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Abstract
Cast shadows add additional difficulties on detecting

objects because they locally modify image intensity and
color. Shadows may appear or disappear in an image
when the object, the camera, or both are free to move
through a scene. In this work we use an object detec-
tion method based on boosted HOG paired with three
different image representations, and we evaluate their
relative performance. We follow and extend on the tax-
onomy from van de Sande [7] with considerations on
the constraints assumed by each descriptor on the spa-
tial variation of the illumination. We show that the in-
trinsic image representation consistently gives the best
performance when tested on images from sequences ac-
quired in an outdoor environment at different times of
the day. This proves the usefulness of this representa-
tion for object detection in varying illumination condi-
tions, and supports the idea that local assumptions in
the descriptors can, in practice, be violated.

1. Introduction and related work
Object detection is still a hard problem that have

raised much interest in the research community. This is
reflected by the large amount of literature on this topic.
Techniques based on Histograms of Oriented Gradients
(HOGs) have received a lot of attention since its intro-
duction by Dalalet al. [2]. The key idea behind HOGs is
that local object shape and appearance can be captured
by local histograms of image gradient orientations, cal-
culated over a group of pixels referred to as a cell. The
combined histogram entries of several cells form the
HOG descriptor, which is usually normalized to gain
partial invariance to illumination changes. The original
work by Dalalet al. used a dense and overlapping tiling
of cells within the detection window with local contrast
normalization for pedestrian detection in static images.
In a similar way, SIFT features [5] compute fixed HOG
descriptors in a grid of4x4 cells and8 gradient orien-
tations around interest points. These image descriptors
are translation, rotation, and scale invariant. They are

Figure 1. Image sequence examples.

also partially robust against certain types of illumina-
tion changes thanks to the normalizations involved in
their construction.

The majority of descriptors used today are intensity
based, although recently color descriptors have been
proposed to increase illumination invariance and dis-
criminant power. Burghoutset al. [1] compare the dis-
criminative power and invariance of local color descrip-
tors to Gray-value descriptors and evaluate the invari-
ance of local color descriptors in the presence of shad-
ows and highlights. They concluded that the shadow in-
variant descriptor, referred to as C-colour, performs the
best, and show that when plugged into the SIFT descrip-
tor, and then termed C-SIFT, it outperforms other meth-
ods that combine color and SIFT. Van de Sandeet al.
[7] also addressed the issue of evaluating a large num-
ber of color descriptors based on histograms, color mo-
ments and moment invariants, and color SIFT. Among
the color SIFT descriptors evaluated, they included C-
SIFT. They studied the descriptors analytically using a
taxonomy based on the invariant properties with respect
to photometric transformations and verified these re-
sults on a dataset with known illumination conditions.
They also experimentally assessed the distinctiveness
of the color descriptors using two benchmarks from the



Table 1. Invariance of descriptors against illumination changes. ‘+’ denotes sensitivity and ‘-’ invariance.
Letters indicate the spatial region assumed constant for the invariance to hold: ‘p’, pixel; and ‘d’, region used in
the descriptor calculation.

Intensity change Intensity shift Intensity change + Color change Color change +
intensity shift color shift

G-HOG +d +d +d - -
RGB-HOG +d +d +d +d +d

II-HOG +p +d +d +p -

image and video domain. The conclusion was that in-
variance to light intensity and light color changes af-
fect object recognition, and that the descriptors with
the best overall performers were C-SIFT, rgSIFT, Op-
ponentSIFT and RGB-SIFT. RGB-SIFT, in particular, is
invariant to all illumination changes considered in their
work.

In this work we use HOGs paired with several dif-
ferent image representations for object detection, and
evaluate their relative performance in outdoor video se-
quences. We share some ground with [1, 7] in the use
of color-based invariant image representations to cope
with illumination changes, and because the HOG de-
scriptor shares many similarities with the SIFT descrip-
tor. Moreover, we have included specifically the RGB
based HOG descriptor to be able to establish some, at
least qualitative, comparisons and extend some of their
conclusions. We focus, however, in a more specific
problem, as our aim is to be able to perform robust
object detection from images acquired from a mobile
platform in urban outdoor settings. These images typi-
cally show a high degree of variability in the illumina-
tion conditions, e.g. the sun position might vary from
being behind the camera to being at front of it, presence
of self and cast shadows, over and under exposure dur-
ing transitions from dark to bright areas and vice versa,
among others. These conditions have being the motiva-
tion to explore image representations with better invari-
ance properties.

Our results show that the intrinsic image represen-
tation proposed by Finlayson [3] consistently gives
the best performance when tested on images from se-
quences acquired in an outdoor environment at differ-
ent times of the day. This added invariance, however,
comes at the price of relying on some camera proper-
ties. The implications of this dependence, however, are
reduced by the existence of a method that estimates the
required parameters directly from images [3].

2. Image representations and descriptors
invariance to illumination changes

We use three image representations, intensity or gray
value, RGB and the intrinsic image representation pro-

posed by Finlaysonet al. [3]. From each of these image
representations we compute an HOG descriptor, which
we will refer to by G-HOG, RGB-HOG, II-HOG, re-
spectively. Then, we present and analyze each im-
age representation making explicit the assumptions they
rely upon, together with their invariance properties.

We follow the taxonomy introduced by van de Sande
et al. [7] with some additional considerations regard-
ing the constraints imposed by each descriptor on the
spatial variation of the illumination. In their analysis,
they implicitly assume that the illumination is spatially
constant, at least within the region of pixels where the
descriptor is being calculated. Our experience tell us
that this is not always true, and thus we include this fac-
tor into our analysis. Some of the invariant properties
of the descriptors evaluated arise from the image repre-
sentation they are based on, while others are due to the
way the descriptor is constructed. Although it might
not seem evident at first, this has some important con-
sequences. The invariance properties derived by van de
Sandeet al. assume the diagonal-offset model proposed
by Finlaysonet al. [4] and Lambertian reflectance.

HOG descriptor. According to [7], HOG descrip-
tors in general are invariant to light intensity shifts due
to use of the gradient. They are also invariant to light in-
tensity changes, and to light intensity changes plus light
intensity shifts, due to normalization. These properties
hold true as long as the particular photometric changes
do not occur within the descriptor region. This is im-
portant for our analysis. The fact that these descriptors
are local in relation to object or image size does not
mean that there can not be illumination changes within
the pixel computed region.

RGB-HOG descriptor. The RGB-HOG descriptor
gains invariance to light color change and to light color
change plus light color shifts because three independent
HOGs, one for each channel, are computed indepen-
dently including normalization, and stacked together.
Again, the invariance implies no illumination changes
within the descriptor region.

Intrinsic image representation. The image repre-
sentation proposed by Finlayson [3] is derived from a
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Figure 2. Detection performances. Left: Sequence two. Middle: Sequence three. Right: Number of features.

transformation of the RGB color space formed by divid-
ing each band by the geometric mean,3

√
R × G × B,

and the calculating logarithm

ρk = log(
Rk

(
∏

3

i=1
Ri)1/3

), k = 1, 2, 3 (1)

All 3-vector ρ lie on a plane orthogonal tou =

1/
√

3(1, 1, 1). The redundant dimension is removed
by rotating 3-vectorsρ into a coordinate systemin the
plane using a2 × 3 matrixU (see [3] for details)

χ ≡ Uρ, χ is 2 × 1. (2)

It can be shown [3] that under the assumption of Planck-
ian illumination, narrow band camera sensitivities and
Lambertian surfacesχ has the form

χ = s +
1

T
e, (3)

wheres depends on surface and the camera,e is in-
dependent of surface, but which again depends on the
camera, andT is the illuminant color temperature. As
a consequence, changes inT result in shifts in the same
direction for all surfaces. An invariant to illumination
color changes can be obtained by projectingχ into the
directione⊥ orthogonal toe, obtaining a single scalar

I
′

= χ1 cos θ + χ2 sin θ. (4)

To remove the effect of the logarithm, the last step in
the derivation of the intrinsic image is to exponentiate

I = exp(I
′

). (5)

This image representation is invariant to all photometric
quantities at the pixel level, with the exception to light
intensity and color shifts. The II-HOG descriptor gains
invariance against light intensity shifts thanks to the gra-
dient in the HOG, but it is not invariant to light color
changes plus light color shifts. The differential char-
acteristic of the II-HOG with respect to the other de-
scriptors analyzed is its invariance against illumination
intensityand illumination color at a pixel level. Table 1
summarizes the invariance properties of the descriptors
just discussed.

3. Computation of HOG-based detector
The computation of the object detector is based on

a boosting algorithm in order to obtain an efficient and

robust detector. The goal is to construct a strong classi-
fier H by the selection and combination of weak classi-
fiersh where each one relies on one HOG-based feature
evaluated at coordinates(u, v). Then, the target object
is described by a set of local features (local HOGs) eval-
uated in defined locations which have been obtained via
the boosting mechanism. In this work we use the Real
Adaboost version because it deals with confidence-rated
weak classifiers instead of boolean ones [6]. This is an
useful aspect when dealing with our features character-
ized by histograms of oriented gradients. The boosted
classifier is then defined by the combination ofT weak
classifiers,

H(x) =

T∑

t=1

ht(x) > β, (6)

beingx a test image sample andβ the detector thresh-
old. Weak classifiers map the sample spaceX to real-
valued spaceℜn whose dimensionn is determined by
the HOG feature dimension. For comparison purposes,
our local HOGs consist of4x4 spatial cells and8 gradi-
ent orientation bins, yielding a128-dimensional vector
(n = 128) similar to SIFT descriptor [5]. Additionally,
each cell is formed by4x4 pixel-gradients.

4. Experiments
Experimental evaluation of the three image represen-

tations in addition to a HOG-based detector was carried
out over three sequences of video images acquired from
a mobile platform in outdoor settings and taken at dif-
ferent times of the day. The sequences consist of one
person walking in an urban setting exposed to cast shad-
ows and abrupt illumination changes. In all them the
person closes a loop loosely following a path around
some raised garden beds. There are pose, scale and illu-
mination changes of the person in front of the camera.
In Figure 1 we can see some image examples. In all ex-
periments the first image sequence is used for training
the HOG-based detector while sequences two and three
are used for testing.

For evaluation, test images are labeled with bound-
ing boxes, indicating location of the walking person
within images. These bounding boxes (Bg) represent
the ground truth and the quality of results are measured
by their overlap ratio with detections defined by bound-
ing boxes (Bd) as well. If this ratio exceeds50 percent,



Figure 3. Detection results. Cyan rectangles are correct detectionsand red ones are their ground truth.

a true positive detection is considered, otherwise, such
detection is considered as a false positive. This overlap
ratio is computed as|Bg∩Bd|

|Bg∪Bd|
> 0.5. Finally, the per-

formance of the detector is measured by using a Recall-
Precision curve that is computed by true and false posi-
tive rates evaluated for various detector thresholds (β).
Evaluation of sensitivity to number of features. The
detector performance has been evaluated in the se-
quence three in terms of the number of HOG-based fea-
tures selected by the boosting algorithm. For this ex-
periment we have considered25, 100 and200 features.
In Figure?? are shown the detection performances for
each one of the image representations (G-HOG, RGB-
HOG and II-HOG). They show that increasing the num-
ber of features the detection performance increases for
all approaches. Furthermore, the II-HOG-based detec-
tor outperforms the other ones at the same number of
features. This detector achieves remarkable rates, while
the other methods yield lower detections rates. For
instance, the detector using an II-HOG representation
with 100 features achieves better detection results than
the other methods using200 features. It proves that G-
HOG and RGB-HOG are more sensitive to the reduc-
tion of the number of selected features, requiring more
features to achieve a comparable performance to II-
HOG. One possible explanation to this is that G-HOG
and RGB-HOG are compensating the illumination vari-
ations by using an exhaustive training and more number
of HOG-based features for building the boosted classi-
fier.

By other hand, because the II-based detector requires
less object features to achieve a good detection rate,
this approach is more efficient because it reduces the
computational burden caused by the evaluation of ob-
ject features in the recognition stage.
Evaluation under image conditions changes. The
HOG-based detector is also tested with the aim of mea-
suring its performance under different illumination con-
ditions and cast shadows. To this end, the detector is
evaluated over sequences two and three which present
unknown image conditions, given that the sequences
were acquired with a couple of hours of difference be-
tween each other. Figure 2 shows detection perfor-
mances for each one of the proposed approaches. Re-

sults show that II-HOG is consistently better than the
other approaches in both sequences, achieving an ERR
(Equal Error Rate) of97.9% and97.3% for sequences
two and three, respectively. G-HOG and RGB-HOG
achieve96.9% and96.4% for sequence two and93.7%
and 96.6% for sequence three, respectively. This ex-
periment has been carried out using a boosted classifier
with 200 HOG-based features. In Figure 3 are shown
some detection results for the II-HOG based approach
that show that it is able to deal with extreme illumina-
tion conditions with remarkable detection rates.

5. Conclusions
We have evaluated the detection performance of

HOG descriptors based on three different image repre-
sentations under abrupt illumination changes. The de-
scriptor based on the intrinsic image representation con-
sistently outperformed the other descriptors. The RGB-
HOG and the G-HOG improve their detection rates at
the expense of requiring a larger number of features
to achieve comparable performance to the II-HOG de-
scriptor. This supports two conclusions: first, that the
intrinsic image representation proves to be a useful im-
age representation for object detection when the illumi-
nation conditions vary considerably; and second, that
the illumination invariance assumption of local descrip-
tors can in practice be violated.
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