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The Forward Kinematics of 3-RPR Planar Robots:
A Review and a Distance-Based Formulation

Nicolás Rojas and Federico Thomas,Member, IEEE

Abstract—The standard forward kinematics analysis of 3-RPR planar
parallel robots boils down to computing the roots of a sexticpolynomial.
There are many different ways to obtain this polynomial but most of them
include exceptions for which the formulation is not valid. Unfortunately,
near these exceptions the corresponding polynomial exhibits numerical
instabilities. In this paper, we provide a way around this inconvenience
by translating the forward kinematics problem to be solved into an
equivalent problem fully stated in terms of distances. Using constructive
geometric arguments, an alternative sextic —which is not linked to
a particular reference frame— is straightforwardly obtain ed without
the need of variable eliminations nor tangent-half-angle substitutions.
The presented formulation is valid, without any modification, for any
planar 3-RPR parallel robot, including the special architectures and
configurations —which ultimately lead to numerical instabilities— that
cannot be directly handled by previous formulations.

Index Terms—3-RPR parallel robots, position analysis, forward kine-
matics, coordinate-free formulations, Cayley-Menger determinants, bilat-
eration

I. I NTRODUCTION

Much has been written about the 3-RPR planar parallel robot
because of its practical interest, mechanical simplicity,and rich math-
ematical properties [1]. Such a robot consist of a moving platform
connected to the ground through three revolute-prismatic-revolute
kinematic chains. The prismatic joint of each chain is actuated and
the forward kinematics problem consists in, given the prismatic
joint lengths, calculating the Cartesian pose of the movingplatform.
A clever reasoning, based on the number of possible intersections
between a circle and the general coupler curve of a 4-bar mechanism,
permits to conclude that this problem has at most 6 differentsolutions
[2]. That is, for fixed leg lengths, it is possible to assemblethe robot
in up to six different ways, known asassembly modes. In general,
it is not possible to express analytically these six Cartesian poses as
functions of the actuated joint coordinates, except for some particular
cases known asanalytic robots [3]. This paper is devoted to the
problem of finding these poses efficiently and accurately forall cases.

The usual approach to obtain the aforementioned assembly modes
consists in manipulating the kinematic equations of the robot to
reduce the problem to finding the roots of a polynomial in one
variable, thecharacteristic polynomial, which must be of the lowest
possible degree, that is, a sextic. E. Peysah is credited to be the
first researcher in obtaining this sextic in 1985 [4]. The same result
was obtained independently at least by G. Pennock and D. Kassner
in 1990 [5], K. Wohlhart in 1992 [6], and C. Gosselinet al., also
in 1992 [7]. The formulation due to C. Gosselinet al. has become
thereafter the standard one. The major step in this formulation is to
find an equation only inθ (the orientation of the moving platform),
that is, to eliminate all other variables from the system until an
equation is obtained that contains onlyθ. Finally, a tangent-half-angle
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substitution is applied to translate sine and cosine functions ofθ into
rational polynomial expressions in a new variablet = tan(θ/2).

In order to simplify as much as possible the coefficients of
the resulting 6th-degree polynomial, it is possible to express the
coordinates of the base attachments according to a specific coordinate
frame. For example, by making one coordinate axis to coincide with
the baseline between two base attachments and/or locating the origin
at one base attachment. Nevertheless, this kind of simplifications has
an important drawback: the numerical conditioning of the resulting
formulation depends on the chosen reference frame. This is why those
formulations which are not linked to a particular referenceframe —
or coordinate-free formulations— are preferable. In 2001,X. Kong
and C. Gosselin proposed a coordinate-free formulation by deriving
a sextic intan(ψ/2), whereψ is the angle formed between one leg
and one of its adjacent base sides [8]. Although this formulation was
used to study analytic instances, it is certainly superior to the one in
[7] for the aforementioned reason. Nevertheless, the problems derived
from the tangent-half-angle substitution still remained.

The tangent-half-angle substitution poses two well-knownprob-
lems. One results from the fact thattan(θ/2) is undefined for
θ = ±π. Moreover, it can become difficult to reconstruct other roots,
occurring in conjunction with the rootθ = ±π [9]. The other problem
is the introduction of extraneous roots. Both problems are well known
and can be handled but it complicates notably subsequent calculations
[10]. One alternative to this substitution is to keepcos(θ) andsin(θ),
both as variables, and to add the equationsin2(θ) + cos2(θ) = 1 to
the elimination process.

A more elegant mathematical framework is obtained by viewing
the planar moving platform displacements as points in a four-
dimensional homogeneous space. This can be achieved using,for
example, the kinematic mapping, as in [11] and further elaborated
in [12], or Clifford algebra, as in [13]. A similar treatmentmay
be obtained by using the substitutionssin(θ) = 2sc/(c2 + s2) and
cos(θ) = (c2 − s2)/(c2 + s2) which, after clearing denominators,
lead to homogeneous equations ins and c. This non coordinate-
free formulations avoid the tangent-half-angle substitution but the
problem with±π turns still remains if one of the used homogeneous
coordinates is normalized to 1. Alternatively, a normalizing condition
involving two variables is possible thus adding one more equation to
the elimination process.

An important fact that has been commonly overlooked by the
kinematics community is that solving the forward kinematics of
the 3-RPR parallel robot is equivalent to finding the distinct planar
embeddings, up to Euclidean motions, of a graph with vertices
subject to edge lengths constraints. This graph corresponds to what
in [14] is called thedoublet, or in [15], theDesargues framework.
In both cases, the number of possible embeddings is obtainedby
formulating the problem purely in terms of distances. This kind
of approach leads to undesired solutions to the original problem
because the embeddings containing mirror reflections of thebase
and/or the moving platform also count as valid solutions. In[14],
the embedding problem is tackled by assigning coordinates to two
points whose distance is known and solving a system of 8 equations
(the remaining 8 distances constraints) in 8 variables (thecoordinates
of the remaining 4 points). The resultant is a polynomial of degree
28 which factors as the product of a degree 12 and a degree 16
polynomial. Alternatively, in [15], the problem is formulated in terms
of equations involving Cayley-Menger determinants which permit
to conclude that there exists edge lengths which induce up to24
embeddings, 6 for each combination of the base and the platform
triangles and their mirror reflections. In this paper, we introduce a
further twist to this approach that allows us to solve the problem
by a sequence of bilaterations following the initial ideas presented in
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[16]. As a result, a 6th-degree characteristic polynomial,which is not
linked to any particular reference frame, is straightforwardly obtained
without variable eliminations nor tangent-half-angle substitutions.
Moreover, the obtained polynomial is mathematically more tractable
than the one obtained using other approaches because its coefficients
are the result of operating with Cayley-Menger determinants with
geometric meaning.

This paper is organized as follows. A coordinate-free formula for
bilateration expressed in terms of Cayley-Menger determinants is
presented in Section II. It is the basic formula, used in Section III,
to derive a distance-based characteristic polynomial for the general
3-RPR planar parallel robot. Section IV discusses how this formu-
lation specializes to all analytic instances reported in the literature.
Section V analyzes several numerical examples. Finally, Section VI
summarizes the main points.

II. CAYLEY-MENGER DETERMINANTS AND BILATERATION

Let Pi and pi denote a point and its position vector in a given
reference frame, respectively. Then, let us define
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(1)
with si,j = ‖pi − pj‖2, which is independent from the chosen
reference frame. This determinant is known as theCayley-Menger bi-
determinant of the point sequencesPi1 , . . . , Pin , andPj1 , . . . , Pjn .
When the two point sequences are the same, it will be convenient
to abbreviateD(i1, . . . , in; i1, . . . , in) by D(i1, . . . , in), which is
simply called theCayley-Menger determinant of the involved points.

In terms of Cayley-Menger determinants, the squared distance
betweenPi andPj can be expressed asD(i, j) and the signed area1

of the trianglePiPjPk, as± 1

2

√

D(i, j, k). For a brief review of the
properties of Cayley-Menger determinants, see [17].
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Fig. 1. The bilateration problem inR2.

The bilateration problem inR2 consists of finding the feasible
locations of a point, sayP3, given its distances to two other points,
sayP1 andP2, whose locations are known. Then, according to Fig. 1,
the position vector of the orthogonal projection ofP3 onto the line
P1P2 can be expressed as:

1For a trianglePiPjPk in the Euclidean plane with areaA, the signed
area is defined as+A (respectively,−A) if the point Pj is to the right
(respectively to the left) of the linePiPk, when going fromPi to Pk

p = p1 +

√

D(1, 3)

D(1, 2)
cos θ(p2 − p1)

= p1 +
D(1, 2; 1, 3)

D(1, 2)
(p2 − p1).

(2)

Moreover, the position vector ofP3 can be expressed as:

p3 = p±
√

D(1, 2, 3)

D(1, 2)
S(p2 − p1), (3)

where the± sign accounts for the two mirror symmetric locations

of P3 with respect to the line defined byP1P2, andS =

[

0 −1
1 0

]

.

Then, substituting (2) in (3) and expressing the result in matrix form,
we obtain

(p3 − p1) = Z1(p2 − p1) (4)

(p3 − p2) = Z2(p1 − p2) (5)

where

Z1 =
1

D(1, 2)

[

D(1, 2; 1, 3) ∓
√

D(1, 2, 3)

±
√

D(1, 2, 3) D(1, 2; 1, 3)

]

,

and

Z2 =
1

D(2, 1)

[

D(2, 1; 2, 3) ∓
√

D(2, 1, 3)

±
√

D(2, 1, 3) D(2, 1; 2, 3)

]

.

Substituting (4) and (5) in the vector loop equation

(p3 − p1) + (p2 − p3) + (p1 − p2) = 0, (6)

it is possible to conclude thatZ1 + Z2 = I. Z1 and Z2 will be

called bilateration matrices. Since they are of the form

[

a −b
b a

]

,

their product commutes. Actually, this kind of matrices constitute an
Abelian group under product and addition. Moreover, ifv = Zw,
whereZ is a bilateration matrix, then it can be checked that||v||2 =
det(Z) ||w||2.

III. D ISTANCE-BASED FORMULATION

Fig. 2 shows a general 3-RPR planar parallel robot. The center
of the three grounded passive revolute joints define the basetriangle
P1P2P3 and the three moving passive revolute joints centers, the
moving triangleP4P5P6. The active prismatic joint variables are the
lengthsρ1, ρ2, andρ3. Anglesα andβ have been chosen so that their
signs determine the orientation of the base and platform triangles.

Next, we derive a coordinate-free formula for the forward kinemat-
ics of this parallel robot. To this end, instead of directly computing
the Cartesian pose of the moving platform, first we will compute the
set of values ofT = ||p1 − p5||2 compatible withρ1, ρ2, and ρ3
and the base and the moving platform side lengths,L1, L2, L3, and
l1, l2, l3, respectively. Thus, this step is entirely posed in terms of
distances.

According to Fig. 3, we have

(p6 − p5) = B(p4 − p5) = BA(p1 − p5), (7)

and
(p3 − p1) = D(p2 − p1) = DC(p5 − p1), (8)

where

B ,

[

b1 −b2
b2 b1

]

=
1

D(1, 2)

[

D(1, 2; 1, 3) −sign(α)
√

D(1, 2, 3)

sign(α)
√

D(1, 2, 3) D(1, 2; 1, 3)

]
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Fig. 2. A general planar 3-RPR parallel robot and its associated notation.
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Fig. 3. (p6 − p3) can be expressed in function of(p5 − p1) by computing
four bilaterations.

and

D ,

[

d1 −d2
d2 d1

]

=
1

D(5, 4)

[

D(5, 4; 5, 6) sign(β)
√

D(5, 4, 6)

−sign(β)
√

D(5, 4, 6) D(5, 4; 5, 6)

]

are constant matrices that depend only on the geometry of thebase
and the moving platform, respectively, and

A =
1

D(1, 5)

[

D(1, 5; 1, 2) ∓
√

D(1, 5, 2)

±
√

D(1, 5, 2) D(1, 5; 1, 2)

]

and

C =
1

D(5, 1)

[

D(5, 1; 5, 4) ∓
√

D(5, 1, 4)

±
√

D(5, 1, 4) D(5, 1; 5, 4)

]

that are function ofT = D(1, 5) = D(5, 1). Now, by substituting

(7) and (8) in the vector loop equation

(p5 − p1) + (p6 − p5) + (p3 − p6) + (p1 − p3) = 0, (9)

we obtain

(p3 − p6) = Ω(p5 − p1) (10)

whereΩ = I− (AB+CD). This matrix, when expanded in terms
of Cayley-Menger determinants, leads to:

Ω =
1

D(1, 5)

[

w1 −w2

w2 w1

]

(11)

where

w1 =D(1, 5)−D(1, 5; 1, 2)b1 −D(5, 1; 5, 4)d1

∓
√

D(1, 5, 2)b2 ∓
√

D(5, 1, 4)d2 (12)

w2 =−D(1, 5; 1, 2)b2 −D(5, 1; 5, 4)d2

±
√

D(1, 5, 2)b1 ±
√

D(5, 1, 4)d1. (13)

Since

det(Ω) =
||p3 − p6||2

||p5 − p1||2
,

then
w2

1 + w2

2 = D(3, 6)D(1, 5). (14)

Now, if (12) and (13) are substituted in (14) and all the involved
Cayley-Menger determinants are expanded in terms of distances, we
obtain

Φa + ΦbA1 + ΦcA2 + ΦdA1A2 = 0 (15)

where

A1 = ±1

2

√

[T − (L2 − ρ2)2] [(L2 + ρ2)2 − T ]

A2 = ±1

2

√

[T − (l2 − ρ1)2] [(l2 + ρ1)2 − T ]

and

Φa =

(

1

2
b1d1 +

1

2
b2d2 − b1 − d1 + 1

)

T 2

+
[

L2

2(b
2

1 + b22) + l22(d
2

1 + d22)

+
1

2

(

−ρ21 + l22 + L2

2 − ρ22
)

(b1d1 + b2d2)

+
(

ρ22 − L2

2

)

b1 +
(

ρ21 − l22
)

d1 − ρ23
]

T

+
1

2
(l22 − ρ21)(L

2

2 − ρ22)(b1d1 + b2d2)

Φb =(b1d2 − b2d1 + 2b2)T + (l22 − ρ21)(b1d2 − b2d1)

Φc =(b2d1 − b1d2 + 2d2)T + (L2

2 − ρ22)(b2d1 − b1d2)

Φd =2(b1d1 + b2d2)

Equation (15) is a scalar radical equation inT whose roots, that
are in the range for which the two square roots in the definition of
A1 andA2 yield real values, i.e., the range
[

max{(L2 − ρ2)
2, (l2 − ρ1)

2},min{(L2 + ρ2)
2, (l2 + ρ1)

2}
]

,
(16)

determine the assembly modes of the analyzed robot. These roots can
be readily obtained for the four possible combinations of signs for
A1 andA2 using, for example, a Newton interval method. In order
to obtain a polynomial representation, the squared roots in(15) can
be eliminated by properly twice squaring it. This operationyields

− Φ4

dA
4

1A
4

2 + 2Φ2

dΦ
2

bA
4

1A
2

2 + 2Φ2

dΦ
2

cA
2

1A
4

2

− Φ4

bA
4

1 − Φ4

cA
4

2 + 2Φ2

aΦ
2

bA
2

1 + 2Φ2

aΦ
2

cA
2

2

+
(

−8ΦbΦcΦdΦa + 2Φ2

bΦ
2

c + 2Φ2

dΦ
2

a

)

A2

1A
2

2 − Φ4

a = 0
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TABLE I
THE KNOWN 3-RPR ANALYTIC PLANAR ROBOTS

Case Φ-polynomials Degree ofΓ(T ) Previous works

Double Coincidence
T

Φa = T 2 + b T

1
Φb = 0
Φc = 0
Φd = 0

Coincidence
T

Φa = a T 2 + b T

2

Collins [13] (1 quartic)
Φb = 0
Φc = f T
Φd = 0

T

Φa = a T 2 + b T

2Φb = d T
Φc = 0
Φd = 0

Coincidence
T

Φa = a T 2 + b T

1

Collins [13] (1 quadratic)
Φb = 0 Gosselin & Merlet [3] (2 quadratics)
Φc = 0

+ Φd = 0

T

Φa = a T 2 + b T

1Collinearity
Φb = 0
Φc = 0
Φd = 0

Collinearity
T

Φa = a T 2 + b T + c

3

Collins [13] (1 cubic)
Φb = 0 Gosselin & Merlet [3] (1 sextic)
Φc = 0 Kong & Gosselin [8] (1 cubic + 1 quadratic)
Φd = h

Collinearity

T

Φa = a T 2 + b T + c

2

Kong & Gosselin [8] (2 quadratics)

+ Φb = 0
Φc = 0

Similarity Φd = 4 a

T

Φa = a T 2 + b T + c

4

Kong & Gosselin [8] (2 quadratics)
Similarity Φb = d T + e Gosselin & Merlet [3] (1 cubic + 1 quadratic)

Φc = −d T + g Collins [13] (1 quadratic)
Φd = 4 a Ji & Wu [18] (2 quadratics)

T

Φa = a T 2 + b T + c

6

Wengeret al. [20] (1 cubic + 1 quadratic)
Mirror reflection Φb = d T + e

Φc = f T + g
Φd = 4 a (solvable)
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which, when fully expanded, leads to an expression of the form:

T 2Γ(T ) = 0 (17)

whereΓ(T ) is a 6th-degree polynomial2 in T . The double extraneous
root atT = 0 was introduced when clearing denominators to obtain
(14), so it can be dropped.

IV. A NALYTIC ROBOTS

The leading coefficients ofΦa, Φb, Φc, and Φd do not depend
on ρ1, ρ2, or ρ3. As a consequence, they can be made to be
identically zero by properly choosing the dimensions of thebase and
the moving platform thus simplifying the formulation. For example,
the maximum simplification is attained by coalescing two attachments
both in the base and the platform. In this case,Φa = T 2 + bT and
Φb = Φc = Φd = 0. Table I compiles different geometric conditions
that lead to simplifications for the resulting characteristic polynomial.
All of them have already been studied on a case-by-case basis[3],
[8], [13], [18], [20]. They lead to analytic robots because the roots of
the resulting characteristic polynomials can be obtained using only
the basic arithmetic operations and the taking of n-th roots. Table I
summarizes, for each case, the resultingΦ-polynomials, the degree
of the characteristic polynomial derived in the previous section, and
references to related works. Since, in general, these related works use
ad-hoc formulations that require solving more than one polynomial
in cascade, the degrees of these polynomials are given in parenthesis
besides the corresponding reference.

There have been found four families of analytic robots that satisfy
at least one of the following geometric conditions:
C1: two attachments on the base, or on the platform, coincide;
C2: the attachments, both on the base and the platform, are collinear;
C3: the base and platform triangles are similar; and
C4: the base and the platform are inverted triangles (one is the mirror

reflection of the other).
It is well-known that there are formulas involving radicalsfor

finding the roots of polynomials of degree lower than 5. As a con-
sequence, the analytic 3-RPR planar parallel robots are also referred
as those robots whose characteristic polynomial is of degree lower
than 5 or it factors into terms of degree lower than 5. Nevertheless,
it can be checked that the irreducible characteristic polynomial in T
for a parallel robot satisfying the geometric condition C4 —which is
known to be analytic— is of degree 6. The solution to this apparent
contradiction requires Galois theory. To be precise, we recall that
a polynomial equation is solvable by radicals precisely when the
Galois group of the polynomial is solvable. It can be checkedthat the
resulting sextic inT for a parallel platform satisfying the geometric
condition C4 is solvable [21]. Thus, a more precise definition of
analytic robots would be “robots whose characteristic polynomial
Galois group is solvable.”

V. EXAMPLES

The examples contained in this section try to highlight the advan-
tages of the proposed distance-based formulation, first by analyzing
a case in which the standard previous formulations fail to provide
the correct result, and then by showing that it is valid for all
specialized cases that have been previously studied on a ad hoc basis.
The numerical details can be found it the attached supplementary
multimedia material

A. Example I: A comparison with previous formulations

Let us study the planar 3-RPR parallel robot with geometric
parametersα > 0, β > 0, l1 = 5, l2 = 6, l3 = 5, L1 =

√
73,

2The expression for this polynomial can be found in the attached multime-
dia material.

Fig. 4. Configuration analyzed in Example I using the formulations presented
in [7], [8], and [11]. The lines in red, blue, and green correspond to the legs
defined byP1P4, P2P5, andP3P6, respectively.

L2 = 4, andL3 =
√
65, and input jointsρ1 = 1, ρ2 = 11, and

ρ3 = 13. If p1 = (0, 0)T , p2 = (4, 0)T , andp3 = (1, 8)T , it can
be verified that the characteristic polynomial of this robot, using the
formulation derived in [7], reduces to:

1469440X4 + 1755136X3 + 4261376X2

+ 1140736X + 219136
(18)

with

sin(θ) =
2X

1 +X2
and cos(θ) =

1−X2

1 +X2
,

θ being the angle between the lines defined byP1P2 andP4P5. The
roots of this polynomial are−0.4573−1.5419i, −0.4573+1.5419i,
−0.1399− 0.1952i, and−0.1399 + 0.1952i. Since none of them is
real, it can be erroneously concluded that the robot under study cannot
be assembled with the given leg lengths.

Alternately, using the formulation derived in [8], the following
characteristic polynomial is obtained:

4408320Y 4 − 1744896Y 3 + 7788032Y 2

− 1464320Y + 3564544

where

sin(ψ) =
2Y

1 + Y 2
and cos(ψ) =

1− Y 2

1 + Y 2
,

ψ being the angle between the lines defined byP1P4 andP1P2. The
roots of this polynomial are−0.0363−0.9243i, −0.0363+0.9243i,
0.2342− 0.9435i, and0.2342+0.9435i. Again, since none of them
is real, it can be erroneously concluded that the robot understudy
cannot be assembled with the given leg lengths thus confirming
the results obtained using the formulation proposed in [7].The
formulation described in [11] leads to an analogous situation when
one of the homogeneous coordinates is normalized to 1. Usingthe
implementation for this formulation reported in [22], and choosing
the moving reference frame such thatp4 = (0, 0)T andp5 = (6, 0)T

in it, the resulting polynomial is:

1469440Z4 + 1755136Z3 + 4261376Z2

+ 1140736Z + 219136,

where Z is a component of the kinematic image space coordi-
nates (referenced asx1 in [22]). The roots of this polynomial are
−0.4573 − 1.5419i, −0.4573 + 1.5419i, −0.1399 − 0.1952i, and
−0.1399 + 0.1952i. Again, none of them is real. Nevertheless,
substituting the geometric parameters of the robot under study and the



6

values of the input variables given above in the polynomial derived
in Section III, the following characteristic polynomial isobtained

− 7738000T 6 + 4843775840T 5 − 1068953603696T 4

+ 100805055226688T 3 − 4600887845553776T 2

+ 101331227980892000T − 876950498856250000.

The roots of this polynomial are27.4034 − 8.5802i, 27.4034 +
8.5802i, 236.5829 − 35.6700i, 236.5829 + 35.6700i, and a double
root at 49.0000. It can be checked that the obtained double real
root corresponds to a valid configuration of the analyzed 3-RPR
parallel robot, in clear contradiction with what was concluded using
the formulations proposed in [7], [8], and [11]. In the moving
platform pose associated with this double root,θ = π, ψ = π, and
p4 = (−1, 0)T . Fig. 4 depicts this configuration.

The obtained results confirm that the previous formulationsmight
incur into robustness problems. This is a highly relevant fact for the
kinematic analysis and non-singular assembly-mode changestudies
of 3-RPR parallel robots [23], [24]. The presented distance-based
formulation does not exhibit this kind of undesirable behavior.

B. Example II: Roots at T = 0

Consider the robot with geometric parametersα > 0, β > 0,
l1 =

√
13, l2 = 4, l3 =

√
13, L1 = 5, L2 = 4, andL3 = 3, and

input joints ρ1 = 4, ρ2 = 4, andρ3 = 2. Substituting these values
in Γ(T ), the following polynomial is obtained

−83200T 6 + 5603328T 5 − 84934656T 4 .

It has a quadruple root atT = 0 that leads to two valid configurations.
The moving platform poses associated with each root of the above
polynomial for the case in whichp1 = (1, 0)T , p2 = (2

√
3+1, 2)T ,

andp3 = (− 1

2
, 3

2

√
3)T appear in Fig. 5.

Analogously to the previous example, this one cannot either
be properly analyzed using the formulation presented in [8]and,
depending on the location of the chosen reference frames, using the
formulations derived in [7] and [11].

Finally, observe that, ifT = 0, the moving platform pose can
be obtained by only two bilaterations which determine up to four
possible values forp6 and at least one of them must satisfy the
distance constraint betweenP3 andP6.

C. Example III: Coalescence of two attachments

Consider the manipulator with geometric parametersα > 0, β < 0,
l1 =

√
8, l2 =

√
10, l3 =

√
10, L1 = L2 = 5, andL3 = 0, and

input jointsρ1 =
√
10, ρ2 = 5, andρ3 = 6. Substituting these values

in Γ(T ), the following polynomial is obtained:

10T 2 − 592T + 7840,

whose roots are20 and 196

5
. Each of them have two associated

moving platform poses. The four resulting poses for the casein which
p1 = p3 = (5, 0)T andp2 = (0, 0)T appear in Fig. 6.

D. Example IV: Collinearity of base and platform attachments

The collinear of the base and platform attachments imply that l2±
l1 ± l3 = 0 andL2 ± L1 ± L3 = 0 for a certain combination of
signs. As an example, consider the robot with geometric parameters
α > 0, β > 0, l1 = 1, l2 = 3, l3 = 2, L1 = 1, L2 = 1, andL3 = 2,
and input jointsρ1 = 1, ρ2 = 2, andρ3 = 2. This robot also used
as an example in [7] and [8]. Substituting these values inΓ(T ), the
following polynomial is obtained

8T 3 − 78T 2 + 195T − 44,

T θ p4

0.0000 −0.6524 (−2.1785, 2.4284)T

0.0000 0.5236 (−2.4641,−2.0000)T

23.0400 −0.7634 (4.4641, 2.0000)T

44.3077 −1.4420 (4.4641, 2.0000)T

Fig. 5. The four moving platform poses obtained in Example IIand their
graphical representation.

T θ p4

20 −1.2490 (2.0000,−1.0000)T

20 −0.3218 (6.0000, 3.0000)T

196

5
1.0362 (2.6913,−2.1610)T

196

5
−0.7524 (3.3887, 2.7210)T

Fig. 6. The four moving platform poses obtained in Example III and their
graphical representation.
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T θ p4

4 1.3181 (−0.2500,−0.9682)T

4 −1.3181 (−0.2500, 0.9682)T

11

2
0.7227 (−1.0000, 0.0000)T

11

2
−0.7227 (−1.0000, 0.0000)T

Fig. 7. The four moving platform poses obtained in Example IVand their
graphical representation.

whose roots are1
4
, 4, and 11

2
. However, note that the root atT = 1

4

is outside the interval given by (16), therefore it does not correspond
to a valid configuration. The moving platform poses for the case in
which p1 = (0, 0)T , p2 = (1, 0)T , and p3 = (2, 0)T appear in
Fig. 7.

If, in addition to the collinearity condition, the base and the
moving platform are similar, the characteristic polynomial reduces
to a polynomial of second degree.

E. Example V: Similar base and platform

In terms of the geometric parameters, the similarity constraint
implies that l1 = kL1, l2 = kL2, and l3 = kL3, with k > 0.
Substituting these expressions inΓ(T ), it reduces to a quartic. As an
example of this analytic family, consider the robot presented in [8],
whose geometric parameters areα > 0, β > 0, l1 = 10

√

5− 2
√
3,

l2 = 20, l3 = 10, L1 = 20
√

5− 2
√
3, L2 = 40, L3 = 20.

Substituting these values in the resulting quartic, with input variables
ρ1 = 2, ρ2 = 44, and ρ3 = 21, the following characteristic
polynomial is obtained:

1.7916T 4 − 2752.8830T 3 + 1.5749 · 106T 2

− 3.9782 · 108T + 3.7457 · 1010.

The platform poses associated with each root of the above poly-
nomial, for the case in whichp1 = (0, 0)T , p2 = (40, 0)T , and
p3 = (10

√
3, 10)T , appear in Fig. 8.

F. Example VI: Mirrored base and platform

Consider the manipulator with geometric parametersα > 0, β < 0,
l1 =

√
2, l2 = 1, l3 = 1, L1 =

√
2, L2 = 1, andL3 = 1, and

input joints ρ1 = 2, ρ2 = 1

2
, andρ3 = 1, the resulting irreducible

characteristic polynomial inT is:

− 32T 6 + 432 T 5 − 4455

2
T 4 +

39839

8
T 3

− 339993

64
T 2 +

110565

32
T − 47385

32
.

This example, which leads to a degeneration of Gosselin’s formula-
tion [7], corresponds to the robot presented in [19] where itis shown
to be analytic. Indeed, it can be checked that the Galois group of the
above polynomial is solvable.

T θ p4

329.4937 −1.5351 (−0.7943, 1.8355)T

345.1531 1.5040 (1.4501, 1.3774)T

387.5845 −1.5040 (1.9805,−0.2787)T

474.3144 1.5351 (1.0160, 1.7227)T

Fig. 8. The four moving platform poses obtained in Example V and their
graphical representation.

VI. CONCLUSIONS

Stating the forward kinematics analysis of 3-RPR parallel planar
robots directly in terms of poses introduces two major disadvantages:
(a) reference frames have to be introduced, and (b) all formulas
involve translations and rotations simultaneously. This paper proposes
a different approach in which, instead of directly computing the
sought Cartesian poses, a problem fully posed in terms of distances
is first solved. Then, the original problem can be trivially solved by
sequences of bilaterations.

All those formulations that include exceptions in their derivations
lead to numerical instabilities when close to them. The formulation
presented in this paper has no exceptions in its application.
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