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Abstract—This article presents a novel approach for optimizing
locally the work of cooperative robots and obtaining the mini- Q Shepherding Robot
mum displacement of humans in a guiding people mission. Unlike @ trying to redirect
other methods, we consider situations where individuals can move \j? people.
freely and can escape from the formation, moreover they must e 7 B ’
be regrouped by multiple mobile robots working cooperatively. ( ?{ > 8
The problem is addressed by introducing a “Discrete Time ”\ ‘g
Motion” model (DTM) and a new cost function that minimizes the L in
work required by robots for leading and regrouping people. The

guiding mission is carried out in urban areas containing multiple Shepherding Robot

obstacles and building constraints. Furthermore, an analysis Q Q :2?;?@ jeader
of forces actuating among robots and humans is presented {2 v? ’i N '
throughout simulations of different situations of robot and human Leader Robot Q H{? E Lli 20
configurations and behaviors. guiding people. B B *ada B a
Index Terms—Cooperative Robotics, Guiding mission, Human- 268 ')( ﬁ 2 \ﬂ% Q‘ijl
Robot interaction. it l Ui\? ‘ﬂ(?’
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I. INTRODUCTION

Nowadays, robotics area has increased significantly in d..-
ferent fields, nevertheless the branch of social robotics 1
captured the attention of many researchers which have pro-
posed diverse applications such as cooperative explarfgjp
people evacuation [29] or robots companion [6], among atheto minimize is based on one hand, by robot’s motion, and, on
Recently, there is an interesting and challenging "proBlenthe other hand, by the impact of such motions on people’s
that involves social and cooperative robotics. It consafts displacement. The first term takes into account the work
guiding a group of people using mobile robots and networleeded to move a robot from an origin to a destination,
robotics technologies that work cooperatively. Different- whereas the second term analyzes the impact that robots
thors have developed works in order to lead people in boundealve on people to be moved, and its computation uses the
environments, such as hospitals or museums [3], [7], orggouformulation of Helbing et al. [13], [14].
of animals [21]. To compute robot's local optimal trajectories the method

In previous work [10], a model for guiding people inestimates robots’ future positions, individuals’ posisoand
a dynamic environment using several robots working in @btain optimal trajectories according to people distiiut
cooperative way was presented. This model is called “Discreon urban area. The computation of robots impact on people
Time Motion” (DTM), which is used to represent people anté done by forces that appear between robots and humans,
robot motions. The DTM predicts people and robot movemerasd between humans and humans. These forces have been
and gives the motion instructions to robots. DTM uses a Paridlentified and quantified in studies of pedestrian crowds and
cle Filter formulation [1], [18], [25], [27], with the paxilarity in people evacuation [12], [24], [19], [4], [16], [23].
that it incorporates realistic human motion models. The@hod In the remainder of the paper, we start by discussing the
assumes that obstacles, people and robots are modeledrdigted work in Section Il. Section Ill summarizes the DTM
potential functions. Since the obstacles are assumed torbedel. Section IV describes the forces that actuate in the
static, their positions are represented by constant fonsti task, and how to compute the optimal way to solve the coop-
Using these parameterizations, an energy value has beeative robots’ tasks based on the minimum work, different
assigned in each point in the space, which is used to conteoinfigurations and distributions of robots. Computation of
the motion of all robots. configurations for group reunification is presented in Secti

In this research, we go one step ahead, presenting a metiodExperiments and Results are presented in Section V and
to optimize locally the tasks assignment to robots for doirthe conclusions in Section VI.
their missions. Robots’ assignation are done by analyzieg t
minimum work required to do such task, where the function Il. RELATED WORK
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Anais Garrell and Alberto Sanfeliu are with Institut de Rtba i In-

formatica Industrial (CSIC-UPC), Spain robotics areas is a new field of study. Therefore, the number
E-mail: agarrell@upc.edu.es E-mail: sanfeliu@upc.edu.es of publications that exist nowadays is quiet short, speddlfic

Guiding people using a group of cooperative robots.



if we refer to the study of guiding a group of people in The DTM model has two components: The Discrete Time
urban areas with several robots. We can find some worgsmponent and the Motion component. The first one estimates
presented by Burgard et al. in the literature using a singbesition, orientation and velocity of the robots and pesson
robot leading people in exhibitions and museums [3], [7&nd the position of the obstacles at a time instakhck will

[28], or in hospitals or acting as an assistant [6] done Hye used to estimate the intersection of the people with the
Dautenhahn et al. Nevertheless, the main purpose of thebstacles and detect if someone is leaving the group with a
robots were educational or entertainment, instead of ggidiParticle Filter [1], [2], [18]. The Motion component estitea
groups. Casper et al. presented similar applications whitfe change of position, orientation and velocity of peopld a
have been developed for evacuating emergency areas,idgtegbbots between to time instancésand k& + p. It will be
hazardous materials or offering human assistance [4]haset used to compute the robots’ trajectory to reach the goalewhil
robots were not specifically designed for guiding peoplel apreventing people leaving the group.

they do not, thus, behave in a cooperative way. Another exam-The DTM model aims to represent the areas where the
ple is the interaction with animal flocks, Vaughan presentedbots will be allowed to move, by means of potential fields.
some research where flocks automatically has been comtrolf® this end, we define a set of functions that describe the
by using a single robot [21], [26]. Again, the cooperativéension produced by the obstacles, people and robots over
behavior of our approach is not exploited in these methodlhe working area. These tensions are computed based on the
and the environment where the systems are shown to work area defined by a security region surrounding each one of the
highly controlled, and they do not include obstacles. persons, robots and obstacles.

All the methods mentioned above consider either single|n order to decide the trajectories the robots will follow
robots, or multiple robots moving independently from thstre we will define a potential field over the working area, and
To our knowledge, only a few works deal with multiple robotgerform path planning in it [15]. To this end we will define
behaving in a cooperative mode. A first work, from Martineg set of attractive and repulsive forces. In particular, ghal
et al. [8], performs a qualitative analysis of the movemaeriits the robots try to reach will generate an attractive forcdinmil
different entities and build an architecture of three rebint the robots towards it. On the other hand, the obstacles will
guide them. However, realistic situations, such as obssamt generate a repulsive potential pushing a given robot away .
dealing with individuals leaving the group are not conséder The rest of robots and persons will generate similar repeilsi
In [17] Lien et al. consider several types of robot formaforces, although with less intensity than the obstaclefses.
tions and different robot strategies for approaching tople0  we parameterized all these attractive and repulsive forces

Nonetheless, all these issues and the general movementg,p(Gaussian functions. For instance, the repulsive foroes f
robots are ruled by a large number of heuristics which makggople will be:

the system impractical.
Pedestrian motion studies have been carried out experimen- " (s Sp) (2) = 1 o3 @) T (@—pp) 1)
tally and by simulation. Pedestrian simulation is a repnese P 15,12 (2m)n/2
tion of pedestrian motion using a set of mathematical models
that can be used to evaluate the pedestrian motions inetifferwhere u, = (u,,, 11, is the center of gravity of the person,
situations. Helbing has done research in pedestrian moti@fd >, is a covariance matrix whose principal axes;, o)
based on cellular automata [12], or force model [13], [14]epresent the size of an ellipse surrounding the personhwhic
Pedestrian motion analysis can be divided into two levells; used as a security area. A similar expression defines the
macroscopic and microscopic. The first one, the macroscopftential map associated to each robot.
level, studies the space allocation of people in the peidestr These repulsive forces may be interpreted as continuous
facilities [19]. The second one, the microscopic level,egw probability functions over the entire space. Once they are
tigates pedestrian’s motion individually. In our work weeardefined, the tensions at each point of the space may be
interested in microscopic level, every individual in thegp computed as the intersection of these Gaussians.
is considered individually. We can then define people and robots by the set
In the following section we will describe how we computd (s, fty), (05, 0y),v,6, T}, wherev and ¢ are the velocity
the best task assignment, using a cost function, of the soband orientation computed by the particle filter afid is
to guide a group of people using several robots behavingtime associated tension. As we said, the variangesoy)
a cooperative manner. Such function not only considerstrolrepresent the security area around each individual. Thidco
motion, but it also considers the consequences of robotbmotibe set to a constant value. However, for practical issues one

over the group of people. may need larger security areas when the robots or persons
move faster. As a consequence, we changed appropriately the
I1l. OVERVIEW OF DISCRETETIME MOTION MODEL values of the variances, and, depending on the velocity

In this section we will present shortly the “Discrete Timgarameten.
Motion” model (DTM) presented previously in [10], with In the case of the obstacles, we define their tension
DTM robots are able to modelize the representation of tlees a set of Gaussian functions collocated at regular in-
whole environment, made of an open and not bounded ateavals around their boundaries. Let us denote ¥y =
with obstacles, and how the elements of this environment &rer1,v1), ..., (zn,y,)} the set of points evenly spaced
related with the group of robots and people. around the boundary. Then this boundary will be defined by:
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Fig. 2. (a) representation of the environment, circles r&gme robots and
asterisks represent people. (b) representation of thentmitdield applying

(b)

people’s living space. Furthermore, there are other simat
that can happen, however they have not been considered in
this present work, for instance, one robot is used as a barrie
in a corner, in order that people do not miss the way.

In case that we use two robots, one will be the leader and
the second one will do the tasks of regrouping and pushing the
people. If we consider three robots, one will be the leadst, a
the other two will be used for regrouping or pushing people.
It is not predefined which robot will be the leader, indeed the
robots can interchange their roles depending on the evatuat

DTM model.

of the cost function.

The Robot tasks that we are considering are:

{(@i,v:), (02,,04,), T} for i = 1,...,n, whereT; follows
Equation 1.

After having defined the tensions for each of the compo-
nents of the environment —i.e. robots, persons and obstacle
we are ready to define the potential field. This is easily
computed as the intersection of all the Gaussian functions f
a given variances.

Once the potential field is known, we will define the
trajectories of the robots, based on the position of thegpers
and the goal and following the paths with minimum energy
in the potential field. This will be explained in the follovgn
sections.

IV. DEFINITION OF THE OPTIMAL ROBOT TASK
ASSIGNMENT FOR THECOOPERATIVEMISSION

In our previous work [10], we used two robots working in ®
a cooperative way, one as a tour guide (the leader robot) and
the other one, as a shepherd robot. The mission of the leader
robot was to guide a group of people from an origin to a
destination. The other robot was used as an assistant based o
shepherd dog theory [5], [17] and its objective was to regrou
people who escape from the the crowd formation. The strategy
followed in the mentioned work, was, firstly, the computatio
of the estimate people’s velocity with a particle filter [{2],
and secondly, it calculates the optimal path from the shephe
robot to the estimated position of people that are movingyawa
In this work we analyze which is the best strategy in the
following situation: “Given a fixed number of robots (usya?l
or 3), assign robots’ tasks that will minimize the work raedi
by them, and, also, will produce the minimum displacement
problems for guiding people”.

Leader task Firstly the leader robot computes a path
planning and moves to the next point. We also assume
that there exists alrag force that will attract people
behind the robot. Here, the robot has only to move from
the present position to the next one of the guiding path.
In case that a robot, that is not the leader, takes its role,
this robot will have first to move still leader’'s present
position and then carry out this task.

Looking for a person that goes away taskhe robot
moves to the estimated position of the individual who
goes away from the crowd formation. In this case, the
robot has to compute all possible paths to reach the
estimate position and then, take the one which minimize
the itinerary. In our simulations, we have considered a
selections of points on the environment where people
have a strong probability to scape.

Pushing task The robot pushes a person that has gone
away in order to reach the crowd formation. This task
can be also applied when a robot pushes a person (or a
group of people) who is (are) going behind the crowd
formation in order to regroup people when the formation
is broken down. We assume that there exists a repulsion
force that pushes the person to follow the direction of the
robot. In this case, the robot has only to move from the
present to the next position.

Crowd traversing taskThe robot has to move through
the formation to achieve the estimated position of the
person that goes away from the crowd formation. This
task implies that the robot has to push people away from
their path, which creates a set of repulsion forces from
the robot to people. In this work we are not taken into
account this situation, due to safety reasons.

The cost function, described below, speaks in Work terms,In order to compute the dragging, pushing and crowd
and it can be divided into two blocké) Robot work motion, traversing forces, we use the equations defined in previous

and (i) Human work motion.

works on human behavior with other individuals [12], [13],

In order to know what robots’ tasks are, we have considergth]. People movements are determined by their desireddspee

the following situations:

« The leader robot has to guide people.

« One robot has to look for the person (or people) that can
potentially escape from the crowd formation and push
him (or them) to regroup him (or them) into group.

and the goal they wish to reach. In our case, the direction of
the person movememt (t) is given by:

67(75) = €robot (t) + ﬁ(t) (2)

« One robot has to go behind the people in order to pushwherei is the noise. Usually, people do not have a concrete
them in case that the crowd formation is broken downgoal and should follow the leader robot, thus, its direcii®n
Nonetheless, robots must be able to solve all this task whdetermined by the robot’s movement or the individual thayth
they are navigating and avoiding obstacles and do not inferhave in front, if the robot is not in their visual field.



In following sections we will describe the different forces
for the computation of the cost function.
ij

. 1 ij
push _ Aiexp(”j—dij)/Binzj (AH- (1+\) + cos(p J))

2

A. Robot Work Motion _ . . (3)
Where A; is the interaction strength;;; = r; + r; the

sum of the radiis of robot and personj, usually people
has radii of one meter, and robots 1.5 i, parameter of
repulsive interactiond;;(t) = ||z;(t) — x;(¢)|| is the distance
Fmot — 3) of the mass center of robétand personj. Finally, with the

mot: ot choice A < 1, the parameter reflects the situation in front of
Wit = fi"" As; @) 4 pedestrian has a larger impact on his behavior than things
happening behind. The anglg;(¢) denotes the angle between
the directione; (¢) of motion and the direction-n;;(¢) of the
object exerting the repulsive force. See [11].

So we can write pushing work by:

Working with autonomous mobile robots, the robowork
motion is expressed by:

wherem; is the mass of the i-th robot,; its acceleration
and Ax; the space traversed by the robot to achieve its go

B. Human Work Motion

. s . ush
In Human Robot Interaction, it is necessary to consider Whush = > fE () Asj )
the dragging pushingandcrowd intrusion forceghat robot’s v person in};
motion produces and that can affect to people. This comgonen

: ledH Work Moti ditis th ¢ e Where ; is the set of people in which one of the helper
IS cafledritiman Work Motionan ','S € EXPENSE 0T PEOPIE S 415 have reached the living space, if an individual is at
movements as a result of robot’s motions. As it has be

. i X ) ®Brtain distance from the robot, more than two meters, it is
mentioned several times in this paper, the group follows t

. . i that th t t trate in his livi
robot guide/leader, and there is a set of robots that help[&t(?jnSIdered at the robot does not penetrate in his liviagap

hi thei | The effect of robot | ; and therefore is not affected by the drag force.
Zg floel\ll(?wselr goal. The efiect of Tobots on people as Torses | 3) Traversing Work:And last but not least, théraversing

forceis determined by the forces applied by the robot when is
« leader robot: attractive (dragging) force, it is inverselyayersing the crowd. For security reasons, we have coreside
proportional to the distance, until a certain distance. in this research that the value of this force is infinity, so we
» shepherding robot: Repulsive (pushing,traversing) forcgi| ensure that a robot will not cross the crowd in order to
has a repulsive effect inside people’s living space. avoid any damage.
1) Dragging Work: The dragging force is necessary when
the leader robot guides the group of people from one placeég Total Cost for One Robot

another. It acts as an attractive force, hence the forcdeappl . ) » )
by robot leader to each persop is: The cost function for robot, given a specific task, is the

following one:
zilt) =2 g
dij (t) W, = 6motWZ‘mOt + JdragWidTag‘i‘
dig(t) = llaa(t) = z; ()l (6) - Opuaan WF™ 4 8y WP (10)

whered;;(t) is the normalizated vector pointing from person
j to roboti at instantt. See [11] for more information about

fdrag(t) — *Cijn;j (t) = *Cij

ij

the parameteC;; , which reflects the attraction coefficient whered, = { (1):; iﬂ:z EZ::: :z ﬁz?ggseidne d
over the individualj, and it depends on the distance between 9
the robot leader and persgn Wherek could bepushing, dragging, traversingr motion
Thus, the dragging work that robot leader applied to eaéor each period of time, the leader and shepherded robdts wil
individual is defined by: be given a task in the guiding mission, which will imply one
or several robot motion works and human robot works.
Wd’ra,g - Z f;ljragASj (7)
v person j D. Optimal Robot Task Assignment
Where As; is the distance traveled by the perspn Finally, the task assignment for the robots will be the one

repulsive effect developed by shepherding robot on theprofio the global task. It is computed by the following way:
of people, for regrouping a person (or the broken crowd) in
the main crowd formation. This repulsive force is due by the
intrusion of the robot in the people’s living space, whicliive
feet around humans. The territorial effect may be descrézed where theConfigurationamean how the tasks are distributed
a repulsive social force: among the robots, for each configuratiorrobots compute

C = argmin{Wisa(c)}, V configuration ¢ (11)



Algorithm 1 Schematic strategy for regrouping people

@ e 1: Estimate people’s position and directions.
2: if There are people moving awdlyen

3. for Each robotdo
Eeoplelowingthe 4 Compute convex hull with robots and people’s posi-
leader robot tIOI"I
el o § 5: Interpolate the functionf(z) with the points on
convex hull.
(@) 6: Compute the trajectory, which will be thé(z)’s
tangent passing through the escaping group.
7 Compute the cost function.
end for

9: Choose the configuration such that, minimizes global
function cost.

) Tangent function
passing through the
individual at point p

Newton Backward T:mgc’nll l'unc’l]mulv . . M R b t
Divided Difference "“I_s;l')‘;;l‘fo“i‘;l‘;‘c 10: ove Robots.
Formula: f(x) 11: eISe
d 12:  Continue moving the group.
(©) (d) . :
13: end if

Fig. 3. (a) Environment representation with people and mbd) Compu-
tation of the convex hull. (c) Interpolation of the convexiihuith Newton
Backward Divided Difference Formula. (d) Computation of thegetctory for
frescuingfzh)e individual, (th;s trajectorﬁ is Cﬁmﬁos?d bg/ :&Dger)lts of the consequences of such changes of role and trajectorieswBelo
unction f(x) at point p: (1) passing through the shepherdoto2) passing : A ; i5
through the individual is escaping it proceeds the desprlptmn of the computation of trajeesor
using the cost function.
In order to achieve that robots act with sufficient prior need

L . ) it is necessary to make a prediction of people’s positiorts an
Wiorar Which is the addition of allV; for all robotsi that are  mqrion vectors [20]. Once the estimated position and divact
working cooperatively. are obtained, we compute the work cost function, explained

Once we have this cost function, we can determine whigfufore for each robot, and we will consider the configuratio
are the optimal trajectories the robots must follow to aménec which minimizes that function, that is:
their goal, and which are the roles for each robot. There iSonce, the configuration with minimal work cost is obtained,
a special case in which several people escape in OPPOSf{g (rajectory the robot must follow to regroup people is
directions at the same moment, in that situation shephgrdifescrined as follows: the convex hull of people and robots
robots will go to rescue the individual which has the |°Weﬁositions is computed, in this current state the group opfgeo
cost function and be redirect to the formation. If the numbgyi,, are escaping in the same direction is regarded as a single
of people escaping in opposite dlrectlo_ns is greater than tE‘Iement, taking the position as the arithmetic center of the
number of shepherding robots, robots will ac_t by the same W&oup, see Fig. 3(b). Having reached this point, the functio
than previously, and once the robot has redirect the humangia; interpolates the points in the convex hull is computed
the formation, if it is possible, it will search for people @h o each robot using Newton Backward Divided Difference
have not been renewed yet. Formula, but only are considered those that are in the area

located between the robot is computing the convex hull and
V. COMPUTATION OF CONFIGURATIONS FORGROUP the group that is escaping, and by this way we get the function
REUNIFICATION f(z), see Fig. 3(c).

One of the most common problems we can find when robotsHere, we should compute the trajectory of the robot, it is
guide a group of people is when one or more people escaqumsidered the tangent ¢f{x) that passes through the center
from the group, either because they are attractive by aressite position of the escaping group. This procedure will be given
point outside the trajectory of the group or because theyado revery interval of timek until the robot arrives to the escaping
want to continue. The role the robots should follow is tryingroup and it is redirected toward the training that must be
to rejoin the group that is distancing, as its main objectiviellowed, see Fig. 3(d).
is to bring everyone in the group to the goal. In this section In the experiments section will present the results of the
we proceed to describe the method of reintegration peopiemputation of trajectories according to the cost functiod
who are escaping the group through the cost function we hahere will be a descriptive and comparative study. In the
described previously. algorithm 1 we show an schematically procedure that must

When this problem occurs, it is necessary that robotéegen followed by the group of robots.
change their goals, for instance, one of the shepherd rabot ¢ Table 1 shows the set of tasks that robots can play in guiding
change its direction, instead of following leader’s tréjeg, people mission, for instance: guiding task, rescuing peopl
it should rescue people who are distancing the formation, anifying the group, we present which robots can perform such
leader robot can become an assistant one. Therefore, itasks and which forces act on people and robots’ behavior. To
necessary to evaluate which is the cost and which are ttmmpute the total work we compare different trajectoried an



TABLE |
TABLE OF TASKS AND BEHAVES

Task Robot Forces Applied Behave
Guide the group Leader fdrag Act as a tour guide
Shepherd| fdrag | fpushjftrav T |nterchange the role with leader robot.
fdrag Act as a tour guide.
Join the group Leader fdrag Reduce the velocity
Shepherd frush Increase the velocity
Rescue people Leader fdrag All the group follows the leader.

frag [ fpushjftrav Robot leader interchange its role with robot shepherd 1 or 2.
Shepherd| fPuch [ fdrag [ ftrav T Compute the trajectory for reconduct people.

Barrier in a cross Leader fdrag Follows the trajectory till the goal
Shepherd frush Robot moves toward the corner and wait for the group passes
Narrow corridor Leader fdrag Follows the trajectory till the goal
Shepherd frush Wait all the group enters the narrow corridor
. . . TABLE Il
the one that obtain a lower cost function is chosen. TABLE ON WORK VALUES OF DIFFERENT CONFIGURATIONS IN OPEN
AREAS
Configuration | Experiment 1| Experiment 2
VI. EXPERIMENTS AND RESULTS Conf.1 42.24 Inf
. o Conf.2 152.66 81.44
The current work is done within the framework of the Conf.3 108.63 32.04
European Project URUS [22], and the scenario where the 20”;-4 ;é3§6 3[8“30
experiments will be performed corresponds to an urban area Cgﬂf'g 555631 191 &5
of about 10.000n2 within the North Campus of the Technical Cont.7 7201 149.79

University of Catalonia (UPC). The area contains different
obstacles, such as buildings, benches and trash cans.

The results we will expose correspond to different synthet;
experiments. We have cgnsidered tvxrl)o scenarios that rgbnts ,EOHOW th? leader and robot shepherd 1 will recover people wh
find in the North Campus of UPC: open areas and cross ardgsSscaping.

In these experiments, the dynamical models of the persams, w
have considered a group of 9 persons, will follow the models;

Leader

described by Helbing et al. [13]. We will assume a group of | seree - o= Lo
three robots, that will move according to the motion model| | -+ . o
DTM, and acting according the computation of configurations: ‘%/‘ # o N

explained in Section IV. , people

We made two different experiments. In the first one, three;
robots guide a group of nine people in an open area withoL] ]
obstacles see Fig. 4. The position of the three robots isgolot .,

o : (@) (b)
with circles and nine persons are represented by asteAsks.
we have explained previously, when robots find new chaly 4.  Experiment 1: Configuration 1. Robot shepherd 1 takee of
lenges, for instance regrouping people who are escapiry, tlgrouping people who have escaped following right path.
should analyze which is the optimal trajectory and optimal
formation, that is, the analysis of different configuraoRos- In the second experiment we introduced a common scenario,
sible configurations for regrouping people with three rebota cross area. In the sequences of Fig. 7-13 different time
one leader and two shepherd robots are the following: (i)stances are shown, again assuming that one robot needs to
Robot shepherd 1 takes care of grouping people who hdefow one of the individuals who left the group. In table
escaped following right path 4. (ii) Robot shepherd 1 takdsthere are the results of the cost function for this second
care of grouping people who have escaped following left patexperiment, here we can observe that in configurations 1 and 3
(iii) and (iv) Robot shepherd 2 regroups people who haubis value is infinity, since for obtain the desired confidima
escaped following right and left path respectively. (v) abb robot should move thought the group. One can notice that
leader regroup the formation, the entire group moves towaednfiguration 3 has the minimum value and for this reason is
the escaping people, (vi) and (vii) robot shepherd 1 takes tthe one we have considered, therefore, crowd formation will
role of leader while robot leader is moving toward the esugpi follow the leader and robot shepherd 2 will recover people
people, robot shepherd takes the role of leader, resphctivavho is escaping.
In table 1 we present the values of the optimal robot taskFinally, in Fig. 5 we present the evolution of the cost
assignment function for those configurations. One can @otifunction computed using different robots behaviors, it ban
that configuration 1 has the minimum value and for this reaseren that the behavior that obtains the lower cost is the one
is the one we have considered, therefore, crowd formatidin wivhich follows the optimization of the cost function pressht
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grouping people who have escaped following right path.
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robots when people are escaping in two different instantsneé. In Fig 6 ) shopnrd . °
the path followed by the group is shown. Behavior 1: Robotdezdooks . robats

for people who are escaping. Behavior 2: Shepherd Robots flwopeople

who are escaping without choosing the shortest way. Beh&ri&hepherd
Robots interchange their positions before looking for peagho are escaping.
Behavior 4: Shepherd robot which is nearest of people whestaping is the @ ()

responsible for resolving this mission without consideting forces presented

before. Behavior 5: Robots choose the configuration whictimiies the cost Fig. 9.  Experiment 2: Configuration 3. Robot shepherd 2 talkes of

function. grouping people who have escaped following right path.
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Fig. 6. Trajectory followed by a group of people being guidedthree

robots, in Fig 5 the computation of the cost function is shoRwmint 1 and 2 . -
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g e e e Vil. ConcLusions
We have presented a new cost function for optimizing co-
operative robot movements for guiding and regrouping peopl
in a guiding missions. In contrast to existing approaches, o
previously. In Fig. 6 the trajectory the group has followedhethod can tackle more realistic situations, such as dgalin
is presented. Hence, the cost function minimizes glob&kéy twith large environments with obstacles, or regrouping peop

work of the group of robots along all the mission. who left the group. For that reason, this work can be applied
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Fig. 12. Experiment 2 Configuration 6. Robot leader regrogpfthmation,
robot shepherd 1 takes the role of leader while robot lealeraving toward

the escaping people. [9]
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Fig. 13. Experiment 2 Configuration 7. Robot leader regrogpfthmation, [14]

robot shepherd 2 takes the role of leader while robot lealeraving toward
the escaping people.

[15]

in some real robots applications, for instance, guidingpfeeo [16!
in emergency areas, or acting as a robot companion.
We presented various results in different situations: iggid

in open areas and areas with an obstacle, and can be extertié

to urban areas with a large number of obstacles. In all of
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these experiments we showed that the robots can act ed#} J. S. Liu and R. Chen. Sequential monte carlo methods forufyc

enough to satisfactorily guide group of people through a
path calculated previously through an exhaustive analysisig
different configurations of cooperatively robot maotion.
Although our method optimizes locally the cost function, if
we are able to know the complete trajectories, then we will
able to compute the global optimal configuration of the rebot
This study will be analyzed in future work. 21]
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