
Autonomous Navigation for Urban Service Mobile Robots

A. Corominas Murtra1, E. Trulls1, O. Sandoval1, J. Pérez-Ibarz1,
D. Vasquez2, Josep M. Mirats-Tur3, M. Ferrer1 and A. Sanfeliu1

Abstract— We present to the robotic community a fully
autonomous navigation solution for mobile robots operating
in urban pedestrian areas. We introduce our robots and the
experimental zone, overview the architecture of the navigation
framework, and present the results after3.5km of autonomous
navigation. We expose the main lessons learnt by the scientific
team and identify the issues to improve future works.

I. INTRODUCTION

Pedestrian areas are becoming common in modern cities,
due to environmental and social concerns, and it is expected
that urban service robots will be deployed in such areas in the
near future, to aid people in tasks such as transportation of
goods, guidance or taxi service. The study of these issues was
one of the goals of the URUS project (Ubiquitous networking
Robotics in Urban Settings), which has presented scientific
and technological advances on these topics [1].

This paper is concerned with autonomous navigation for a
urban, service, mobile robot. In this context, the navigation
framework will be requested withgo toqueries sent by some
upper-level task allocation process, or directly by an operator.
These queries will indicate a goal point in the map coordinate
frame, and thus the robot’s navigation framework also works
in the map coordinate frame. GPS-based navigation remain
an unreliable solution for mobile robots operating in urban
areas, due to coverage blackouts or accuracy degradation [2],
so that additional work is necessary for robot localization.

In recent years significant advances have been experienced
in the area of autonomous navigation, specially thanks to the
efforts of the scientific and engineering teams participating
in the DARPA Urban Challenge as [3], as well as other
contests [4]. Even if this body of work is designed for
car-like vehicles running on roads, some important ideas
translate to robots of different configurations operating in
pedestrian areas, specially in terms of software and naviga-
tion architecture. However, urban pedestrian areas present
additional challenges to the robotic community, such as
narrow passages, ramps, holes, steps and staircases, as well
as the ubiquitous presence of pedestrians, bicycles and other

Authors are with the Institut de Robòtica i Informàtica Industrial1 , IRI
(UPC-CSIC), Barcelona, Spain, [acorominas, etrulls, osandoval, jnperez,
mferrer, asanfeliu] @iri.upc.edu, the Swiss Federal Institute of Technology2 ,
Zurich, Switzerland, vasquez@mavt.ethz.ch, and the Cetaqua, Centro tec-
nológico del agua3 , Barcelona, Spain, jmirats@cetaqua.com.

This research was conducted at the Institut de Robòtica i Informàtica
Industrial of the Universitat Politècnica de Catalunya and Consejo Superior
de Investigaciones Cientı́ficas. It was partially supported by Consolider
Ingenio 2010, project CSD2007-00018, CICYT project DPI2007-61452, and
IST-045062 of the European Community Union. O. Sandoval is supported
by a scholarship from the Mexican Council of Science and Technology.

Fig. 1. Tibi and Dabo, urban service mobile robots.

unmapped, dynamic obstacles. All this leads to new chal-
lenges in terms of perception, estimation and control.

In this context, the paper presents to the robotic com-
munity a fully autonomous navigation system designed for
urban service robots operating in pedestrian areas. The ex-
perimental area is a10000m2 section of a car-free university
campus. The experiments were carried out with our robots
Tibi and Dabo, pictured in figure 1. After reviewing the
navigation architecture, we present the results of autonomous
navigation experiments totalling over3.5km, highlighting the
issues we encountered and their cause, and exposing the main
lessons learnt by the scientific team in order to identify the
critical aspects to improve future works.

This paper is organized as follows. Section II briefly de-
scribes the robots at our disposal and the experimental area.
Section III presents the navigation architecture. SectionIV
summarizes the localization algorithm. Sections V and VI
present our path planning and path execution algorithms.
Section VII is concerned to the obstacle avoidance system,
dealing with terrain features such as ramps. Results are
exposed in section VIII, and section IX presents the main
lessons learnt by the scientific team.

II. ROBOTS AND EXPERIMENTAL AREA

Tibi and Dabo (figure 1) are two mobile robots designed
to operate in urban pedestrian areas. Each robot is based
on a 2-wheel, statically unstable Segway RMP200 platform
and is equipped with two Leuze RS4 2D laser scanners, one
pointing forward and the other backwards, at a height of
40cm from the ground, scanning the plane parallel to the
ground on a flat surface. A third 2D laser scanner, a Hokuyo



UTM-30LX, is mounted at a height of90cm scanning the
vertical plane in front of the robot. Segway platform also
provides wheel odometry data.

A large section of the Universitat Politècnica de
Catalunya’s (UPC) Campus Nord in Barcelona was outfit-
ted as an experimental area. This installation covers over
10000m2, including six buildings and a square. The campus
is placed on a hilly region and features differences in height
of up to10m in the experimental area, resulting in a series of
ramps, which the robot must be able to navigate, and drops
and staircases, which should be avoided, as well as typical
obstacles such as bulletin boards, bicycle stands, trashcans or
flower pots. Figure 2 shows two pictures of this environment.
The map of the experimental zone can be seen in figure 4.

Fig. 2. Two pictures of the experimental zone.

III. NAVIGATION ARCHITECTURE

Our navigation (figure 3) consists of four separate mod-
ules: localization, path planning, path execution, and obstacle
avoidance. The obstacle avoidance module is in turn made up
of three blocks: traversability inference, local planningand
motion control. The path planning module is responsible of
finding a global path between the platform and its goal on
a static map of the environment upon ago to request. The
other components conform two different control loops. The
first loop, the obstacle avoidance module itself, isreactive
and is in charge of moving the robot to local goals, expressed
in the robot coordinate frame,Xr

gi
. It is important to point out

that this loop does not depend on the localization estimate
since it only ensures that the robot will arrive to a local
goal while avoiding the obstacles perceived by on board
sensors. The second loop isdeliberative, and is tasked with
guiding the robot through the different waypoints forming
the path {Xm

g1
, ..Xm

gN
}, up to the goal. The deliberative

loop includes the localization module and the path execution
process, which uses the current localization estimateX̂m

r to
transform the waypoints from map coordinatesXm

gi
, to robot

coordinatesXr
gi

. This local goal is the input of the obstacle
avoidance module, thus closing the deliberative loop.

Both loops, platform driver and acquisiton processes run
concurrently in the same computer. The reactive loop runs
at 10Hz and the deliberative one at3Hz. Since the platform
moves at speeds up to1m/s these rates are deemed sufficient.

The software framework follows a service-oriented archi-
tecture, with the aim to ease software integration between
the developers: each block of figure 3 has been implemented
as an independent process, accessible through an interface.

Fig. 3. Process diagram for our navigation architecture. Each block is an
independent process. Arrows are TCP connections.

Process communications are based on YARP open-source
middleware [5]. For a further description of the software
architecture, please refer to [6].

IV. MAP-BASED LOCALIZATION

The localization process estimates the 2D robot position
referenced to the map coordinatêXm

r = (x̂m
r , ŷmr , θ̂mr ),

and the associated uncertainties. This has been implemented
with a basic particle filter (PF), a recursive algorithm that
estimates a probability density function of the state of a
system given a set of observations and a prediction model.
The density function is represented by a set of samples of
the state space, each one having a weight related to the
probability of current observations given the system stateis
in a sample point. The pair formed by a sample vector and
a weight is called aparticle. Further details on PF’s in [7].

The proposed filter integrates the wheel odometry and the
front and back laser data. Thepropagation step is made
by advancing each particle following a simple differential
kinematic model with the wheel odometry data. At the
correction step of iterationt, each particleXt

i updates
its weight computing the likelihood between the real laser
observation available,otL, and theexpectedone,osL(X

t
i ):

p(otL|X
t
i ) ∝ LL(o

t
L, o

s
L(X

t
i )) ∈ [0, 1] (1)

Our approach computes on-line the expected observations
from particle positions. To compute such expected obser-
vations, the robot needs a model of its environment, imple-
mented as a 2D geometric map of the experimental area. This
map, coded following a vector format compatible with the
standard Geographical Information Systems (GIS), describes
a set of obstacles, while each obstacle is represented with a
set of segments. However, the map is augmented with height
information, thus each segment has a height component [8],
necessary to compute expected laser observations consider-
ing the laser device mounting height on board the robot.

Figure 4 shows the localization output in blue and the
wheel odometry position in green for a single execution
on the campus. Our approach has been proved to deal
robustly with the presence of unmodelled obstacles such as



pedestrians, thanks to comparing expected and real laser ob-
servations, without any feature extraction step. The proposed
PF has achieved an execution rate of3Hz. Some issues are
encountered dealing with ramps and other three dimensional
elements, which are discussed in section IX.

Fig. 4. Localization estimate (blue) and odometry (green) during an
autonomous navigation test in the Campus experimental area. Dotted lines
form a 20m×20m grid.

V. PATH PLANNING

The path planning module computes global paths between
the platform and its goal on a static map of the environment,
so that the output of this module is a set of waypoints
in the map coordinate frame. It is executed when a new
global goal is requested. The module takes as input a global
cost gridmap, as well the physical properties of the robot
such as its size and kinematic constraints. The cost map
we have used in our experiments is the distance transform,
computed from a binary map of the static obstacles. The
planner computes a search graph in which nodes represent
robot poses and graph edges represent collision-free motion
arcs fulfilling robot’s kinematics. In order to limit the search
space, graph expansion is performed using a fixed arc-
length and a discrete number of arc curvatures. The graph is
explored using theA∗ algorithm, where the heuristic is the
naı̈ve grid-distance to the goal, computed on the cost map
using Dijkstra’s algorithm. It is worth noting that using a
fixed arc length and angle discretization usually implies that
the plan is not able to reach the exact goal pose, making it
necessary to use an acceptance threshold. Tibi and Dabo have
used a threshold of30cm, precise enough for our application.

VI. PATH EXECUTION

The mission of the path execution algorithm is to have
the robot follow a series of waypoints, as provided by the
path planning algorithm, into a smooth trajectory, even with
the presence of unmapped obstacles. Most path planners [9]
had the peculiarity that, when a path is clear of obstacles,
they generate a fairly straight path with rather separated
waypoints. With obstacles in the way, however, there are
several twists in the resulting path and the waypoints are
very close to one another. Inspired by that fact, te proposed

procedure uses circle-based search regions to smoothly cor-
rect deviations from the path. This algorithm carries a low
computational load. Figure 5 shows a sample situation and
the following pseudo code overviews the algorithm.

Algorithm 1 Path execution
Require: path and positionEstimate

circleList = createCircleList(path)
index = 1
repeat

for (i = index+ 1; i >= index− 1; i−−) do
if positionEstimate is inside circleList[i] then
globalGoal = circleList[i+ 1].center()
index = i+ 1
localGoal = globalGoal.T r(positionEstimate)
send localGoal to obstacleAvoidance

break
end if

end for
until positionEstimate is not inside circleList[last]

When a new path is provided by the planning module,
the path execution algorithm generates a list of circles with
center at each waypoint and radius the distance to the
following point. The algorithm then searches the circles
around the last known robot position estimate. If the robot is
inside one of those circles, the center of the next circle is sent
as the new local goal to the obstacle avoidance. Otherwise,
we check if the robot is inside a recovery zone, defined as
the mean distance between points around the path. If this is
the case the robot is sent to the last known goal; otherwise,
a request is sent to the path planner for a new path. Figure 5
shows the procedure.

Fig. 5. Waypoints provided by the path planner in red, path execution
circle list in yellow with search circles filled, robot position estimate in
blue, and green arrow pointing the new local goal.

VII. OBSTACLE AVOIDANCE

The motion planning problem is well studied when using
a priori information [9]. However, many techniques are
not applicable when the environment is unknown or highly
dynamic. This problem is compounded by the fact that both
the environment and the robot carry uncertainties due to
sensing and actuation, so that it is not feasible to treat
motion planning separately from its execution. To solve these
problems, sensory information is required in the planning and
control loop, enabling for reactive navigation. A widely-used,



real-time approach, based on the artificial potential field,
was presented in [10] and extended by [11]. Other methods
extract higher-level information from the sensor data, such
as [12], based on inferring regions from geometrical proper-
ties. While these methods don’t take into account the physical
properties of the platform, two common approaches doing
so are the curvature velocity method [13] and the dynamic
window (DW) approach [14].

Our proposal combines a local planner with a slightly
modified DW, producing motion control commands suitable
for the platform. Decoupling planning and execution is a
common practice in obstacle avidance (OA), as the full
path planning problem is typically too complex for real-time
processing. Inputs to the local planner are the local goal,Xr

g ,
provided by the path execution module, and sensor data: front
laserotLH

and odometryotU . The output of the local planner
is an obstacle-free goal, denoted byXr′

g . This goal is the
input for the motion controller, which computes commands
for translational and rotational speeds.

While this approach is sufficient for traversing flat areas,
some modification must be made before it can handle an
environment containing ramps (which must be overcome),
and staircases or drops (which must be avoided). This
problem cannot be solved with a single laser scanner, since
the entry to a ramp is seen from its base as a wall at a distance
determined by the laser’s mounting height. This is com-
pounded by the fact that our robots are statically unstable and
pitch forward or backward for self-balancing, most notably
when entering or traversing a ramp, reducing laser visibility
up to 1m. Therefore, we propose an additional component
to the OA module, in charge of performing traversability
inference over the data provided by the vertical laserotLV

.
We introduce the local planner and motion controller first,
and later present the traversability inference method. Figure 6
shows the OA block diagram.

Fig. 6. Obstacle Avoidance block diagram.

A. Local RRT-based planner

The local planner has been implemented using a Rapidly-
exploring Random Tree (RRT) [16]. RRT’s explore a
workspace by incrementally building a tree, creating new
branches by generating points randomly in the workspace
and linking them to the closest point already in the tree
for which an obstacle-free line of sight exists. The front
laser is used to determine the presence of obstacles, and the
search space is restricted to sectors of a circle centered on
the robot with radius the distance to the goal. The sectors
are initially restricted in angle, increasing the search space

each iteration until reaching the maximum scanner’s aperture
(190o). Radius limit is necessary to avoid faulty solutions
caused by the sensors’ inherent weakness to occlusions, and
the path execution module must provide a goal within range.
If the local planner is unable to find a solution, the robot
stops and upper-level modules are notified. Otherwise, the
path is smoothed and the tree discarded, and the first point
in the path is provided to the motion controller as the new
local goalXr′

g . This process is depicted in figure 7. Please
note that we do not perform any kind of feature extraction.

Fig. 7. Local RRT planner with incremental search space in gray. Obstacles,
as the front horizontal laser scan points with a clearance, in red. On the left
the tree, in blue, after a few iterations. On the right the solution in purple
and the final, smoothed path in green.

We do not allow the robot to move backwards. This is
because (1) our Segway robots can rotate180o with ease, and
(2) as will be described later in this section, the third laser
scanner, pointing forwards, is required to safely navigate
certain features of the experimental zone.

B. Motion controller

Our motion controller is based on the DW approach [14].
This method circumvents the complexity of the full path
planning problem by considering small time increments pe-
riodically, at a high rate. The approach considers only those
configurations reachable within the allotted time frame for
the current state (thedynamic window), implicitly complying
with the robot’s dynamic constraints. This space is then
discretized into a number of cells, for which an objective
function is maximized. This function considers a trade-off
between velocity, target heading and clearance to obstacles:

G(v, ω) = αvfv(v, ω) + αθfθ(v, ω) + αcfc(v, ω) (2)

The clearance cost function measures the time until collision
for the cell’s configuration, relative to the platform’s breaking
time, as described in [15], while the cost functions for
velocity and heading measure closeness to the configurations
that maximize translational velocity and minimize the angle
to the goal, respectively. The platform’s dynamics must be
incorporated into the velocity cost function so as not to
overshoot the goal, and into the target heading cost function
to avoid an oscillating behavior. We achieve this by defining:

T V
stop = VT

aTmax
; T V

goal =
dgoal

VT
; KT =

TV
goal

TV
stop

TR
stop = Vθ

aθmax
; TR

goal =
θgoal

Vθ
; KR =

TR
goal

TR
stop

(3)



So thatKT andKR give us a measure of the difficulty
of stopping the robot in either case. We determine adequate
acceleration rates for different values ofKT andKR and use
them to devise a control law experimentally, as we find it too
complex to fully model the behavior of the Segway robots.
The control law and current state provide us with target
values for the velocity and heading cost functions, which
are a measure of closeness to these values. The functions
are weighted as follows:αv = 1, αθ = 2, αc = 5.

The reactive loop runs at a higher frequency than the
deliberative loop, and so while the path execution module
does not provide a new, updated goal, the OA algorithm
updates its current goal by odometry data only.

C. Dealing with ramps

False obstacles due to ramps may be filtered by incorpo-
rating the localization estimate and using the GIS map to
identify the situation, but we feel this solution would greatly
compromise the robustness of our navigation system. Thus,
our approach is based on an additional laser scanner placed
at the robot’s waist, rotated 90o on its side so that it scans
the vertical plane in front of the robot. This laser scanner is
used to infer whether the robot can traverse this region of
space, and enables us to detect some obstacles outside the
field of view of the horizontal laser as well.

The campus features three different kinds of traversable
surfaces: flat, sloped with a relatively even incline, and
transitions from one to the other. The sensor’s observations
can thus be modeled with one or two line segments. Linear
regressions are extracted from the sensor data by least
squares fitting, using the average regression error to deter-
mine its quality. Prior to this computation, the vertical laser
scan is pre-processed by removing points beyond the OA’s
algorithm range (8m) or due to interference with the robot
chassis. The process is divided into three steps, executed
in order, and it is terminated whenever one of these steps
produces a satisfactory solution. We consider: (1) a single
regression using all valid data, (2) two regressions, usingall
data sorted over the horizontal axis and divided into two sets
by a threshold, for a set of thresholds over the horizontal
axis, and (3) a single regression, iteratively removing the
points furthest away from the robot over the horizontal axis
until conditions are met. In all cases a maximum regression
error and a minimum regression length must be satisfied.
In case 2, two additional conditions are enforced in order
to ensure the compatibility between segments: the vertical
gap and the angular difference between regressions must be
sufficiently small. Thresholds are determined empiricallyfor
the available sensors at the campus environment.

This inference process enables the robots to enter and
traverse ramps by removing points from the front laser’s scan
incorrectly indicating the presence of obstacles prior to local
planning (see figure 8). Staircases are easy to discriminate
when seen from the bottom. From above, the laser’s accuracy
presents a problem, resulting in observations similar to those
of a ramp, and the slope’s steep incline is then used to
identify the surface as not traversable. The length of the

traversable surface is used as an additional parameter for the
motion controller, limiting the translational speed or directly
stopping the robot in close proximity of an obstacle.

Fig. 8. Vertical (left) and frontal (right) laser scans for aSegway robot in
front of (top), and in the middle of (bottom), a ramp. Regressions are shown
in red, where every square side equals1m. In either case, the local goal
indicated in the picture cannot be reached without traversability inference.

Traversability inference is computed in around1 − 20ms
depending on the number of steps. The local planner typi-
cally takes1 − 10ms. The computational cost for the DW
depends on its granularity, taking for instance20− 50ms for
15 × 15 cells. The OA loop is conditioned by the sensors
update rate and runs at10Hz.

VIII. ASSESSMENT OF RESULTS

The navigation system was validated in a series of exper-
iments conducted over two days. All the processes shown
in figure 3 were running on a DELL XPS 1313 laptop on
board the robot. An external laptop connected through wifi
to the on board computer was dedicated to send thego to
requests and for online monitoring. Requests were pairs of
XY coordinates selected manually on the map, typically
covering large distances over the campus. 34 requests were
handled, 27 of which were successfully accomplished by
the robot. Total runtime of both experiments was about 155
minutes, with the robot actually navigating for about 87
minutes and covering an estimated distance of over3.5km.
These experiments were conducted on a real, populated
setting on a working day, so the robot encountered many
obstacles (mostly people) in the way and 13.7% of navigation
time was spent in obstacle avoidance mode. Failing requests
were due to incorrect localization (5), a software bug (1)
and obstacle avoidance issue (1). During each experimental
day, the processes were only initialized at the start of the
experimental session, and only the localization module was
reinitialized after a localization failure. All but one of the
instances where the robot got lost correspond to navigation
on ramps, where perception is severely impaired since the
balancing behavior of the platform forces the horizontal
laser to point directly to the ramp surface. The obstacle
avoidance failure happened when the robot was dangerously
close to a glass door, unseen by the lasers due to illumination
issues, and the red emergency button was prudently pushed.



Table I lists the experiments, detailing the total navigation
time until reaching the goal, the time spent on active obstacle
avoidance, and the final status of the request. Table II
summarizes the results. A short video is attached to this paper
showing the robot following a path while avoiding obstacles.

TABLE I

DETAILED RESULTS OF THE34 Go ToREQUESTS

Nav. OA Status Nav. OA Status
time (s) time (s) time (s) time (s)

51.8. 0.5 Loc. Fail 95 12 Sucess
260.1 51.3 Success 342 51.8 SW bug
137.2 10.3 Success 125 18.8 Success
159.8 11.3 Success 64 52.7 Loc. Fail
89.6 60.5 OA Fail 97 5.9 Success
190.0 8.5 Success 175 7.8 Success
205.2 4.0 Success 246 19.2 Success
84.1 2.0 Success 212 45.2 Success
128.1 0 Success 119 27.3 Success
164.6 40.5 Loc. Fail 160 34.2 Success
223.2 16.2 Success 154 22.5 Success
176.1 2.7 Success 93 37.7 Success
179.6 6.5 Success 100 4.2 Success
276.2 31.5 Success 116 13.8 Success
127.7 4.2 Success 132 66.8 Loc. Fail
125.2 1.5 Success 104 6.5 Success
136.7 17.3 Loc. Fail 163 16.8 Success

TABLE II

SUMMARY OF THE EXPERIMENTAL SERIES

Number ofgo to requests 34
Success Rate 27/34 (79.4%)
FAILS 5(loc), 1(SW bug), 1(OA)
Total Run Length 3517 m
Total Navigation Time 86.8 min
Time Avoiding Obstacles 720 s (13.8%)
Mean Travel Speed 0.67 m/s

IX. LESSONS LEARNT AND FUTURE WORKS

This paper overviews a full autonomous navigation ap-
proach designed for mobile robots operating in urban pedes-
trian areas. The paper also shows the results after a session
of 34 go to requests sent to the robot, detailing the cause
when errors occurred. The experimental sessions have been
useful to validate the proposed framework, accomplishing
about3.5km of autonomous navigation in a pedestrian area
during working days. The software architecture, based on
independent processes connected through TCP ports, has
been proved to be very useful both for navigation purposes
and during debugging sessions. The experiments have also
highlighted the critical issues to be improved in future works.

At the estimation level, the localizationmodule must
be improved, since 5 errors are directly provoked by a
localization failure. The proposed approach is based on a
particle filter estimating the 2D position of the robot, using
a 2D model of the environment to compute the expected
observations for particle correction. This approach has met
the real-time requeriments dealing with a map of an urban
area of10000m2. However, in such urban pedestrian areas,
where 3D elements are usually found, the computation of the

expected observations in a 2D model limits their reliability,
specially when the robot navigates on ramps or close to them,
since most of the laser scanner rays are colliding with the
ramp surface. This issue is even more critical for Segway-
based platforms due the balancing behavior. Moreover the
balancing movement gives the robot an aditional 3D per-
spective of the environment poorly modelled with the 2D
approach. Future works in terms of localization should be
based on a 3D estimation of the robot position and the
development of 3D environment models and fast algorithms
to compute expected laser scans.

At the motion control level, and due to safety reasons,
obstacle avoidanceis the most critical module. The pro-
posed approach for OA also meets the computational time
requeriments but remains very limited in terms of perception.
Using two planar laser scanners, sweeping the vertical and
horizontal planes in front of the robot, creates dangerous
blind areas, leaving the navigation system susceptible against
obstacles such as holes or steps. This limitation could be
improved using an hybrid laser-camera approach, sensing the
whole forward cone of the robot. Such an approach should
meet real-time constraints while facing the challenging illu-
mination situations encountered in outdoor environments.

REFERENCES

[1] http://urus.upc.edu
[2] J. Levinson, M. Montemerlo and S. Thrun, Map-Based Precision

Vehicle Localization in Urban Environments,in Proceedings of the
Robotics: Science and Systems Conference, Atlanta, USA. June, 2007.

[3] M. Montemerlo et al., Junior: The Stanford entry in the Urban
Challenge.Journal of Field Robotics, Vol. 25, No. 9, 2008.

[4] T. Luettel, M. Himmelsbach, F. V. Hundelshausen, M. Manz, A.
Mueller and H.-J. Wuensche. Autonomous Offroad NavigationUnder
Poor GPS Conditions,in Proc. of the IROS Workshop on Planning,
Perception and Navigation for Intelligent Vehicles. St Louis, MO, USA.
October 2009.

[5] G. Metta, P. Fitzpatrick and L. Natale, YARP: yet anotherrobot
platform, Int. Journal on Advanced Robotics Systems, vol 3(1), 2006.

[6] A. Corominas Murtra, J.M. Mirats-Tur, O. Sandoval and A.Sanfeliu,
Real-time Software for Mobile Robot Simulation and Experimentation
in Cooperative Environments,Lecture Notes on Artificial Intelligence
5325. Springer ed., SIMPAR08, Venice, Italy. November, 2008.

[7] S. Thrun, D.Fox, W. Burgard and F. Dellaert, Robust MonteCarlo
localization for mobile robots,Artificial Intelligence, vol. 128, 2001.

[8] J.M. Mirats Tur, C. Zinggerling and A. Corominas Murtra,Geo-
graphical information systems for map based navigation in urban
environments,Robotics and Autonomous Systems, 57(9). 2009.

[9] J.C. Latombe, Robot Motion Planning, Kluwer Academic Pub., 1991.
[10] O. Khatib, Real-Time Obstacle Avoidance for Manipulators and Mo-

bile Robots,International Journal of Robotics Research, 5(1), 1986.
[11] M. Khatib and R. Chatila, An extended potential field approach for

mobile robot sensor-based motions,Proc. of Intelligent Autonomous
Systems, 1995.

[12] J. Minguez, L. Montano, Nearness Diagram (ND) Navigation: Col-
lision Avoidance in Troublesome Scenarios,IEEE Transactions on
Robotics and Automation, Vol. 20, No. 1, February 2004.

[13] R. Simmons, The curvature-velocity method for local obstacle avoid-
ance,IEEE Int. Conf. on Robotics and Automation, vol 4, 1996.

[14] D. Fox, W. Burgard, S. Thrun, The dynamic window approach to
collision avoidance,Robotics & Automation Mag., Vol. 4(1), 1997.

[15] R. Philippsen, Motion planning and obstacle avoidancefor mobile
robots in highly cluttered dynamic environments, PhD Thesis, École
Polytechnique Fédérale de Lausanne (ref. 3146), 2004.

[16] S. LaValle and J. Ku, Rapidly-exploring random trees: Progress and
prospects,Algorithmic and Computational Robotics: New Directions.
Fourth Workshop on the Algorithmic Foundations of Robotics, 2001,
pub. AK Peters, Ltd.


