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Abstract. This paper introduces a new method for workspace boundary determination on general

lower-pair multi-body systems. The method uses a branch-and-prune technique to isolate the set

of end effector singularities, and then classifies the points in such set according to whether they

correspond to actual motion impediments in the workspace. The method can deal with open- or

closed-chain systems, and is able to take joint limits into account. Advantages over other methods

of similar applicability include its completeness and a simpler algorithmic structure. Examples are

included that show its performance on benchmark problems documented in the literature.
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1 Introduction

A main problem of multi-body kinematics is workspace determination: for a multi-

body system of known geometry, determine the complete set of poses (positions and

orientations) that a selected body can adopt, as the system runs through all possible

configurations. This special body is also known as the end effector, and the set of its

poses as the workspace of the system. The issue has received substantial attention,

as the availability of a good solution finds many applications to mechanism design,

path planning, and task execution [1, 2].

Efficient solutions to this problem exist, but most of them are tailored to a par-

ticular robot architecture, or class of architectures. A large group of such methods

adopt a constructive geometric approach to the problem. Representative of them

is the work in [3], which computes the positional workspace of a spatial parallel

manipulator, the work in [4], which extends the approach to deal with other physi-

cal constraints, and that in [5], which provides methods for various planar parallel

manipulators. Other significant approaches include interval analysis techniques for

Gough-type manipulators [6], optimization-based algorithms for fully serial/parallel

robots [2], analytic methods for symmetrical spherical mechanisms [7], and topo-

logic or algebraic-geometric studies for 3R manipulators [8, 9]. The literature on the
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topic is extensive, and we can only touch upon it briefly here. Elaborate surveys can

be found in [1, 2].

While specific solutions are desirable, because they tend to yield faster algo-

rithms, general solutions are required too, to analyze robots for which no specific

method exists. In this paper, we argue that a solution for lower-pair mechanisms of

general structure is possible, by extending a recent method for kinematic constraint

solving for systems of such generality [10, 11].

Up to the authors’ knowledge, only one approach of similar applicability is avail-

able in the literature, due to Haug and co-workers [12, and refs. therein]. Similarly

to [12], we provide a visualization of the workspace by extracting its boundary from

a set of end-effector singularities, but the strategy adopted here to formulate and

compute such singularities is substantially different. In [12] the authors slice the

singularity set into parallel curves, and a continuation scheme is then employed to

trace all of such curves in detail. Although elegant and robust to bifurcations, such

a procedure requires to be fed with at least one point for each connected component

of the boundary, but no satisfactory method has been given to compute such points

in general, as far as we know. In fact, the authors mention in [13] several situations

that could make the technique miss some boundary segments. On the contrary, the

method proposed in this paper is complete, in the sense that it is able to isolate all

boundary segments of the workspace, including any interior barriers and voids that

might be present. The method is based on formulating the equations of the singular-

ity set in an appropriate form, and then exploiting this form to compute all singular

points, using a numerical procedure based on linear relaxations [11].

2 Necessary conditions

The allowable positions and orientations of all links in a multi-body system are

usually encoded in an nq-dimensional vector of generalized coordinates q, subject

to a system of ne ≤ nq equations of the form

Φ(q) = 0, (1)

that expresses the kinematic constraints imposed by the joints. Even if joint limits

are present, these can be modelled as equality constraints, as shown in Section 5.

Here Φ :Q→E is a smooth map, and Q and E are nq- and ne-dimensional manifolds,

respectively. In the specific formulation that we will adopt, Q = R
nq and E = R

ne ,

but they can be arbitrary manifolds in general. We focus on multi-body systems for

which the solution set C of Eq. (1) is a smooth manifold of dimension nq−ne. This

will be the case almost always, because the set of geometric parameters for which

C fails to be a manifold has measure zero in the total space of such parameters. It

is useful to consider the partition q = [vT,wT,uT]
T
, where v ∈ V is a vector of nv

input variables corresponding to the actuated degrees of freedom of the multi-body

system, u∈U is a vector of nu output variables encoding the pose of the end effector,



A Complete Method for Workspace Boundary Determination 3

(a) (b) (c)

C

A

S

Uπu(S)

q
q

q

u = πu(q)

Boundary barrier Interior barrier Non-barrier

Fig. 1 (a) Sets S and πu(S) when C is the sphere x2 + y2 + z2 = 1 and πu is the projection map

f (x,y,z) = (x,y). The “workspace” relative to the (x,y) variables is the projection of the sphere

onto the (x,y) plane, and the boundaries of such projection correspond to points on the sphere

where the tangent plane projects onto a line. (b) and (c): πu(S) can also lie in the interior of A.

and w ∈ W is a nw-dimensional vector encompassing the remaining intermediate

variables. By defining z = [v,w], Eq. (1) can be written as Φ(z,u) = 0, and the

workspace of the system can be defined as the set A of points u ∈ U for which

Φ(z,u) = 0 for some z. In general it is easier to obtain a description of the workspace

by computing its boundary, because such boundary is an object of lower dimension.

A point u ∈ A lies on the boundary of A, denoted ∂A, if every neighborhood of u

intersects A and the complement of A.

Let πu : Q → U denote the projection map from Q onto the u variables. That is,

πu(z,u) = u. Observe thatA is exactly the image of C through πu. It is not difficult to

see, moreover, that the points q ∈ C that project onto some u ∈ ∂A must necessarily

be critical points of the projection of C onto U, i.e., points q ∈ C where the tangent

space to C projects on U as a linear space of dimension lower than nu. The set S

of all critical points of the projection of C on U will be called the singularity set

hereafter, and the notation πu(S) will be used to refer to the projection of S onto U.

The situation is illustrated in Fig. 1a with an example.

Kinematically, S is the set of configurations in which the end effector loses in-

stantaneous mobility [14, 15], which is the set of points q ∈ C for which the matrix

dΦz = [∂Φi/∂ z j] is rank deficient. This allows a simple algebraic characterization

of the points of S. They are the points q that satisfy

Φ(z,u) = 0

dΦz
Tξ = 0

ξTξ = 1







, (2)

for some ξ , where ξ is an ne-dimensional vector of unknowns. The first equation

in (2) constrains the solutions to points on C. The second and third equations impose

the rank deficiency of dΦz (the rows of this matrix are dependent whenever they

yield a vanishing linear combination with non-null coefficients). A preliminary idea
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of how the workspace boundary would look like, thus, can be gained by computing

all points q that satisfy the previous system, and projecting them to the u variables,

in order to obtain πu(S).

3 Singularity classification

Note that the criticality of q is a necessary but not sufficient condition for πu(q)
to lie in ∂A, as there can be critical points projecting on the interior of A too. In

fact, as illustrated in Fig. 1, points q satisfying Eqs. (2) can be classified into two

broad categories. They can be non-barrier or barrier singularities, depending on

whether there exists a trajectory in the neighborhood of q on C, passing through q,

whose projection on U traverses πu(S) or not, respectively. Points corresponding to

barrier singularities, in turn, can be classified as boundary or interior singularities,

according to whether they occur over ∂A or over the interior of A, respectively.

An example of each one of these singularity types is depicted in Fig. 2, for the

particular case of a planar 3R manipulator. We next provide additional criteria to

determine which of these singularity types occurs on a given q0 ∈ S.

Let q= q(v) be a parameterization of C in a neighborhood of q0, with q0 = q(v0).
Let n0 be the normal to πu(S) at u0, which can be computed as indicated in [12].

We can determine whether q0 corresponds to a boundary barrier by examining the

sign of

ψ(v) = n0
T(u(v)−u0), (3)

1

2

3

θ1 = π
3

θ1 = − π
3

θ1 = 0

Fig. 2 Position workspace of a planar 3R manipulator, relative to the tip point of the last link,

assuming that the angle θ1 of the first revolute joint is restricted to the [−π/3,π/3] range. Points
corresponding to singularities are indicated in solid lines, and those relative to boundary and inte-

rior barriers are indicated with normal vectors on the forbidden side. Configurations 1, 2, and 3,

are an example of a boundary barrier, an interior barrier, and a non-barrier singularity, respectively.
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for all local trajectories v = v(t) crossing v0 for some t = t0 whose corresponding

path u = u(t) is orthogonal to πu(S) at u0. This can be done by resorting to the

second-order Taylor expansion of ψ(v) around v0

ψ(v) ≃ ψ(v0)+δvTψv(v0)+
1

2
δvTψvv(v0)δv, (4)

where ψv and ψvv are the gradient and Hessian of ψ(v), and δv= (v−v0) is a small

displacement whose corresponding δu= (u−u0) is orthogonal to πu(S). Note here
that the first term of this expansion vanishes because ψ(v0) = n0

T(u0−u0) = 0.

Moreover, the time derivative of Eq. (3) for v = v(t) is

ψ̇(t) = n0
Tu̇(t), (5)

which is the component of u̇(t) along n0. As shown in [12], ψ̇(t0) must vanish

irrespectively of the chosen v(t). Thus, since for t = t0 it is ψ̇ = ψvv̇ = 0 for all

v̇, we conclude that ψv(v0) = 0 too, meaning that the second term of the Taylor

expansion also vanishes.

In conclusion, the sign of ψ(v) is mostly determined by the definiteness prop-

erties of the quadratic form δvTψvv(v0)δv. If this form is positive- or negative-

definite, then all trajectories orthogonal to πu(S) lie on one side of πu(S) and q0 is

a barrier singularity. If this form is indefinite, there are trajectories in A that cross

πu(S) and q0 is a non-barrier singularity. Lastly, if this form is semi-definite, we

cannot deduce the singularity type unless we examine higher order terms of the

Taylor expansion. The latter case may only occur on zero-measure subsets of S,

however. The definiteness test just outlined can easily be implemented by checking

the eigenvalues of the matrix form of δvTψvv(v0)δv [12].
When q0 is classified as a barrier singularity, finally, it remains to determine

whether u0 lies on ∂A or in the interior of A. Note that a barrier singularity q0 will

project in the interior of A if there is some q /∈ S that projects onto u0 in U. This test

can be implemented by checking whether equation Φ(z,u) = 0 for u fixed to u0 has

a solution z for which dΦz is full rank.

4 Numerical solution

We next show how Eq. (2) can be solved to determine S, and how the classification

scheme just given can be applied to selected points on S, to obtain a detailed picture

of the workspace.

As shown in [10, 11] it is always possible to write the first equation in Eq. (2) in

a canonical form in which all component functions of Φ(z,u) are quadratic polyno-
mials. By quadratic we mean here that if qi and q j refer to any two of their variables,

they involve monomials of linear, bilinear, or quadratic form only: qi, qiq j, or q
2
i .

Note that if Φ(z,u) has this special quadratic form, then all equations in Sys-

tem (2) will also have this form, because the entries in dΦz will all be linear in their
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variables. It is thus possible to use the numerical method developed in [10, 11] for

systems of this kind, in order to isolate the solution set of Eqs. (2) to the desired

accuracy. To make the paper self-contained, this method is reviewed briefly next.

Assuming that Eqs. (2) have the aforementioned form, the method starts by intro-

ducing the changes of variables bk = qiq j and pi = q2i for all bilinear and quadratic

monomials, in order to transform the system into the expanded form

L(x) = 0

B(x) = 0

Q(x) = 0







, (6)

where x is a nx-vector including the original q variables, and the newly-introduced

pi and bk ones. Here, L(x) = 0 is a system of linear equations in x, and B(x) = 0 and

Q(x) = 0 are systems of bilinear and quadratic equations of the form bk−qiq j = 0,

pi−q2i = 0, respectively.

It is not difficult to see that, under the used formulation, each variable in x can

only take values within a prescribed interval [11], so that from the cartesian product

of all such intervals one can define an initial nx-dimensional box B which bounds

all solutions of Eqs. (2). The algorithm then isolates such solutions by recursively

applying two operations on B: box shrinking and box splitting.

Using box shrinking, portions of B containing no solution are eliminated by nar-

rowing some of its defining intervals. This process is repeated until either (1) the

box is reduced to an empty set, in which case it contains no solution, or (2) the box

is “sufficiently” small, in which case it is considered a solution box, or (3) the box

cannot be “significantly” reduced, in which case it is bisected into two sub-boxes via

box splitting—which simply bisects its largest interval. To converge to all solutions,

the whole process is recursively applied to the new sub-boxes, until one obtains a

collection of solution boxes whose side lengths are below a given threshold σ .

The crucial operation in this scheme is box shrinking, which [11] implements

as follows. Note first that the solutions falling in some sub-box Bc ⊆ B must lie

in the linear variety defined by L(x) = 0. Thus, we may shrink Bc to the smallest

possible box bounding this variety inside Bc. The limits of the shrunk box along,

say, dimension xi can be found by solving the two linear programs

LP1: Minimize xi, subject to: L(x) = 0,x ∈ Bc,

LP2: Maximize xi, subject to: L(x) = 0,x ∈ Bc.

However, note that the solutions must also lie on the parabolas pi = q2i of Q(x) = 0,

and on the hyperbolic paraboloids bk = qiq j of B(x) = 0. The two facts can be taken

into account by noting that the portion of the parabola pi = q2i lying inside Bc is

bounded by two half planes, and that the points of Bc verifying bk = qiq j neces-

sarily lie inside a tetrahedron defined by four points, obtained by clipping Bc with

bk = qiq j. Thus, the inequalities relative to such bounds can be added to LP1 and

LP2 above, in order to take these constraints into account, which usually produces
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a much larger reduction of Bc, or even its complete elimination, if one of the linear

programs is found unfeasible.

Upon termination, this algorithm will deliver a collection of ns boxes contain-

ing all points in S, forming a discrete envelope of this set whose accuracy can be

adjusted through the σ parameter (next section illustrates such kind of output on a

particular example). Finally, a point q0 ∈ S is computed for each one of the returned

boxes, by solving Eq. (2) using a Newton method starting anywhere in the box, to

be able to apply the classification method described in Section 3. Note that σ can

always be chosen small enough so as to allow a rapid computation of q0.

5 A comparative example

The proposed technique has been implemented in C, using the libraries of the

CUIK platform [11]. We next illustrate the performance of this implementation, on

1
1

1 11

φ

x

y

l1 l2 l3

P

Fig. 3 A 3-RPR planar parallel mechanism.

computing the position workspace of

the mechanism in Fig. 3, i.e., the set

of locations for point P, as the mecha-

nism runs through all of its configura-

tions. This mechanism is particularly

useful to compare the results of the

proposed approach with those of the

continuation technique in [12], pub-

lished in [16]. It was used in [2] too,

as a means of verification.

The method in [12] starts shooting

a ray through an initial point ui ∈ A,

corresponding to an assembled config-

uration of the mechanism, and tracks

this ray using continuation, until a point ub ∈ ∂A is found (Fig. 4a). A second con-

tinuation process is then launched to track the connected component of πu(S) that is
reachable from ub (Fig. 4b), whose points are finally classified into barrier and non-

barrier singularities using the criteria of Section 3 (Fig. 4c). Note that this scheme is

only able to detect the boundaries of the connected component of the workspace to

which ui belongs, while the algorithm we propose detects all components, as shown

in Fig. 4, bottom row. To apply the presented approach, we first write Eq. (1) in the

canonical form required in Section 4. For this, being [x,y]T the coordinates of P, the

slider variables li can be written as

l21 = y2−2ys+ s2 + x2 +2x−2xc−2c+ c2 +1,
l22 = y2−2ys+ s2 + x2−2x−2xc+2c+ c2 +1,
l23 = y2 +2ys+ s2 + x2−4x+2xc−4c+ c2 +4,

(7)

where c and s refer to the sine and cosine of φ , respectively, and thus must satisfy
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(a) (b) (c)

(d) (e) (f)

8′

8′

8′′

8′′

ub

∂A

ui

Fig. 4 Progress of the continuation algorithm in [12] (top row) compared to that of the proposed

algorithm (bottom row) on computing the position workspace of the mechanism in Fig. 3. Note

that the continuation algorithm is only able to isolate one connected component of the workspace,

whereas the proposed one isolates them all. Figs. c and f follow the same convention as Fig. 2.

c2 + s2 = 1. (8)

In this particular case, the slider variables li are only allowed to take values within

prescribed ranges [ai,bi], where a1 = a2 =
√
2, a3 = 1, b1 = b2 = 2, and b3 = 3. By

defining mi = bi+ai
2

and hi = bi−ai
2

, these constraints can be formulated using the

slack variable technique of Optimization as

li = mi +hisi,
c2i + s2i = 1,

(9)

for i= 1,2,3, which allows to integrate them readily into Eq. (7) as equalities. Thus,

Eq. (1) is the system formed by equations (7), (8) and (9) in this case.
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Fig. 5 A trajectory in which point P crosses the segment 8’-8”.

The boundaries of the position workspace correspond to critical points of the

projection of C onto the xy plane, i.e., to the solutions of Eq. (2) with u = [x,y]T,

and z = [c1,c2,c3,c,s,s1,s2,s3]
T
. Eq. (2), thus, constitutes a polynomial system of

19 equations in 20 variables in this example, with a one-dimensional solution set.

The progress of the proposed algorithm on isolating this set is shown in Fig. 4, bot-

tom row. Figs. 4d and 4e show intermediate approximations of πu(S) after 27 and

49 seconds, containing 1282 and 4846 boxes, respectively. Fig. 4f displays the final

result, which contains 152082 boxes (the boxes are too small to be appreciated). The

overall computation was done using σ = 0.01, and it took 780 seconds on a paral-

lelized version of the CUIK platform, on a grid of eight DELL Poweredge computers

equipped with two Intel Quadcore Xeon E5310 processors and 4Gb of RAM each

one. Fig. 4f also shows the results of the classification process given in Section 3

applied to one point for each one of the returned boxes. It is worth mentioning that

the segment 8′-8′′ was erroneously marked as an interior barrier in [16], while we

detect it as a singularity of type non-barrier. This segment corresponds to point P

tracing a circle around point B, when l1 is fixed to its lowest value
√
2, while keep-

ing the platform aligned with leg 1. The result in [16] must be erroneous, because

P can really cross this segment from any of its two sides, as shown in Fig. 5. The

platform can start from a position where P is to the right of the segment (Fig. 5a),

then slide down along line L until it hits the segment (Fig. 5b), and, locking l1 and

l2 to their values in this configuration, finally perform a rotation about point A by

actuating l3 (Fig. 5c).

6 Conclusions

This paper has introduced a new approach to compute workspace boundaries of

general multi-body systems. A principal advantage of the method is its ability to

converge to all boundary points, as discussed in the paper. Previous methods for

the same purpose cannot ensure this property, since they are based on continuation,

which requires the availability of one point for each connected component of the

sought boundary, and no previous work on workspace analysis has shown how to

compute all of such points in general, to the authors’ knowledge.
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The computation of an exhaustive representation of the workspace boundary be-

comes feasible when the workspace of the end effector is of dimension three or

lower. However, for workspaces of larger dimension it turns out a difficult task,

independently of the methodology used, as the curse of dimensionality must in-

evitably be faced. In order to visualize such workspaces, several authors introduce

lower-dimensional representations of the workspace which are easier to compute

and meaningful to the robot designer, like the reachable workspace, the constant

orientation workspace, or the constant position workspace [6]. It is worth noting

that all of these workspaces can be computed by the technique herein proposed, us-

ing a proper choice of the u variables, and fixing them to given values, if necessary.
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