fan et al (1989) [6].
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