
Motion Planning for a Novel Reconfigurable Parallel Manipulator
with Lockable Revolute Joints

Patrick Grosch, Raffaele Di Gregorio, Javier López, and Federico Thomas

Abstract— This paper introduces a class of reconfigurable
parallel robots consisting of a fixed base and a moving platform
connected by serial chains having RRPS (Revolute-Revolute-
Prismatic-Spherical) topology. Only the prismatic joint is actu-
ated and the first revolute joint in the chain can be locked or
released online. The introduction of these lockable jointsallow
the prismatic actuators to maneuver to approximate 6-DoF
motions for the moving platform. An algorithm for generatin g
these maneuvers is first described. Then, a motion planner,
based on the generation of a Probabilistic RoadMap (PRM)
whose nodes are connected using the described maneuvers, is
presented. The generated trajectories avoid singularities and
possible collisions between legs. (See accompanying video)

I. I NTRODUCTION

Over the past half-century, the Gough-Stewart platform
has been applied extensively to automate many different
tasks due to its well-known merits in terms of speed, rigid-
ity, dynamic bandwidth, accuracy, cost, etc. [1]. Since the
Gough-Stewart platform has 6 DoF (degrees of freedom),
some limited-DoF parallel robots have been designed for
applications which do not require full mobility with the aim
of simplifying the structure and the control of the general
Gough-Stewart platform but without losing its aforemen-
tioned merits.

The Gough-Stewart platform consists of a base and a
moving platform connected by six UPS (Universal-Prismatic-
Spherical) legs, where the underline indicates that the pris-
matic joint is actuated. Thus, it is usually referenced as a 6-
UPS platform. If a number of these UPS legs is eliminated,
the mobility of as many of the remaining legs must be
reduced by one DoF each, at the same time, to keep the
platform location controllable. The resulting parallel manip-
ulator will have a number of DoF equal to the number of the
remaining legs. The substitution of the UPS legs with RbRPS
legs, where Rb denotes a revolute joint lockable at any
time during operation through a brake, is one possibility for
implementing this mobility reduction. In fact, each RbRPS
will behave as a RPS chain when the Rb joint is locked and,
by properly arranging the axis of the revolute joints, as a UPS
when it is not. The maximum number of leg eliminations is
three, and as many are the manipulator families that can
be generated from the Gough-Stewart platform with this
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Fig. 1. The proposed platform consists of four RbRPS legs attached to
the base through passive lockable revolute joints (top). Since two brakes
must be locked at any time to keep the platform rigidly linkedto the base,
it behaves as a reconfigurable 2RPS-2UPS platform (bottom).

technique. Table I summarizes the situation. The 5RbRPS
and 4RbRPS architectures are of interest because their motion
possibilities can be increased by on-line switching the locked
joints. Two kinds of reconfigurable parallel platforms with
low mechanical complexity are thus obtained. The archi-
tecture involving four legs is probably the most attractive
because it uses less actuators (see Fig. 1). This paper is
devoted to its study.

The use of lockable joints is not new in Robotics. They



TABLE I

THE FOUR POSSIBLEARCHITECTURES FORPARALLEL PLATFORMS

USING RPS LEGSATTACHED TO THE BASE THROUGHLOCKABLE

REVOLUTE JOINTS

# of legs # of locked Architecture Related
(DoF) joints references

6 0 6UPS [2]
5 1 4UPS + RPS [3]

(reconfigurable)
4 2 2UPS + 2RPS [4], [5],

(reconfigurable) [6]
3 3 3RPS [7], [8]

have been used at least in [9], [10], and [11].
This paper is organized as follows. Section II studies

the kinematics of the proposed platform. Section III shows
how to maneuver to locate the platform in any arbitrary
pose. Section IV shows how to generate a roadmap in the
configuration space of the platform that permits to obtain
paths, far from singularities and leg collisions, connecting
two arbitrary poses. Section V describes practical aspects
concerning the implemented prototype. Finally, the main
results are summarized in Section VI.

II. K INEMATICS OF THE 2RPS-2UPS PARALLEL ROBOT

If the leg lengths of the robot in Fig. 1 are fixed, pointsP1

andP2 are allowed to move on circular arcs, whileP3 and
P4 are constrained to move on spheres. The resulting 2RS-
2US parallel structure is shown in Fig. 2. With reference
to this figure, pointsPi for i = 1, . . . , 4 are the centers
of the spherical pairs. PointsAi for i = 1, . . . , 4 are the
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Fig. 2. Notation associated with the 2RS-2US structure resulting from
fixing the leg lengths and locking the revolute joints centered atA1 and
A2 in Fig. 1(bottom).

projections of the correspondingPi point onto the revolute-
pair axes adjacent to the spherical pair, whosePi is the
center.A3 and A4 are also chosen as centers of the two
universal joints without losing generality. PointsB3 andB4

are the projections ofP3 andP4, respectively, onto the line
throughP1 and P2. The i-th leg length| Pi − Ai | will be
denoteddi, the magnitude of the vector(P2 − P1) will be
denoteda, whereas the magnitudes of the vectors(Pj −Bj)
for j = 3, 4 will be denotedrj . Moreover, the following unit
vectors and scalar are defined

hi =
(Pi −Ai)

di

, i = 1, . . . , 4;

q =
(P1 −A2)

| P1 −A2 |
;

w1 = u1 × v1

w2 = u2 × v2

u3 =
(P2 − P1)

a

v3 =
q× u3

| q× u3 |

w3 = u3 × v3

b3 = (B3 − P1) · u3

b4 = (B4 − P1) · u3

A. Position Analysis

The determination of the actuated-joint variables (leg
lengths) for an assigned pose of the platform [Inverse Po-
sition Analysis (IPA)] is straightforward. In fact, once the
positions ofPi, for i = 1, . . . , 4, are known, the leg lengths
can be immediately computed since the positions ofAi ,
for i = 1, . . . , 4, are geometric data linked to the base
reference frame [see Fig. 1(bottom)]. On the contrary, the
determination of the platform pose for assigned leg lengths
[Forward Position Analysis (FPA)] requires the solution of
the 2RS-2US’ closure equations which constitute a non-
linear equation system. This problem coincides with the
one encountered when solving the FPA of the 6-4 fully-
parallel mechanism [4] since that mechanism generates an
2RS-2US structure when the actuated joints are locked [see
Fig. 1(bottom)]. In [4], Innocenti gave the analytical solution
of this problem and showed that, in general, up to 32 platform
poses may be compatible with an assigned set of leg lengths.
In the following part of this subsection, the 2RS-2US’ closure
equations will be deduced in a form slightly different, from
the one reported in [4], which is more appropriate to the
analysis presented in the next subsection. With reference
to Fig. 2 and the adopted notations, the 2RS-2US’ closure
equations can be written as follows:

(P2 − P1) · (P2 − P1) = a2 (1)

(P3 −A3) · (P3 −A3) = d2

3
(2)

(P4 −A4) · (P4 −A4) = d2

4 (3)



where

P1 = A1 + d1(c1v1 + s1w1) (4)

P2 = A2 + d2(c2v2 + s2w2) (5)

P3 = P1 + b3u3 + r3(c3v3 + s3w3) (6)

P4 = P1 + b4u3 + r4(c4v3 + s4w3) (7)

where

c4 = c3 cos(φ34)− s3 sin(φ34) (8)

s4 = c3 sin(φ34) + s3 cos(φ34) (9)

whereci andsi for i = 1, . . . , 4 stand forcos(θi) andsin(θi),
respectively.

Equation (1) is a trigonometric c-s-linear equation that
involves only c1, c2, s1 and s2. It is the closure equation
of the RSSR loop. Equations (2) and (3) involvec1, c2, c3,
s1, s2 ands3. By eliminatingc3 ands3 from these equations,
the resultant will containc1, c2, s1 ands2 and can be used
with equation (1) for a further elimination which yield an
univariate polynomial equation.

B. Singularities

The configurations where the platform can perform el-
ementary motions, even though the actuators are locked,
are calledparallel singularities. Parallel singularities are
critical both from the control (the platform pose becomes
no longer controllable) and the statics (some links should
stand infinite internal loads) point of views. Thus, they must
be avoided during operation. When the 2RPS-2UPS platform
is at a parallel singularity, the 2RS-2US structure obtained
by locking the actuators is singular, too (i.e., the structure
is not rigid). Thus, by looking for the 2RS-2US singular
geometries, the parallel singularities of the associated 2RPS-
2UPS can be found.

When the 2RS-2US structure assumes a singular geometry,
the platform can perform elementary motions that must fulfill
the following velocity equations, deduced by differentiating
equations (1), (2), and (3):

(Ṗ2 − Ṗ1) · u3 = 0 (10)

Ṗ3 · h3 = 0 (11)

Ṗ4 · h4 = 0 (12)

where

Ṗ1 =θ̇1d1(u1 × h1) (13)

Ṗ2 =θ̇2d2(u2 × h2) (14)

Ṗ3 =θ̇1d1(u1 × h1)

+
b3

a

[

θ̇2d2(u2 × h2)− θ̇1d1(u1 × h1)
]

+ θ̇3 [u3 × (P3 −B3)]

+ r3 [c3v̇3 + s3ẇ3] (15)

Ṗ4 =θ̇1d1(u1 × h1)

+
b4

a

[

θ̇2d2(u2 × h2)− θ̇1d1(u1 × h1)
]

+ θ̇3 [u3 × (P4 −B4)] + r4 [c4v̇3 + s4ẇ3] (16)

u̇3 =
θ̇2d2(u2 × h2)− θ̇1d1(u1 × h1)

a
(17)

q̇ =
θ̇1d1 [(u1 × h1)− (q · u1 × h1)q]

| P1 −A2 |
(18)

v̇3 =
q̇× u3 + q× u̇3 − [v3 · (q̇ × u3 + q× u̇3)] v3

| q× u3 |
(19)

ẇ3 =u̇3 × v3 + u3 × v̇3 (20)

which are obtained by differentiating equations (4)-(9). The
introduction of (13) and (14) into (10) yields

θ̇2 = θ̇1

d1(u3 · u1 × h1)

d2(u3 · u2 × h2)
(21)

Relationship (21) fails whenu3, u2, andh2 are coplanar.
The configuration where this geometric condition occurs are
singularities of the internal RSSR loop and, in general, they
are singularities of the 2RS-2US structure, too. The introduc-
tion of (21) into (15)-(20) and of the resultant relationships
into equations (11) and (12) yield a linear and homogeneous
system of two equations in two unknowns which can be
written as follows:

(

m11 m12

m21 m22

) (

θ̇1

θ̇3

)

= 0 (22)

System (22) admits a non-null solution forθ̇1 and θ̇3 (i.e.,
a singular configuration occurs for the 2RS-2US structure)
if and only if

m11m22 −m12m21 = 0. (23)

The above relationship is the analytic expression of the
singularity condition of the 2RS-2US structure. It is satisfied
either when the two bi-dimensional column vectorsmi =
(m1i, m2i)

T , for i = 1, 2, are parallel or when at least one of
themi vectors is a null vector. The dimensionless parameters

k1 =
| m1 |

| m2 |
, k2 =

|m1 ||m2 |

|m1 ·m2 |
(24)

can be used to evaluate how far from singularity a con-
figuration is. The farthest-from-singularity configuration is
the one wherek1 is equal to 1 andk2 is equal to infinity;
whereas a singular configuration occurs when at least one
of the following conditions occur: (a)k1 is equal to 0, (b)
k1 is equal to infinity, (c)k2 is equal to 1. Based on these
values, the following objective function, to be maximized
during platform motion, can be defined

n =
k1

(k1 − 1)4
+ (k2 − 1). (25)

Such a function goes toward infinity whenk1 (k2) goes
toward 1 (infinity); and it decreases when eitherk1 (k2) goes



toward zero 0 (1) ork1 goes toward infinity. It will be useful
later, when assigning a cost to a path.

III. M ANEUVERS

Let us assume that we want to generate a trajectory
connectingX0 = (L0,Φ0) = (d0

1
, . . . , d0

4
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1
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4
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f
4
, φ

f
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f
4
) wheredi is the

length of legi and φi is the angle formed bygi and the
x−axis of the world reference frame (see Fig. 1). Since the
robot is not capable, in general, of reaching the final pose
directly, it is necessary to introduce an intermediate one (a
via pose) where the lockable joints are switched. The leg
lengths in the via pose, sayLx, can be computed numerically
by setting the released joints to their values in the final pose
and solving a local optimization problem starting from the
initial pose. This can be efficiently implemented using the
Newton’s method [12]. Then, the proposed maneuver consist
in the four steps detailed in Fig. 3.

Note that there are up to six sets of possible maneuvers
connecting two given poses: one for each possible pair of
locked joints. Once we have a candidate for a maneuver, and
its corresponding via pose, it must be execute by driving the
robot’s prismatic actuators, as explained above. The simplest
driving law is that consisting in linearly interpolating the leg
lengths fromL0 to Lx, and then fromLx to Lf . During this
process, it might happen that the system reaches a different
solution from the expected one (remind that the forward kine-
matics problem has no single solution). If so, the generated
maneuver is not valid. This might happen mainly when the
maneuver involves a path close to a singularity. For the sake
of simplicity, in this case the obtained maneuver would not be
considered as valid, though a more sophisticated driving law
might connect the initial to the final configuration through
the obtained via pose.

There is one more reason to reject a candidate for a
maneuver: it leads to collisions or the joints are not kept
within their valid range of motion. A complete test for colli-
sion detection can be implemented using available collision
detection packages such as GJK, SOLID, V-Clip, I-Collide,
etc. (see [15, p. 201] and the references therein).

Once all valid maneuvers are computed, it is reasonable to
choose the one that keeps the platform as far as possible of
its parallel singularities. Unfortunately, there is no proper
distance to a singularity [13]. As a simplification in our
particular design, the quality measure to decide whether
the maneuver is close to a singularity is taken to be (25)
evaluated in the corresponding via pose. It is assumed that
the bigger this value is, the farther the via pose is from a
singularity. Then, the reciprocal of this value is taken as the
cost of a maneuver.

The above procedure to find the best maneuver connecting
two arbitrary configurations is summarized in pseudocode in
Algorithm 1. FunctionCandidate implements the Newton’s
method that computes the leg lengths in the via pose. Func-
tion ValidPath verifies if the final configuration is reached by
linearly interpolating the leg lengths, checks if no collisions
arise, and verifies if the joints are kept within their range
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). Then, the maneuver is executed as follows: (a)

brakesi and j are locked and brakesk and l are released (top); (b) the
prismatic actuators are driven fromL0 to Lv (center); (c) brakesk and l
are locked and brakesi and j released; and (d) the prismatic actuators are
driven fromL0 to Lv (bottom).

along the trajectory. Finally, functionCost assigns a cost
to the maneuver based on the objective function (25) to a
singularity of the via pose.

It is clear that the above algorithm might fail to find a
path mainly when the initial and final poses are far apart
in the configuration space of the robot. In these cases, one
alternative is to subdivide the trajectory into segments whose
initial and final poses can be connected using the above
algorithm. Unfortunately, this simple idea might also fail.
The alternative is to use a motion planner, as described in
the next section.



Algorithm 1 BestViaPose(Xi, Xj)

1: Maneuvers← {[1,2,3,4],[1,3,2,4],[1,4,2,3],[2,3,1,4],
2: [2,4,1,3],[3,4,1,2]}
3: /* The first two indices of each 4-tupla correspond to the

locked joints during the first motion of the maneuver */
4: Xv ← void
5: for all M ∈ Maneuversdo
6: [i, j, k, l]← M
7: Φx[i]← Φ0[i]
8: Φx[j]← Φ0[j]
9: Φx[k]← Φf [k]

10: Φx[l]← Φf [l]
11: Lx ← Candidate(X0,Φx, M)
12: Xx ← (Lx,Φx)
13: if ValidPath (X0, Xx, Xf ) = TRUE then
14: /* The maneuver is valid */
15: if Cost(Xx) < Cost(Xv) then
16: /* Cost(void) returns∞ */
17: Xv ← Xx

18: end if
19: end if
20: end for
21: return Xv

IV. PATH PLANNING

There are many possible approaches for implementing a
motion planner but those based on Probabilistic RoadMaps
(PRM) [14] have demonstrated their tremendous potential
in many applications [15, Chapter 7]. This approach has
already been successfully applied to ordinary parallel robots
in [16]. Next, it is adapted to the proposed reconfigurable
robot. Within this approach, the proposed robot would be
subjected to alearning phase where its configuration space
is randomly sampled. These samples are connected to their
neighbors through the maneuvers, presented in the previous
section, to generate a roadmap. Then, in thequery phase, in
which a path between two arbitrary poses must be found, the
initial and final poses are firstly linked to their neighbors in
the roadmap and, using a graph search algorithm, the best
path according to a given criterion is found.

A. Generating the roadmap

The roadmap is built by sampling poses in the configura-
tion space of the robot. When a sample is chosen, the best
maneuvers to connect it to its neighboring poses previously
generated are computed. Two poses are considered to be
neighbors if the Euclidian norm between their position and
orientation components are below a given threshold. If a valid
maneuver is found, its corresponding via pose is stored in an
adjacent matrix together with its associated cost. If not, the
stored cost will be infinite. Algorithm 2 gives this description
in pseudocode.

To increase the density of the roadmap, it is always
possible to add an intermediate configuration when two
configurations fail to be connected directly through one of

Algorithm 2 GenerateRoadmap
1: for i = 1 to NumPosesdo
2: Xi ← RandomPose()
3: Poses← FindNeighborPoses(Xi)
4: for all Xj ∈ Posesdo
5: Xv ← BestViaPose(Xi, Xj)
6: ManMatrix[i,j] ← Xv

7: CostMatrix[i,j] ← Cost(Xv)
8: /* Cost(void) returns∞ */
9: end for

10: end for

the six maneuvers that can be obtained using the procedure
described above.

B. Finding a path

If a trajectory —free from collisions and as far as possible
from any singularity— connectingX0 to Xf must be gener-
ated, it is firstly necessary to connect these two poses to the
previously generated roadmap. That is, the best maneuvers to
connect them to their neighbors should be computed. Once
the initial and final poses are connected to the roadmap, it
is only needed to find the shortest path connecting them
in terms of costs. Dijkstra’s algorithm is well-suited to this
end [17, p. 595]. Finally, when the path is obtained, if one
exists, the corresponding maneuvers —described in terms of
leg lengths settings and sequences of locked and released
revolute joints— can be executed by the robot.

V. I MPLEMENTATION

In order to verify the behavior of the proposed parallel
robot and the described path planner, a simulator using
MATLAB and Simulink whose output is connected to a
VMRL 3D model of the robot was implemented. Using the
equations presented in Section II, it simulates the motion of
the platform generated by applying the leg lengths settings
and the sequence of switchings obtained by the path planner.
A typical output of this simulator can be seen in the attached
video.

The diameters of the base and the platform are0.4m
and 0.2m, respectively. When the legs are extended at half
their maximum extension, the platform is located at0.3m
from the base. This is taken as the home configuration.
The generated roadmap has been obtained by taking 100
configurations randomly sampled in a region centered at this
configuration withx ∈ [−0.04, 0.04], y ∈ [−0.04, 0.04],
z ∈ [0.115, 0.125], θx ∈ [−0.05, 0.05], θy ∈ [−0.05, 0.05],
andθz ∈ [−0.05, 0.05] (where distances are given in meters
and the orientation angles in radians using the roll-pitch-yaw
convention). When each of these configurations have been
tried to be connected to all others, 2,275 connections fail
(out of the 4,950 possible connections) for the six possible
maneuvers. If an intermediate configuration is added in these
cases, the amount of failed connections drops to 644. Due
to these intermediate configurations, the total number of
configurations in the roadmap is 3229 and the total number of



Fig. 4. The implemented prototype.

maneuvers checked for validity amounts to 114,420. 92,245
are discarded for different reasons. Table II compiles this
information.

TABLE II

STATISTICS FOR THE GENERATED ROADMAP

Number of random configurations 100

Intermediate configurations added 3229

Connections
Evaluated connections 19070
Possible direct connections 4950

Failed direct connections 2275
Failed after adding one intermediate configuration 644

Established connections 9356

Manoeuvres
Evaluated (6 per connection) 114420
Discarded 92245

Go outside joint limits 64180
Do not converge to solution 87967
Lead to collisions 201

After verifying the behavior of the proposed robot in
simulation, the prototype in Fig. 4 was built. The base and
the moving platform are made of 3mm thick nickel-plated
steel plates. They are disks of 400 mm and 200 mm in
diameter, respectively. The lockable revolute joints havebeen
implemented using electromagnetic brakes. When one of this
brakes is energized, the corresponding axis of rotation is
released, otherwise it remains locked. The actuated prismatic
joints are implemented using miniature servo linear motors.
The four actuators are controlled through a USB servo card.
An interesting feature of this prototype is that the legs
are attached to the base and the moving platform through
magnetic fixtures. This simplifies any leg rearrangement
during tests. Finally, all plastic elements were manufactured
using a 3D printer.

VI. CONCLUSIONS

By introducing legs of type RbRPS, where Rb stand for
a lockable revolute joint, two novel reconfigurable parallel
robots of reduced mechanical complexity —the 5RbRPS and
the 4RbRPS— have been proposed. Moreover, the 4RbRPS
has been studied in depth, and a practical implementation of
it has been presented.

Regarding the 4RbRPS, it has been demonstrated that:
(i) its moving platform can be moved in a six-dimensional
operational space by using only four actuators that are
maneuvered so that via poses, where the couple of locked Rb

pairs is changed, are introduced; (ii) the parallel singularities
can be avoided and the maximum forces in the actuators can
be reduced by suitably managing the insertion of via poses.
Eventually, these theoretical results have been verified onthe
built prototype.
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