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Abstract—The standard forward kinematics analysis of 3-RFR planar
parallel robots boils down to computing the roots of a sextigpolynomial.
There are many different ways to obtain this polynomial but most of them
include exceptions for which the formulation is not valid. Uhfortunately,
near these exceptions the corresponding polynomial exhitsi numerical
instabilities. In this paper, we provide a way around this inconvenience
by translating the forward kinematics problem to be solved nto an
equivalent problem fully stated in terms of distances. Usig constructive
geometric arguments, an alternative sextic —which is not tiked to
a particular reference frame— is straightforwardly obtained without
the need of variable eliminations nor tangent-half-angle sbstitutions.
The presented formulation is valid, without any modification, for any
planar 3-RPR parallel robot, including the special architectures and
configurations —which ultimately lead to numerical instabiities— that
cannot be directly handled by previous formulations.

Index Terms—3-RPR parallel robots, position analysis, forward kine-
matics, coordinate-free formulations, Cayley-Menger det¢rminants, bilat-
eration

. INTRODUCTION

Much has been written about the 3dRFplanar parallel robot
because of its practical interest, mechanical simplieityg rich math-
ematical properties [1]. Such a robot consist of a movindfqile

substitution is applied to translate sine and cosine fonstiofé into
rational polynomial expressions in a new variable tan(6/2).

In order to simplify as much as possible the coefficients of

the resulting 6th-degree polynomial, it is possible to esprthe
coordinates of the base attachments according to a spendfidinate
frame. For example, by making one coordinate axis to coamuitth
the baseline between two base attachments and/or locatngrigin
at one base attachment. Nevertheless, this kind of singlifics has
an important drawback: the numerical conditioning of thsuténg
formulation depends on the chosen reference frame. Thibyshose
formulations which are not linked to a particular referefreene —
or coordinate-free formulations— are preferable. In 2001 Kong
and C. Gosselin proposed a coordinate-free formulationdnvidg
a sextic intan(¢)/2), where is the angle formed between one leg
and one of its adjacent base sides [8]. Although this fortradavas
used to study analytic instances, it is certainly supeoahe one in
[7] for the aforementioned reason. Nevertheless, the prablderived
from the tangent-half-angle substitution still remained.

The tangent-half-angle substitution poses two well-kngevab-
lems. One results from the fact thaan(6/2) is undefined for
6 = +x. Moreover, it can become difficult to reconstruct other spot
occurring in conjunction with the roét = £ [9]. The other problem
is the introduction of extraneous roots. Both problems stk kmown
and can be handled but it complicates notably subsequeniladbns
[10]. One alternative to this substitution is to keeg(6) andsin(0),
both as variables, and to add the equatinn? (9) + cos?(8) =1 to
the elimination process.

A more elegant mathematical framework is obtained by vigwin
the planar moving platform displacements as points in a-four
dimensional homogeneous space. This can be achieved udeing,

connected to the ground through three revolute-prisnratiotute
kinematic chains. The prismatic joint of each chain is aettand
the forward kinematics problem consists in, given the paison

joint lengths, calculating the Cartesian pose of the moyitagform.
A clever reasoning, based on the number of possible intéossc
between a circle and the general coupler curve of a 4-bar amésh,
permits to conclude that this problem has at most 6 diffesehitions
[2]. That is, for fixed leg lengths, it is possible to assenthie robot
in up to six different ways, known aassembly modes. In general,
it is not possible to express analytically these six Caategioses as
functions of the actuated joint coordinates, except foresqarticular

example, the kinematic mapping, as in [11] and further elaeal
in [12], or Clifford algebra, as in [13]. A similar treatmembay
be obtained by using the substitutiosia () = 2sc/(c¢* + s?) and
cos(0) = (c* — s%)/(c* + s*) which, after clearing denominators,
lead to homogeneous equations dnand c. This non coordinate-
free formulations avoid the tangent-half-angle substtutbut the
problem with+7 turns still remains if one of the used homogeneous
coordinates is normalized to 1. Alternatively, a normaliztondition

cases known asnalytic robots [3]. This paper is devoted to the involving two variables is possible thus adding one moreatiqn to
problem of finding these poses efficiently and accuratelyafiorases. the elimination process.

The usual approach to obtain the aforementioned assemidgsno An important fact that has been commonly overlooked by the
consists in manipulating the kinematic equations of theotraim kinematics community is that solving the forward kinemsitiof
reduce the problem to finding the roots of a polynomial in on#e 3-RAR parallel robot is equivalent to finding the distinct planar
variable, thecharacteristic polynomial, which must be of the lowest embeddings, up to Euclidean motions, of a graph with vestice
possible degree, that is, a sextic. E. Peysah is creditecetthd subject to edge lengths constraints. This graph corresptmavhat
first researcher in obtaining this sextic in 1985 [4]. The eamsult in [14] is called thedoublet, or in [15], the Desargues framework.
was obtained independently at least by G. Pennock and D.nassIn both cases, the number of possible embeddings is obtdiged

in 1990 [5], K. Wohlhart in 1992 [6], and C. Gosselan al., also
in 1992 [7]. The formulation due to C. Gossekh al. has become
thereafter the standard one. The major step in this formomas to

find an equation only i (the orientation of the moving platform),

that is, to eliminate all other variables from the systemilusmn

formulating the problem purely in terms of distances. Thisdk
of approach leads to undesired solutions to the originablpro
because the embeddings containing mirror reflections ofbtme
and/or the moving platform also count as valid solutions[14],
the embedding problem is tackled by assigning coordinatetsvo

equation is obtained that contains o#lyFinally, a tangent-half-angle points whose distance is known and solving a system of 8 Ensat
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(the remaining 8 distances constraints) in 8 variables dtiwedinates
of the remaining 4 points). The resultant is a polynomial efre

28 which factors as the product of a degree 12 and a degree 16

polynomial. Alternatively, in [15], the problem is formuéal in terms
of equations involving Cayley-Menger determinants whiarnpit
to conclude that there exists edge lengths which induce up4to
embeddings, 6 for each combination of the base and the piatfo
triangles and their mirror reflections. In this paper, wedduce a
further twist to this approach that allows us to solve thebjmm
by a sequence of bilaterations following the initial ideassented in



[16]. As a result, a 6th-degree characteristic polynomidiich is not
linked to any particular reference frame, is straightfodaobtained

without variable eliminations nor tangent-half-angle ithtions. P=p1+ % cosf(p2 — p1)

Moreover, the obtained polynomial is mathematically moeetable ’ 2

than the one obtained using other approaches because fiisicoes it D(1,2;1,3) (P2 — p1).

are the result of operating with Cayley-Menger determisamith D(1,2)

geometric meaning. Moreover, the position vector dP; can be expressed as:
This paper is organized as follows. A coordinate-free fdarfor D({1,2,3)

bilateration expressed in terms of Cayley-Menger deteanis is ps=p+ +——"""S(p2 — p1), 3)

presented in Section Il. It is the basic formula, used in iBadil, D(1,2)

to derive a distance-based characteristic polynomial tiergeneral Where the= sign accounts for the two mirror symmetric locations

3-RRR planar parallel robot. Section IV discusses how this formf p, with respect to the line defined b, P, andS = 0 -1
lation specializes to all analytic instances reported i literature. _— . . (L0
Section V analyzes several numerical examples. Finallgti@e VI Then, quSt'tUt'ng (2) in (3) and expressing the result irpaéorm,
summarizes the main points. we obtain
Il. CAYLEY-MENGER DETERMINANTS AND BILATERATION (s —p1) = Za(p2 — P1) )
3 — =7 — 5
Let P, and p, denote a point and its position vector in a given (s = p2) 2(P1 = p2) ®)
reference frame, respectively. Then, let us define where
1 D(1,2;1,3)  F/D(1,2,3)
0 1 ce e 1 Zl == I
- - D(1,2) |+v/D(1,2,3) D(1,2;1,3)
. . . N\l 1 Siag -0 Siga
D(Z17"'7ln;J17"'7jn):2 —5 . . . . ) and
: : : : 7. — 1 D(2,1;2,3) F+/D(2,1,3)
L Sipgi oo Singn T DR |£/D(2,1,3)  D(2,1;2,3) |
with s, = |[ps — p;||%, which is independent from the chosen Substituting (4) and (5) in the vector loop equation
reference frame. This determinant is known asGag ey-Menger bi- (ps — p1)+ (p2 — p3) + (p1 — p2) =0, (6)
determinant of the point sequences;,, ..., P;,, andP;,,..., P;,. . . . _ .
When the two point sequences are the same, it will be cormenid S Possible to conclude tha, + Z, = 1. Z, and 22a Wllfe
to abbreviateD(i1,...,4in;1,...,i,) by D(i1,...,i,), which is called bilateration matrices. Since they are of the fo mol

simply called theCayley-Menger determinant of the involved points. theijr product commutes. Actually, this kind of matrices stitute an

In terms of Cayley-Menger determinants, the squared distanapelian group under product and addition. Moreoveryit= Zw,
betweenP; and F; can be expressed d3(i, j) and the signed aréa whereZ is a bilateration matrix, then it can be checked thaf|> =
of the triangleP; P; Px, as+3+/D(i, j, k). For a brief review of the det(Z) [|w|[>.
properties of Cayley-Menger determinants, see [17].

I1l. DISTANCE-BASED FORMULATION
P, Fig. 2 shows a general 3-RPplanar parallel robot. The center

of the three grounded passive revolute joints define the traswle
P, P, P; and the three moving passive revolute joints centers, the
moving triangleP, Ps Ps. The active prismatic joint variables are the
lengthsp1, p2, andps. Anglesa and 8 have been chosen so that their
signs determine the orientation of the base and platforamgtes.

Next, we derive a coordinate-free formula for the forwandeknat-
ics of this parallel robot. To this end, instead of directgnguting
the Cartesian pose of the moving platform, first we will coteptne
set of values ofl’ = ||p1 — ps 2 compatible withp1, p2, and ps
and the base and the moving platform side lengths,L», L3, and
l1, l2, I3, respectively. Thus, this step is entirely posed in terms of
distances.

According to Fig. 3, we have

Fig. 1. The bilateration problem iR2. (P6 — Ps) = B(pa — ps) = BA(p1 — ps), (7

and
The bilateration problem iR? consists of finding the feasible (p3s —p1) = D(p2 — p1) = DC(ps — p1), (8)
locations of a point, says, given its distances to two other points, re
say P, and P», whose locations are known. Then, according to Fig. fv
the position vector of the orthogonal projection Bf onto the line B2 {bl _bQ]

P, P, can be expressed as: b2 b
__ 1 D(1,2;1,3) —sign(a)/D(1,2, 3)
For a triangle P; P; Py, in the Euclidean plane with ared, the signed o D(1,2) |sign(a)/D(1,2,3) D(1,2;1,3)

area is defined as+A (respectively,—A) if the point P; is to the right
(respectively to the left) of the liné’; P, when going fromP; to P



Fig. 2. A general planar 3-F®P parallel robot and its associated notation.

Ps

BA(p1 — ps)

Fig. 3. (ps — p3) can be expressed in function gbs — p1) by computing
four bilaterations.

and

[1>

di  —d2
oeli i
1 D(5,4;5,6)
B D(574) |:_S|gr(ﬂ) D(5747 6)

are constant matrices that depend only on the geometry dbake
and the moving platform, respectively, and

sign(5)/D(5, 4, 6)]
D(5,4;5,6)

A— 1 D(1,5;1,2) F/D(1,5,2)

- D(1,5) Lz\/D(l,5,2) D(1,5;1,2) ]
and

c— 1 D(5,1;5,4)  F/D(5,1,4)

- D(5,1) L:\/D(E),M) D(5,1;5,4) ]

that are function ofl" = D(1,5) = D(5,1). Now, by substituting

(7) and (8) in the vector loop equation

(Ps —P1) + (Ps — Ps5) + (P3 —Ps) + (P1 —P3) =0, (9)
we obtain
(10)

where2 = I — (AB + CD). This matrix, when expanded in terms
of Cayley-Menger determinants, leads to:

(Ps — Ps) = Q(pP5 — P1)

1 —
2= 50 B; wul)z] D
where
wi =D(1,5) — D(1,5;1,2)bs — D(5,1;5,4)d:
F/D(1,5,2)b2 F /D(5,1,4)d> (12)
we = — D(1,5;1,2)ba — D(5,1;5,4)d2
++/D(1,5,2)b1 +/D(5,1,4)d1. (13)
Since
det( ) = |lps — P6||z7
lps — p1l|
then
wi 4+ ws = D(3,6)D(1,5). (14)

Now, if (12) and (13) are substituted in (14) and all the ineal
Cayley-Menger determinants are expanded in terms of diegrwe
obtain

®, + PpA; + P A+ PyA1A> =0 (15)
where
1
A = £ V/[T— (Lo = p2)?] (Lo + p2)? — T
1
Ay = ig\/[T = (la = p1)?][(la + p1)* = T]
and
1 1 2
o, = §b1d1 + §b2d2 — by —di + 1> T

% (=pt + 15 + L5 — p3) (brds + bada)
(b5 —L3) by + (b7 —15) d1 — p3] T
S (B — )3 — ) (bads + bade)
@y, =(brda — bady + 2b2)T + (15 — p3)(brda — bady)

®, =(bady — brda + 2d2)T + (L3 — p3)(bady — brds)
Dy =2(b1dy + bad2)

(
+ [L3 (b7 + b3) + 13(dT + d3)
n
n
n

Equation (15) is a scalar radical equationTinwhose roots, that
are in the range for which the two square roots in the defimitb
A; and A, yield real values, i.e., the range

[max{(Lz — p2)*, (Il — p1)*}, min{(Lz + p2)?, (I2 + p1)*}] ,

(16)
determine the assembly modes of the analyzed robot. Theteagan
be readily obtained for the four possible combinations ghsifor
Ay and As using, for example, a Newton interval method. In order
to obtain a polynomial representation, the squared roo{d3jh can
be eliminated by properly twice squaring it. This operatjoelds

— DGATAS + 20507 ATAS 4+ 2032 AT A
— Dy AT — DLAS + 202D, AT + 202D2A3
+ (=80, DDy D, + 207 D7 + 207D ) ATAZ — @ =0



TABLE |
THE KNOWN 3-RPR ANALYTIC PLANAR ROBOTS

Case P-polynomials Degree of['(T')  Previous works
O, =T?>+bT
. ®, =0
Double Coincidence &, =0 1
Py =
B, =aT?2+bT Collins [13] (1 quartic)
q:'b =0 2
®.=fT
. T dy=0
Coincidence d
O, =aT?+bT
@, =dT 5
T O, =
by =
O, =aT?+bT Collins [13] (1 quadratic)
Coincidence Py, = 1 Gosselin & Merlet [3] (2 quadratics)
T P, =0
+ ®q =
O, =aT?+bT
q:'b =0 1
Collinearity P, =0
) ®,=0
b, =aT?24+bT+c Collins [13] (1 cubic)
Collinearit P, =0 3 Gosselin & Merlet [3] (1 sextic)
Y P, =0 Kong & Gosselin [8] (1 cubic + 1 quadratic)
T
B dy=nh

Collinearity b, =aT?+bT+c Kong & Gosselin [8] (2 quadratics)
. v a0 2
Similarity by =4a

. b, =aT?+bT+c Kong & Gosselin [8] (2 quadratics)
Similarity \ S P, =dT +e 4 Gosselin & Merlet [3] (1 cubic + 1 quadratic)
S b.=—-dT+g Collins [13] (1 quadratic)
/ - 0\... by =4a Ji & Wu [18] (2 quadratics)
b, =aT?+bT+c Wengeret al. [20] (1 cubic + 1 quadratic)
Mirror reflection / P, =dT +e 6

by =4a (solvable)




which, when fully expanded, leads to an expression of thefor
T°T(T) =0 17)

whereI'(T') is a 6th-degree polynomfain 7. The double extraneous
root at7" = 0 was introduced when clearing denominators to obtain
(14), so it can be dropped.

IV. ANALYTIC ROBOTS

The leading coefficients ob,, ®,, ®., and ®; do not depend
on p1, p2, Or p3. As a consequence, they can be made to be

identically zero by properly choosing the dimensions ofltithse and
the moving platform thus simplifying the formulation. Foraenple, -2
the maximum simplification is attained by coalescing twacitnents
both in the base and the platform. In this ca®e,= T2 + bT and 4

P, = . = &, = 0. Table | compiles different geometric conditions

that lead to simplifications for the resulting charactéipblynomial. Fig. 4. Configuration analyzed in Example | using the forrtiatss presented
All of them have already been studied on a case-by-case [gjsis I [7], [8], and [11]. The lines in red, blue, and green copesd to the legs
[8], [13], [18], [20]. They lead to analytic robots becauke toots of defined byPy Py, P2 Ps, and Py P, respectively.

the resulting characteristic polynomials can be obtainsidgionly
the basic arithmetic operations and the taking of n-th rotable |
summarizes, for each case, the resultirgpolynomials, the degree
of the characteristic polynomial derived in the previousties, and
references to related works. Since, in general, theseetblabrks use
ad-hoc formulations that require solving more than one matyial

L» = 4, and Lz = /65, and input jointsp;, = 1, p2 = 11, and
p3 = 13. If p1 = (0,0)7, p2 = (4,0)7, andp; = (1,8)7, it can
be verified that the characteristic polynomial of this rohgating the
formulation derived in [7], reduces to:

in cascade, the degrees of these polynomials are given émibeesis 1469440 X* + 1755136 X> + 4261376 X°
besides the corresponding reference. 4+ 1140736 X + 219136 (18)
There have been found four families of analytic robots tlhdisg/

at least one of the following geometric conditions: with )

C1: two attachments on the base, or on the platform, coincide sin(9) = 2X and cos(6) = 1-X 7

C2: the attachments, both on the base and the platform, Hireeo; 1+ X2 1+ X2

C3: the base and platform triangles are similar; and 0 being the angle between the lines definedy’, and P, Ps. The
C4: the base and the platform are inverted triangles (orfeeigiirror roots of this polynomial are-0.4573 —1.54194, —0.4573 4 1.5419;,

reflection of the other). —0.1399 — 0.1952i, and—0.1399 + 0.1952i. Since none of them is

It is well-known that there are formulas involving radicdtsr real, it can be erroneously concluded that the robot undelystannot
finding the roots of polynomials of degree lower than 5. As a-co be assembled with the given leg lengths.
sequence, the analytic 3-RPplanar parallel robots are also referred Alternately, using the formulation derived in [8], the fmling
as those robots whose characteristic polynomial is of @etpeer characteristic polynomial is obtained:
than 5 or it factors into terms of degree lower than 5. Newdess,

4 3 2
it can be checked that the irreducible characteristic pmtyial in 7’ 4408320Y " — 1744896Y™" + 7788032

for a parallel robot satisfying the geometric condition C4vhich is — 1464320Y + 3564544
known to be analytic— is of degree 6. The solution to this app@a
. . . - where
contradiction requires Galois theory. To be precise, waltebat oV 1-v2
a polynomial equation is solvable by radicals precisely nvtiee sin(y) = 7y and cos(y) = Trve

Galois group of the polynomial is solvable. It can be chedked the ) ) ]
resulting sextic in" for a parallel platform satisfying the geometric?’ being the angle between the lines definedty?; and P 1. The
condition C4 is solvable [21]. Thus, a more precise definitaf 0Ots of this polynomial are-0.0363 —0.9243i, —0.0363+0.92434,

analytic robots would be “robots whose characteristic potyial 0-2342 —0.9435i, and0.2342 +0.9435i. Again, since none of them
Galois group is solvable.” is real, it can be erroneously concluded that the robot ustiety

cannot be assembled with the given leg lengths thus confirmin
V. EXAMPLES the results obtained using the formulation proposed in [He
The examples contained in this section try to highlight theaa- formulation described in [11] leads to an analogous situmativhen
tages of the proposed distance-based formulation, firsiayyzing one of the homogeneous coordinates is normalized to 1. Ubiag
a case in which the standard previous formulations fail wvisle implementation for this formulation reported in [22], andoosing
the correct result, and then by showing that it is valid fof athe moving reference frame such that = (0,0)” andps = (6,0)7
specialized cases that have been previously studied on acdodsis. in it, the resulting polynomial is:
The numerical details can be found it the attached supplEmen

4 3 2
multimedia material 1469440Z° 4 175513627 + 426137672

+ 11407362 + 219136,

A. Example I: A comparison with previous formulations . . L .
: P where Z is a component of the kinematic image space coordi-

Let us study the planar 3-R® parallel robot with geometric nates (referenced as, in [22]). The roots of this polynomial are
parametersy > 0, § > 0, ln = 5, > = 6, I3 =5, L1 = V73, _( 4573 — 15419i, —0.4573 + 1.5419i, —0.1399 — 0.1952i, and

2The expression for this polynomial can be found in the attdamultime- —0.1399 + 0.1952¢. Again, none of them is real. Nevertheless,
dia material. substituting the geometric parameters of the robot undelysind the



values of the input variables given above in the polynomeiveéd

in Section lll, the following characteristic polynomial @btained T 4 b4
T
— 77380007° + 4843775840T° — 1068953603696 0.0000  —0.6524  (—2.1785,2.4284)
. 0.0000  0.5236  (—2.4641, —2.0000)
+100805055226688T" — 23.0400 —0.7634  (4.4641,2.0000)7
+ 1013312279808920007" — 876950498856250000. 44.3077 —1.4420  (4.4641,2.0000)7

The roots of this polynomial ar@7.4034 — 8.5802¢, 27.4034 + o o
8.58021, 236.5829 — 35.6700¢, 236.5829 + 35.6700:, and a double
root at 49.0000. It can be checked that the obtained double real
root corresponds to a valid configuration of the analyzedP&R
parallel robot, in clear contradiction with what was comigd using %
the formulations proposed in [7], [8], and [11]. In the mayin 2
platform pose associated with this double rabt= «, v» = 7, and
ps = (—1,0)7. Fig. 4 depicts this configuration. . . v
The obtained results confirm that the previous formulatiemght ' h ’
incur into robustness problems. This is a highly relevant far the
kinematic analysis and non-singular assembly-mode chahgtes
of 3-RPER parallel robots [23], [24]. The presented distance-basec o )
formulation does not exhibit this kind of undesirable bebav 51 51

B. Example II: Rootsat 7' =0

Consider the robot with geometric parameters> 0, 5 > 0, 2 2
1 =13, 1 = 4,13 =13, L1 = 5, Ly = 4, andLg = 3, and 14 14
input joints p1 = 4, p2 = 4, and ps = 2. Substituting these values
in I'(T), the following polynomial is obtained

—832007° + 56033287 — 84934656T"*.

It has a quadruple root 4t = 0 that leads to two valid configurations. Fig- 5. The four moving platform poses obtained in Exampleritl their
The moving platform poses associated with each root of theveab 9raphical representation.
polynomial for the case in which: = (1,0)%, p2 = (2v/3+1,2)%,

andps = (—1,2v/3)" appear in Fig. 5.
Analogously to the previous example, this one cannot either T 0 P4
be properly analyzed using the formulation presented indigd, 20 —1.2490  (2.0000, —1.0000)"
depending on the location of the chosen reference frameyy tise 20 —0.3218  (6.0000,3.0000)”
formulations derived in [7] and [11]. 196 1.0362 (2.6913, —2.1610)7
Finally, observe that, ifl" 0, the moving platform pose can 126 —0.7524  (3.3887,2.7210)7

be obtained by only two bilaterations which determine up dorf . -
possible values folps and at least one of them must satisfy the 5 5
distance constraint betwed? and Ps.

44 44

2 2

C. Example Il1: Coalescence of two attachments

Consider the manipulator with geometric parameters 0, 8 < 0,
lh = V8, 1> = V10, I3 = V10, L1 = Lo = 5, and L3 = 0, and
input jointsp; = v/10, p2 = 5, andps = 6. Substituting these values
in I'(T), the following polynomial is obtained:

107 — 5927 + 7840,

whose roots are20 and 12 . Each of them have two associated o ' o]
moving platform poses. The four resulting poses for the aasdich
p1 =ps = (5,007 andp2 = (0,0)” appear in Fig. 6.

D. Example IV: Collinearity of base and platform attachments

The collinear of the base and platform attachments impl ith&
li +£1l3 =0and Ly + L1 + Ly = 0 for a certain combination of <
signs. As an example, consider the robot with geometricrpaters
a>0,6>0,l1:1,12:3,13:2,L1:1,L2:1,andL3:2,
and input jointsp; = 1, p2 = 2, and ps = 2. This robot also used
as an example in [7] and [8]. Substituting these valueE (i), the
following polynomial is obtained Fig. 6. The four moving platform poses obtained in Exampleahid their

8T _ 7872 + 195T — m graphical representation.

o4




T 0 P4

4 1.3181  (—0.2500, —0.9682)"
4 —1.3181  (—0.2500,0.9682)"
407227 (—1.0000, 0.0000)™
4 —0.7227  (—1.0000, 0.0000)"

3-4

T 0 P4
320.4937 —1.5351 (—0.7943,1.8355)7
345.1531 1.5040 (1.4501, 1.3774)T
387.5845 —1.5040 (1.9805, —0.2787)T
474.3144 1.5351

(1.0160, 1.7227)T

1
20 20

£ R

Fig. 7. The four moving platform poses obtained in Exampleaind their
graphical representation.

whose roots arg, 4, and 1-. However, note that the root &t =
is outside the interval given by (16), therefore it does rwtespond
to a valid configuration. The moving platform poses for theecin
which p1 = (0,0)7, p2 = (1,0)7, andps = (2,0)T appear in
Fig. 7.

If, in addition to the collinearity condition, the base anet
moving platform are similar, the characteristic polynommeduces
to a polynomial of second degree.

E. Example V: Smilar base and platform

In terms of the geometric parameters, the similarity catstr
implies thatly = kL1, lo = kL2, andls = kL3, with & > 0.
Substituting these expressionsliiT’), it reduces to a quartic. As an
example of this analytic family, consider the robot presdnin [8],
whose geometric parameters are> 0, 8 > 0, [; = 10/5 — 23,
la = 20,13 = 10, L1 = 20V/5—2V3, Ly = 40, Lz = 20.
Substituting these values in the resulting quartic, witsuinvariables
p1 = 2, p2 44, and p3 21, the following characteristic
polynomial is obtained:

1.79167T* — 2752.88307° + 1.5749 - 10°7
—3.9782 - 10°T + 3.7457 - 10'°.

The platform poses associated with each root of the abovg pol

nomial, for the case in whiclp: = (0,0)”, p2 = (40,0)7, and

ps = (10v/3,10)", appear in Fig. 8.

F. Example VI: Mirrored base and platform

Consider the manipulator with geometric parameters 0, 8 < 0,
h=v21l=113=1L =2 L, =1,and L3 = 1, and
input joints p1 = 2, p2 = %, and ps = 1, the resulting irreducible
characteristic polynomial if" is:

—327T% +4327° — &255# + @TS
339993 ., 110565 47385
“ e Tt T

This example, which leads to a degeneration of Gosselimmita-
tion [7], corresponds to the robot presented in [19] wheig ghown
to be analytic. Indeed, it can be checked that the Galoispgodihe
above polynomial is solvable.

Fig. 8. The four moving platform poses obtained in Example nd dheir
graphical representation.

VI. CONCLUSIONS

Stating the forward kinematics analysis of 3-RPR parallehar
robots directly in terms of poses introduces two major diaathges:
(a) reference frames have to be introduced, and (b) all ftasnu
involve translations and rotations simultaneously. Tlaiggy proposes
a different approach in which, instead of directly compgtithe
sought Cartesian poses, a problem fully posed in terms tdirdies
is first solved. Then, the original problem can be trivialgh&d by
sequences of bilaterations.

All those formulations that include exceptions in theiridations
lead to numerical instabilities when close to them. The fdation
presented in this paper has no exceptions in its application
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