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Abstract

This article presents a novel approach for solving peo-
ple guidance in urban settings suported in Multi-Robot
Task Allocation. The developed architecture overcomes
some of the limitations of existing approaches, which are
either tailored to tightly bounded environments, or based
on unrealistic human behaviors. In particular we define
a “ Sdlfish Task Allocation” , the novelty of this proposal
is the ability of robots to naturally cooperate if they need
to do so, without the need to pre-set the interaction be-
tween them by an operator. Some simulated experiments
about people guidance where robots are able to respond
toreal situationsare presented; the failure of some robots,
the group spliting up, people leaving the group, the addi-
tion of new elementsto theteam or the appearance of new
tasks (lead other groups) are some of the situations being
considered.

1. Introduction

In recent years, interest of researchers on social robots
and cooperative robotics has increased significantly. The
applications of this field are very diverse, some exam-
ples are exploration sites [29], robot formation for naviga-
tion [11] or object transport and evacuation of people [7].
Researchers soon wondered which labours may be tack-
led by a group of robots working cooperatively and how
the robots should behave to solve those tasks. This pa-
per is focused on this second question: How a group of
robots should act to solve a task or set of tasks in a co-
operative way? More concretely, we focus our research
in the problem of guiding a group of people using Multi-
Robot teams. This paper solves this problem presented
with Multi Robot Task Allocation (MRTA). Dealing with
the MRTA problem one must also address many of the
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other issues involved in multi-robot systems: communi-
cation, conflict resolution or information sharing, among
others.

In this present work, a new orientation is presented,
where the main question is not about the division of tasks
between robots. In the developed approach the participa-
tion to solve a task is not limited to a single robot. Robots
will try to participate in the tasks that give them more ben-
efits, even when the task is already being done by some-
one else. In many cases the tasks can be performed by
more than one robot, and even more, it is probable that
the task is accomplished quicker or "better if many robots
are involved. This feature has not been explored so far
by other existing architectures and we present here a first
draft. We shall apply our MRTA proposal to the guiding
people challenge in urban areas. A set of experiments in
which a set of robots must cooperate carrying out various
tasks of people guidance are presented.

Here, we will consider a group of robots where each
robot executes a kind of task, which can be exchanged
according to environment situation. One of the robots is
the leader, as a human tour-guide. It is placed at the front
of the group and its role is to estimate the trajectory of
both the people and the rest of robots. The other robots,
called shepherds, are responsible for guiding the people,
preventing any person leaving the group, and following
the path given by the leader.

Obstacles of the environment, such as buildings or
benches, are considered through a potential field, where
the positions of people and robots are represented by con-
tinuous and derivable functions. Since the obstacles are
assumed to be static, their positions are represented by
constant functions. Using these parameterizations each
point in the space will have assigned a potential value,
which will be used for the navigation of robots toward the
environment.

This paper contents has been distributed as follows.



Figure 1. A group of people being guided by
a set of robots.

We start by discussing related work of people guidance
and task allocation. Section 11l describes the model we
used for people guidance and we define which tasks robots
must solve cooperatively. Section IV present a novel pro-
posal of Task Allocation. In section V the experiments
and results are presented, and last but not least, in section
VI some conclusions and future directions are provided.

2 RELATED WORK

Developing social and cooperative robots is a novel
field within robotics. Consequently, if we refer to the
challenge of guiding a group of people in urban areas
the number of related reference is not very large. There
has been some research using a single robot for guiding
people in exhibitions and museums [5], in hospitals or
as an assistant [10]. Nevertheless, the main purpose of
these robots was simply educational or to entertain, in-
stead of guiding people. Similar applications have been
developed for evacuating emergency areas, detecting haz-
ardous materials, or offering task assistance to humans.
Animal flocks were automatically controlled using a sin-
gle robot in [3, 21]. Again, the cooperative behavior of
our approach is not exploited in these methods. Further-
more, the environments where the systems are shown to
work are highly controlled, do not include obstacles and
are tightly closed.

The methods mentioned previously consider either sin-
gle robots, or multiple robots moving independently from
the rest. To our knowledge, only a few works deal with
multiple robots behaving in a cooperative mode. For in-
stance, [14] performs a qualitative analysis of the move-
ments of different entities, humans or animals, and it
builds an architecture of three robots to guide them. How-
ever, realistic situations, such as obstacles or dealing with
people leaving the group are not considered. In [17] sev-
eral types of robot formations, and different strategies for

approaching the robots to the people are considered. How-
ever all these issues and the general movements of the
robots are ruled by a large number of heuristics which
makes the system impractical. Furthermore, in order to
achieve the desired guiding results, robot motions with al-
most infinite accelerations are required.

As we have mentioned above, for solving the prob-
lem of guiding groups of people with multiple robots, we
will use a new architecture of MRTA. The MRTA prob-
lem has recently become a key research topic in Multi-
Robot Systems. “It deals with the way to distribute tasks
among the robots and requires to define some metrics to
assess the relevance of assigning given tasks to such or
such robot” [30]. There are many approaches to MRTA.
Some of them tackle the problem with a centralized ap-
proach [4, 6]. The main advantage of these approaches is
they can offer an optimal solution. However, they have
several disadvantages including intractable solutions for
large teams, slow performance, communication depen-
dence, and that the central station become a crucial point
of failure.

The most popular way to tackle MRTA are distributed
architectures, they have a completely different orientation
compared to centralized ones. There are different classes
within distributed architectures. First, we found the
behavior-based architectures as ALLIANCE [18, 19, 20]
or Broadcast for Local Eligibility (BLE) [31]. Such archi-
tectures have the advantage of modular programming but
the existence of cross-inhibition avoid robots working on
the same task; therefore, task-cooperation only appears if
it is predefined in the robot program. A second class are
the market-based architectures, which began in software
agents with the Contract Net Protocol [24]. We can find
today many adaptations for robotics; some of the most re-
levant are M+ [2], MURDOCH [16], TraderBots [12, 13]
or SET [30]. These architectures mainly work with auc-
tions assigning the task to the most capable robot. Each
variant achieves different improvements but, in general,
auction-based architectures offer the advantage of ease of
adaptation to team size changes. Disadvantages of these
kind of architectures are again the difficulty to allow coop-
eration for solving tasks; some of the architectures allow
cooperation in case of error, but is not a constant in normal
conditions.

There are some other distributed approaches as
role-based [8, 25], swarm intelligence [32] or heuris-
tic search [23]. One of the newest architecture is
ASYMTRe [26, 27, 28], representing a task synthesis ap-
proach inspired on information invariants implemented by
Tang and Parker.

In general, existing proposals attempt to allocate one
task to one robot. Only a few consider the case for co-
operating to solve a given task, and with the exception of
ASyMTRe in which cooperation is somehow preset on the
system definition, cooperation only occurs when there is
an error during the group operation.

In the present work, we use the advantages of the



MRTA for the distribution of tasks and the cooperation
between different robots to solve the particular problem
of guiding groups of people in urban areas.

3 People Guidance M ethod

In previous work, we have presented the “Discrete
Time Motion” model (DTM) [15], with DTM robots are
able to modelize the representation of the whole environ-
ment, made of an open and not bounded area with obsta-
cles, and how the elements of this environment are related
with the group of robots and people.

The DTM model, on one hand, estimates position, ori-
entation and velocity of the robots and people, and the
position of the obstacles at a time instance k. It will be
used to estimate the intersection of the people with the
obstacles and detect if someone is leaving the group with
a Particle Filter [1]. On the other hand, orientation and
velocity of people and robots between two time instances
kand k+ p. It will be used to compute the robots’ trajec-
tory to reach the goal while preventing people leaving the
group.

The DTM model aims to represent the areas where the
robots will be allowed to move, by means of potential
fields. In order to decide the trajectories the robots will
follow we will define a potential field over the working
area, and perform path planning in it [?]. These repul-
sive forces may be interpreted as continuous probability
functions over the entire space. Once they are defined, the
tensions at each point of the space may be computed as
the intersection of these Gaussians.

Having defined the tensions for each of the components
of the environment —i.e. robots, persons and obstacles—we
are ready to define the potential field. This is computed as
the intersection of all the Gaussian functions for a given
variances. Once the potential field is known, we will de-
fine the trajectories of the robots, based on the position
of the persons and the goal and following the paths with
minimum energy in the potential field.

The novel proposed MRTA, described below, is ap-
plied to this problem of robot cooperation. This work not
only studies the interaction between robots and humans,
but also investigates the behavior of robots for the accom-
plishment of the task in a cooperative way, i.e., how robots
should distribute themselves for different tasks and how
they can manage problems that can suddenly arise while
guiding people.

The main tasks that can be found in the guidance are:
Tour guide task, shepherd task and recovering people task.
In the following subsections we will explain each of the
tasks and how they should be developed by robots.

The task of leading the group is essential for the posi-
tive development of the mission. One of the robots takes
the role of leader, as a tour guide, must compute the route
that the group should follow and should be placed at the
head of the formation. Moreover, it has to solve the path
planning issue and be sure that the group is following him.

Algorithm 1 General strategy for guiding people

1: Obtain the start point and the goal point.

2: Compute the roadmap with the path planning.

3: Search the shortest path of the roadmap.

4: Mark every node of the shortest path as a subgoal.

5: for Every subgoal do

6:  Act upon the situation (open path, narrow pas-
sages...) carrying out the priorities.

7:  Move to the next subgoal

8: end for

Robots collaborating in guidance people task which
are not leaders are called shepherd robots. They must be
placed around the group of people to prevent the group
spreading away or to prevent individuals escape from the
group. Robots perform a repulsion force on people which
prevent them to escape in areas near to robot’s position.
The shepherding task is performed by all the robots ex-
cept the leader, that only carries out the function of a
guide. The rest of robots follow the strategy depicted in
Algorithm 1. Note that this algorithm does not explicitly
consider safety conditions for the persons; i.e, when the
robots are working it is necessary to satisfy a set of pri-
orities for the safety of the people, such as avoiding colli-
sions. However this was already taken into account when
we defined the security areas in the Gaussian functions
parameterizing the tensions.

The formation of robots being considered here is the
following: equidistant positions between the robots in the
formation in case there are no obstacles, if they exist, ob-
stacles made a repulsive forces on people and therefore
robots can use this situation to cover bigger areas around
people. See figure2 for an schematic example. Mainly,
if there are no additional tasks, the robots played the
present task in the course of the mission. A task that can
change the roles of shepherd robot is the rescuing people
task, which occurs when one or more individuals distance
themselves from the training, which is explained below.

A common problem in people guidance is when a per-
son or a set of people are escaping from the group, at this
moment, recovering peopletask is activated. One or more
robots must move toward the person who is moving away
and, once the robot arrives to the escaping person posi-
tion, it must accompany him/her back to the formation. To
solve this problem robots must estimate people’s location
by using, for instance, a particle filter [1], and once an esti-
mation of future position is known, they must compute the
new trajectory using a path execution module. Once the
individual is intercepted, the robot must accompany him
back to the group. While one of the robots perform this
task, the rest of shepherding robots must recalculate their
positions so the new formation covers the largest possible
area. Inthis new vision of task allocation, robots perform-
ing this task could be robots which were not initially in
the training.

In the next section we proceed to the description of the
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Figure 2. (a) A group of five robots moves
in equidistant formation and a 6th robot
tries to join the group, (b) the sixth robot
has been introduced in the formation and
the group has rearranged their positions to
maintain equidistant training.

new architecture of MRTA and how it is applied to the de-
velopment and distribution of tasks presented in this sec-
tion.

4 Selfish Task Allocation

In our MRTA proposal, participation in the task solv-
ing is not limited to a single robot. Robots try to solve
those tasks providing them more benefits, even if the task
is already being done by someone else. Often tasks can be
performed by more than one robot, and it is even probable
that the task is solved faster or "better if many robots are
involved. This section first describes this novel approach
for MRTA called Sdlfish Task Allocation, and then its ap-
plication to the problem of people guidance using multiple
robots.

A MRTA algorithm distributes tasks among robots,
thus, it is necessary to define some metrics to assess the
relevance of assigning given tasks to particular robots. Up
to date literature MRTA architectures address the problem
trying to assign one robot to one specific task. Neverthe-
less, if there is a task that needs to be tackled by more than
one robot, these architectures divide (usually in a manual
fashion) this particular task in smaller subtasks and then
introduce those individual chunks in the system.

The presented Selfish Task Allocation (STA) is able
to address those tasks requiring more than one robot. It
improves the overall system performance when there are
more robots than tasks without losing system decentral-
ization, and maintains a fault control system. Further-
more, to achieve this features, we addressed the problem
from the perspective of being the robots who define which
tasks they perform better (hence the name selfish). In this
way, with STA cooperation emerges naturally from within
the system while existing approaches go the other way,
tasks are divided between the robots and hence real co-
operation is never achieved although pre-set in the system
programming.

The architecture shown in this work was inspired by
human behavior, because a person normally performs the
task that gives more benefits, without knowledge about
the details of other group members (mood, ability to per-
form tasks, etc), and even so, without the knowledge of the
whole system the tasks are solved. With regard to imple-
mentation, our architecture was inspired by the one pre-
sented by Tang and Parker in [28], called ASyMTRe. STA
contains a set of schemas, which represent different capa-
bilities of robots. Such schemas are commonly composed
of information necessary for its execution (inputs) and
resulting information (outputs). However, our proposal
has some differences with ASyMTRe, the first is that our
proposal is presented as a online Task Allocation, while
ASYMTRe is an offline system, second in ASyMTRe
robots cooperate only when is neccesary, in our proposal
robots cooperate in all the cases where the system perfor-
mance is increased, third ASyMTRe requires that all the
system tasks are resolved, if they can solve most of them
but not all, then ASyMTRe believes that the system has
no solution, our implementation considers that there are
some pending tasks, that wait for system or environmen-
tal changes, while other tasks are carried out. At least
but not at last, the utility function of ASyMTRe is based
on cost and probability of each schema, and that informa-
tion is predefined by the designer, we replace probability
and cost by uncertainty, that is a concept with much more
mathematical support and also closest to robotics.

The STA model maintains, in a distributed database,
a list with the different tasks that robots must solve (sys-
tem tasks), each task within the list may correspond to a
schema in some robot, that schema needs to fullfill their
inputs to be activated, inputs comes from outputs of other
schemas and therefore there are several ways (combina-
tions) to solve a task. Every schema has associated an
implementation uncertainty value Uj, that value is deter-
mined by a Gaussian distribution, hence its uncertainty is
defined by the covariance function. Therefore, the uncer-
tainty U; is computed from a sampling method. As men-
tioned, to activate a schema, all their inputs must be con-
nected, then if some input is not achieved, the uncertainty
of the schema is increased thus, the schema uncertainty Ue
can be written as:

Ue = Ujexp™™¥ @)
Where,
U; = Implementation Uncertainity
Penalty = Number of Inputs not achieved

Penalty represents the number of inputs in the schema
which have not been already achieved, for instance, if in
a box pushing task the robot does not have a schema to
solve auto-localization the Penalty = 1.



In addition, once the uncertainty function of each
schema is known, it is required to compute the uncertainty
function for an specific task. Each task consists on a set €,
whose elements are the necessary and sufficient schemas
to solve the task. The task uncertainty is defined by:

Ur =U(v,AX) + (NR+1) Y Ue 2)
ece
Where,
NR = Number of robots developing the task
U(v,Ax) = Localization Uncertainty
Ax = Total travel distance for task resolution
v = veocity

It is worth to mention that the set € is not unique, there
are different schema combinations which can solve the
task. Hence, we will consider the set & such that mini-
mizes Eq.2.

The STA considers the presented formulation to ob-
tain a proper task distribution for a set of robots. In fol-
lowing sections, we will apply this theory for solving the
problem: “Guiding a group of people in dynamic environ-
ments”.
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Figure 3. It shows an example of schemas
that may have a robot.

4.1 Selfish Task Allocation Applied to People Guid-
ance

In previous subsections we described, on one hand, the
architecture of the proposed new model “Selfish Task Al-
location”, and, on the other hand, the tasks to be solved
in this present work. As explained above, there are three
basic tasks in the resolution of the problem of guiding peo-
ple: Leadering Task, Shepherd Task and People Recover-
ing Task. Each robot has an associated set of schemas,
which represent their abilities, in this particular case, each
robot has, among others, some or all of these three skills
necessary for people guidance.

Each of these tasks are represented by an schema
(fig.3), which, being part of the robots, are placed at the
disposal of the task allocation for the resolution of possi-
ble new tasks, and as any schema, specific people guid-
ance schemas need to complete all their entries.

Firstly, leadering task is the responsible of guide peo-
ple to their goal, to achieve this objective, this schema
needs its own localization, this is a really common input
in schemas of mobile robotics because for any interaction
(with environment, people or other robots) is necessary
to estimate its own position. This schema also needs as
input a path, frequently provided by a path planner, that
indicates a free route to the group goal, the third input
of this schema is the result of their interaction with peo-
ple, to maintain a close contact with the guided group the
robot needs to know people position estimation, which,
commonly, are obtained from complex sensor networks,
or sophisticated vision software.

Secondly, shepherd task has the function to support the
work of leader, keeping the group together. The inputs
of this capacity are localization and people position esti-
mate. This last input is used together with team informa-
tion (team size and id in team) to define the best position
for the robot to promote the group integrity.

The last specific schema for people guidance is person
recovery, it is the last barrier of guiding people, trying to
recover people who are distracted and have been separated
from the group. This schema has as entries the position of
the distracted person, his own position, and the positions
of the group to return the person to the formation.

People guidance schemas are usually part of an exten-
sive set of schemas (as represented in fig.3) that describe
the capabilities of a robot, in some occasions the require-
ments of these schemas are within the robot, and in other
cases such inputs have to be looked beside himself.

With the architecture described throughout this paper
we have drawn up a series of simulations where we study
the behavior of the robots when the administration of the
team behavior is delegated to the task allocation, specifi-
cally to selfish task allocation.

5 EXPERIMENTS

As mentioned earlier the aim of this paper is to guide a
group of people with the help of a group of robots work-
ing in a cooperative manner, supported by the selfish task
allocation proposal explained previously.

The current work is done within the framework of the
European Project URUS [22]. The urban area of work
that has been considered for the tests is the North Cam-
pus of the Universidad Politecnica de Catalunya (UPC),
the Barcelona Robot Lab, which size is about 10000 m?,
see Fig. 4. We will take into account static obstacle as
buildings, banks or pots, and dynamic obstacles as mobile
robots and people. In an initial state will not be taken into
account cars or trucks to simplify the problem.

We use as middleware robotYARP [9], that provides in-
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Figure 4. Map of the Campus Nord of
Univertitat Politecnica de Catalunya (UPC),
Barcelona Robot Lab.

terfaces to communicate between components (schemas).
This middleware is enough flexible to allow the programa-
tion of low level tasks as obstacle avoidance or to program
high level task as this task allocation.

We will present different simulations of a group of
robots guiding several people. We have studied which are
the different behaviors of robots and how are distributed
the tasks depending on people behaviors. In the sequences
of Fig. 5-8, we show some instants of time of the different
simulations we have developed. Robots are represented
with circles, and people with asterisks.

As it has been mentioned several times in this paper,
we are trying to study who are distributed the task we can
find in a guiding people mission. For that reason, it is
necessary to evaluate how different people behaves affect
on the task allocation.

We have developed some simulations of guiding a
group of 5 or 6 people by two or three robots in a 2D with
obstacles, where the group of people has to reach an spe-
cific goal. In several occasions the Task Allocation have
more than three robots, however, in other occasions, the
systems only can use two robots.

In Fig. 5-8, some instant of simulations were pre-
sented, in all simulations performed, the systems is able
to solve different tasks by different ways, this new alloca-
tion have the advantage that though, a task is being solved
by one robot correctly, other robots can join and solve the
assigned task by a better way.

Finally, Fig. 9, shows robots and people trajectories
while the group is being guided, here we can see how peo-
ple follows leader’s trajectory untill arrive to their goal.

On the submited video, we show a guiding task where
a person is distracted and lose the group, Then another
robot performing surveillance change their task and guide
the distracted person to reinstate the group.
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Figure 5. A group of people is being guided
by three robots, one people has escaped
from the formation, and one of the shepherd
robots have rescued him and is accompa-
nying him to the group.

6 CONCLUSIONS
WORKS

AND FUTURE

This paper has been focused on the description of the
selfish task allocation model to carry out guided people in
urban areas with a set of mobile robots working in a coop-
erative manner, working with the model DTM the robot
can act without the need to be constantly watching the
movement of people. We have presented some results in
which it has been applied the method described and it has
become apparent that the robots can act early enough to
guide group of people.

Robots perform their task by a cooperative way, and
are able to solve new tasks, for instance, rescuing peo-
ple who are escaping from the formation, here, the Selfish
Task allocation have salved the problems by two differ-
ent ways: one of the robots who are acting as a shepherd
robots avoid people escaping from the crowd formation,
or another robot, who is not involved in the guidance mis-
sion, rescue this person. Another advance is the proposal
of a new uncertainty function that allows the election of
the best task to perform.

Future studies that must be consider are the following
ones: (i) Obtain the optimal number of robots to act de-
pending on the number of people and the environment for
optimize the resolutions tasks, and (ii) Study which will
be robot behavior if the number of people who are escap-
ing is bigger than the number of robots that the system
disposes.
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