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Abstract. This paper provides a detailed description of a set of algo-
rithms to efficiently manipulate 3D geometric models to compute phys-
ical constraints and range observation models, data that is usually re-
quired in real-time mobile robotics or simulation. Our approach uses a
standard file format to describe the environment and processes the model
using the openGL library, a widely-used programming interface for 3D
scene manipulation. The paper also presents results on a test model for
benchmarking, and on a model of a real urban environment, where the
algorithms have been effectively used for real-time localization in a large
urban setting.
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1 Introduction

For both simulation or real-time map-based localization, the mobile robotics
community needs to implement the computation of expected environment con-
straints and expected sensor observations, the latter also called sensor models.
For all these computations, an environment model is required and its fast and
accurate manipulation is a key point for successful results of upper-level appli-
cations. This is even more important since current trends on mobile robotics
leads to 3D environment models, which are richer descriptions of the reality but
harder models to process.

Using computer accelerated graphics card for fast manipulation of 3D scenes
has been addressed by robotic researchers from some yars ago, specially in the
simulation domain [4,2, 1], but it remains less explored in real-time localization.
In real-time particle filter localization [8, 3], expected environment constraints
and expected observations are computed massively at each iteration from each
particle position, causing the software modules in charge of such computations
being a key piece for the final success of the whole system. Unlike simulation
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field, there exists few work reporting the use of accelerated graphics cards to
implement the online computation of expected observations [5].

Moreover, detailed descriptions on processing 3D geometric models to effi-
ciently compute physical constraints or expected observations are not common
in the robotics literature. 3D geometric models have started to become an es-
sential part of mobile robot environment models in recent years, specially for
applications targeting outdoor urban environments, and thanks in part to the
availability of powerful and affordable graphics cards on home computers. This
paper wants to remedy the lack of a detailed description on how to efficiently
manipulate such models, presenting in a detailed way the algorithms for an
optimal use of the graphics card acceleration through the openGL library [7].
Thanks to their fast computation, the presented algorithms are successfully used
for real-time map-based localization in a large urban pedestrian environment,
demonstrating the potential of our implementation.

The paper begins introducing the 3D environment model in section 2. Sec-
tion 3 details the algorithms to compute the physical constraints of wheeled
platforms within the environment. Section 4 presents the algorithm to compute
expected range observations, minimizing the computation time while keeping
sensor’s accuracy. Section 5 evaluates the performance of the algorithms and
briefly describes a real application example. Finally, section 6 concludes the
work.

2 Overview of the 3D Environment Model

The goal of our environment model is to represent the 3D geometry of a real,
urban pedestrian environment in a useful way for map-based localization and
simulation. Thus, the model incorporates the most static part of the environ-
ment, such as buildings, floor, benchs, and other fixed urban furniture.

Our approach uses the .obj geometry definition file format [6]. Originally
developed for 3D computer animation, it has become an open format and a de
facto exchange standard. We use two different maps for our intended application.
One map features the full environment, M, while the other consists only of those
surfaces traversable by the robot, M fioor, leaving holes instead of modelling
obstacles. Figure 1 shows a view of the full model for the UPC (Universitat
Politécnica de Catalunya) campus area and figure 2 shows real pictures of this
environment and their approximate corresponding views in the 3D model.

This environment model implicity defines a coordinate frame in which all the
geometry is referenced. Therefore a 3D position can be expressed with respect
to the map frame as follows:

X' =@y 500 6 vy (1)
where the zyz coordinates define the location of the position and the 8¢ co-
ordinates parametrize the position attitude by means of the three Euler angles
heading, pitch and roll.
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Fig. 2. Pictures of the UPC campus environment and their approximate corresponding
views of the 3D map. The 3D map only models the most static part of the environment.
3 Physical Constraints

Terrestrial, mobile robots have position constraints, due to gravity and the en-
vironment. Computing such physical constraints is a basic requirement for sim-
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ulation but also for map-based localization, since the search space is reduced
dramatically, therefore improving the performance of the localization algorithm.

3.1 Gravity constraints

A wheeled robot will always lie on the floor, due to gravity. For relatively slow
platforms in can be assumed as well that the whole platform is a rigid body, so
that a suspension system, if present, does not modify the attitude of the vehicle.
With these assumptions, gravity constraints for height, pitch and roll can be
derived from the environment.

The height constraint sets a height, 2, for a given coordinate pair (=
To compute it only the floor map is used. Algorithm 1 outlines the algorithm.
The key idea is to renderize the 3D model from an overhead view point, setting
a projection that limits the rendering volume in depth and aperture in order
to renderize only the relevant part of the model. Afterwards, by means of an
openGL routine, the algorithm reads the depth of the central pixel.

My M),

Algorithm 1 Height constraint algorithm for 3D models

INPUT: Mfloo’r7 (:C1u7 ylw)
OUTPUT: g.

setWindowSize(5,5); //sets rendering window size to 5x5 pixels
setProjection(1°,1, zmin, Zmasz) //1° of aperture, aspect ratio, depth limits
Xoverhead = (@™, y™, 22 1eaas 0,7/2,0); //sets an overhead view point, pitch= 7 /2
renderUpdate(M fioor, Xovernead); //renders the model from Xoverhead
r =readZbuf fer(3,3); //reads depth of central pixel

_ M .
9z = Zoverhead — T3
return g.;

The pitch constraint fixes the pitch variable of the platform to a given coor-
dinate triplet (wé”,yzj,w , 911)”). The algorithm to compute the pitch constraint is
outlined in algorithm 2. It employs the previous height constraint algorithm to
compute the floor model’s difference in height between the platform’s frontmost
and backmost points, g,y and g.;. The pitch angle is then computed using triv-
ial trigonometry, while L is the distance between the above mentioned platform
points. The roll constraint can be found in a similar way but computing the
height constraint for the leftmost and rightmost platform points. Please note
that the roll constraint applies to all wheeled platforms, but the pitch constraint
does not apply to two-wheeled, self-balancing robots, such as ours, based on
Segway platforms.

3.2 Offline height map computation

The constraints presented in the previous section are computed intensively in
filtering applications such as map-based localization. To speed up online compu-
tations during real-time execution, a height grid is computed offline for the floor



Efficient Use of 3D Environment Models for Mobile Robot Sim. & Loc. 5

Algorithm 2 Pitch constraint algorithm for 3D models

INPUT: Mfloo'm L) (:Czl)u7 y117u7 alj’w)
OUTPUT: g4

:c;{w = mi,w + % cos Hzl,w; //compute the platform’s frontmost point

y' =y + Zsinb,’; //likewise

g-5 = heightConstraint(z}',y}"); //compute height at frontmost point
M = mi,w - %cos Hzl,w; //compute the platform’s backmost point

y! =y}t — Zsin 0" / /likewise

g=0 = heightConstraint(zy’,y2'); //compute height at backmost point
9o = atan2(gzy — gzb, L);

return gg;

map. Gheignt is then a grid containing the height value zM for pairs (2™, y),
thus being a discrete representation of the height constraint with a zy step ~:
M — gl

v — Yo
Gheight(iuj) =9z (x;]nwu y;éw) | 1= (Z?’Lt) = L

= (int)f, (2)

where z)! and y} are the map origin zy coordinates. The 2 value is computed
offline by means of the height constraint (algorithm 1) along the grid points.
Figure 3 shows the height grid for the UPC campus environment.

Note that this approach is valid for maps with a single traversable z-level,
such as ours, and while our algorithms can be directly applied to multi-level
maps further work would be required in determining the appropiate map section
to compute. Since computing the pitch and roll constraints requires several z™
computations, the height grid speeds up these procedures as well. To avoid dis-
cretization problems, specially when computing pitch and roll constraints using
Gheight, we use lineal interpolation on the grid. Algorithm 3 summarizes the grid
version of the height constraint.

Algorithm 3 Grid version of the height constraint
INPUT: Gheight, (zh', yp")

OUTPUT: g.
. . M) . y My
i = (int)t——; j = (int) >———

21 = Gheight (i, J);

(i2,j2) = nearestDiagonalGridIndex(); //ia =i+t 1; jo =35+ 1;
z2 = Gheight(i2,j); //height of a neighbour cell

23 = Ghreight(i, j2); //height of a neighbour cell

z4 = Gheight(i2, j2); //height of a neighbour cell

g- = interpolation(z1, 22, 23, 24, xﬁl, y;,\/f);

return g.;
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Fig. 3. Height grid, Gheignt, of the UPC campus environment.

4 Range Observation Model

Another key factor in dealing with environment models is the computation of
expected observations, also called sensor models, or simulated sensors. This is
also useful for both simulation and real-time map-based localization. This section
outlines how, from a given 3D position in the environment, expected 2D range
scans and expected 3D point clouds are computed. A common problem in either
case is the computation of range data given the sensor position and a set of sensor
parameters like angular aperture, number of points and angular accuracy. To
compute these observation models, we use again openGL renderization and depth
buffer reading, but the approach specially focuses on minimizing the computation
time without violating sensor’s accuracy and resolution. This minimization is
achieved by reducing the rendering window size and the renderig volume as
much as possible, while keeping the sensor accuracy.

The goal of a range observation model is to find a matrix R of ranges for
a given sensor position XM. Each element 7;; of the matrix R is the range
computation following the ray given by the angles a; and ;. Figure 4 shows
these variables as well as coordinate frames for the map, (XYZ)M, and for the
sensor, (XYZ)".

The range observation model has the following inputs:



Efficient Use of 3D Environment Models for Mobile Robot Sim. & Loc. 7

YM

Fig. 4. Model frame, sensor frame, angles a; and (;, and the output ranges r;;.

— A 3D geometric model, M.

— A set of sensor parameters: horizontal and vertical angular apertures, A,
and Ag, horizontal and vertical angular accuracies, d, and dg, the size of
the range matrix, n, X ng, and range limits, rmin, 'maa-

— A sensor position, XM = (aM M M oM oM My

The operations to execute in order to compute ranges r;; are:

1. Set the projection to view the scene.

2. Set the rendering window size.

3. Render the scene from X .

4. Read the depth buffer of the graphics card and compute ranges r;;.

Set the Projection. Before using the openGL rendering, the projection parame-
ters have to be set. These parameters are the vertical aperture of the scene view,
which is directly the vertical aperture of the modelled sensor, Ag, an image as-
pect ratio p, and two parameters limiting the viewing volume with two planes
placed at zy (near plane) and zp (far plane)’. These two last parameters coin-
cide respectively with 7,,;, and r,4, of the modelled sensor. The only parameter
to be computed at this step is the aspect ratio p. To do this, first the metric
dimensions of the image plane, width, w, and height, h, have to be found. The
aspect ratio will be derived from them:
Aq

5 ) Tmintg(=

Aﬁ w

W = 2Tpintg( ) p= W (3)

Figure 5 depicts the horizontal cross section of the projection with the associated
parameters. The vertical cross section is analogous to the horizontal one.

! 2n and zp are openGL depth values defined in the screen space.
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Fig. 5. Horizontal cross section of the projection with the involved parameters. Green
squares represent the pixels at the image plane.

Set the rendering window size. Before rendering a 3D scene, the size of the
image has to be set. Choosing a size as small as possible is a key issue to speed
up the proposed algorithm. Since range sensors have limited angular accuracy,
we use that to limit the size of image, in order to avoid renderizing more pixels
than those required. Given a sensor with angular accuracies 6, and dg, pixel
dimensions of the rendering window are to:

tg(Aa/2)

B tg(Ap/2).
tg(éa) ; b= (

tg(ds)
Figure 5 shows an horizontal cross section of the projection and the related

variables to compute the horizontal pixel size of the rendering window (the
vertical pixel size is found analogously).

int)2 (4)

Pa = (int)2

Render the scene. The scene is renderized from the view point situated at sensor
position XM . Beyond computing the color for each pixel of the rendering window,
the graphics card also associates to each one a depth value. Moreover, graphics
card are optimized to discard parts of the model escaping from the scene, thus
having limited the rendering window size and volume speeds up the rendering
step. Renderization can be execute in a hidden window.

Read the depth buffer. Depth values of each pixel are stored in the depth buffer
of the graphics card. They can be read by means of an openGL function that
returns data in a matrix B of size p, X pg, which is greater in size than the desired
matrix R. Read depth values, by;, are a normalized version of the renderized
depth for each pixel. To obtain the desired ranges, we first have to compute the
D matrix, which holds the non-normalized depth values, that is the depth value
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of the pixels following the X* direction:

— lin 1 tg(e) 1= (in 1 tg(B
k= (int)(5 rg(%))pa, L= (int)(5 7%9(%))” 5
dz] _ TminTmax :

(Tmaz - bkl)(rmaac - Tmin)

The last equation undoes the normalization computed by the graphics card to
store the depth values. The D matrix has n, x ng size, since we compute d;;
only for the pixels of interest. Finally, with basic trigonometry we can calculate
the desired r;; as:
Ay (6)
cos(av;)cos(B;)

Figure 6 shows the variables involved on this last step, showing the meaning
of the d;; and r;; distances in an horizontal cross section of the scene. Equation 6
presents numerical problems when «; or §; get close to 7/2. This will limit the
aperture of our sensor model. However, section 5 explains how to overcome this
limitation when modeling a real sensor with a wide aperture.

Tij =

Fig. 6. Horizontal cross section of the projection, with distance d;; and range r;; of
the corresponding kI*" pixel.

The overall procedure is outlined in algorithm 4. Inside the for loops, vari-
ables k and [ are directly functions of ¢ and j respectively, so we can precompute
expressions in equation 5 for k£ and [, and store values in a vector.

5 Experimental Evaluation

This section presents some results that evaluate the performance of our algo-
rithms. Two range models are presented, corresponding to real laser scanners,
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Algorithm 4 Range Sensor Model

INPUT: M, Aa, Ag, Sa, 88, Na, M3s Tma, Tmin, Xo
OUTPUT: R
w = 27"mintg(%)§ h = 27'mmt9(%)§ p=%
glSetProjection(Ag, p, 'min, Tmaz);/ /rendering volume: vertical aperture, aspect ra-
tio, depth limits
Po = (nt)2452L2; ps = (int) 247202,
glSetWindowSize(0,0, pa, pg);
glRenderUpdate(M, XM); //renders the model from the sensor position
B = glReadZbuf fer(ALL_IM AGE); //reads normalized depth values
for i = 1..n, do
a; = A (0.5 — %),
k= (int)(0.5 — 52420 5 )pa;
for j =1..ng do
B = Aa(05 - L)

7LB
. tg(8;)
I = (int)(0.5 — m)pﬁ;
d;: = TminTmax .
v (rmaz —bk1) (Tmaz —Tmin)’
Tij = cos(ai)lcos((bj);
end for

end for
return R;

and computational time is provided for a testbench 3D scene. Finally, we briefly
describe the successful use of all presented algorithms for real-time map-based
localization.

5.1 Laser scanner models

Two kind of laser scanner models has been used, using the same software. Table 1
summarizes the input parameters of these laser scanner models. Our implemen-
tation sets angular accuracies equal to angular resolutions. Please note also that,
due to application requirements, we only model part of the scan provided by the
Hokuyo laser.

Table 1. Input parameters of the laser scanner models

Input Parameter Leuze RS4 |Hokuyo UTM 30-LX (partial)
A, As 100°, 1° 60°, 1°
Na, N 133, 5 points 241, 5 points
80 = Ao /na, 05 = Ag/ng| 1.43°, 0.2° 0.25%, 0.2°
Tmin, Tmazx 03, 20 m 03, 20 m

Table 2 outlines the derived parameters of the models. Leuze device has
an horizontal aperture greater than 180° and that poses numerical problems on
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Time computing LeuzeRS4 laser model (133 points, 190 degrees)

Time [ms]
T

T T T
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m (scene complexity = m?)

Fig. 7. Time performance versus scene complexity for the Leuze RS4 laser scanner.
The sphere object has m? elements.

computing equation 6. This issue is overcome by dividing the computation in two
scanning sectors, each one with the half of sensor’s aperture, so the parameters
given in table 2 in the Leuze column are for a single scanning sector.

Table 2. Derived parameters of the laser scanner models

Derived Parameter|Leuze RS4 (per scanning sector)|Hokuyo UTM 30-LX (partial)
w 0.655 m 0.346 m
h 0.005 m 0.005 m
P 125 66
Pa 88 pixels 265 pixels
g 5 pixels 5 pixels

To evaluate the computational perfomance of the proposed implementation
while increasing the scene complexity, we have done a set of experiments consist-
ing on computing 100 times the Leuze model against a testbench environment
composed of a single sphere, while increasing the number of sectors and slices
of that shape. The results are shown in figure 7. For a given m, the sphere is
formed by m sectors and m slices, and thus the scene has m? elements.

Please note that using the same software implementation, other range mod-
els of devices providing point clouds such as time-of-flight cameras or 3D laser
scanners can be easily configured and computed.
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5.2 Map-based localization

Gravity constraints and laser scanner models have been used for 3D, real-time,
map-based localization of a mobile platform while it navigates autonomously on
the UPC campus area introduced in section 2. The mobile platform is a two-
wheeled self-balancing Segway RMP200, equiped with two laser devices scanning
over the horizontal plane forward and backward (Leuze RS4), and a third laser
device (Hokuyo UTM 30-LX) scanning the vertical plane in front of the robot.
A particle filter integrates data from these three scanners and from the platform
encoders and inclinometers to output a position estimate. At each iteration of
the filter, for each particle, height and roll constraints are calculated at the
propagation phase by means of the grid versions of gravity constraints, so a
negligible time is spent during online executions. On the other hand, expected
range observations are computed online using algorithm 4. The filter runs on
a DELL XPS-1313 laptop at 5 Hz, using 50 particles. This implies that the
computer was calculating 5 x50 X (133+133+241) rays per second. The approach
has been proved successful as will be documented in future publications.

6 Conclusions

Although efficient computation of 3D range observation models is commonplace
in robotics for a wide range of applications, little effort has been put on doc-
umenting algorithms to solve this issue. This paper details a set of algorithms
for fast computation of range data from 3D geometric models of a given envi-
ronment using the very well-known openGL programming library. Additionally,
we show that the same principles can be applied to the computation of physical
constraints of terrestrial mobile platforms and demonstrate our approach for a
computationally expensive, real-time application.
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