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Generation  
of Under-Actuated 
Manipulators with  
Non-Holonomic Joints 
from Ordinary Manipulators 
 
 
This paper shows how to generate under-actuated manipulators by substituting non-
holonomic spherical pairs (nS pairs) for (holonomic) spherical pairs (S pairs) in 
ordinary (i.e. not under-actuated) manipulators. As a case study, an under-actuated 
manipulator, previously proposed by one of the authors, is demonstrated to be generated, 
through this pair substitution, from an inversion of the 6-3 fully-parallel manipulator 
(FPM). Moreover, the kinetostatic analysis of this under-actuated manipulator is 
reconsidered, and a simple and compact formulation is obtained. The results of this 
kinetostatic analysis can be used both in the design of the under-actuated manipulator, 
and in its control. 
Keywords: kinetostatics, non-holonomic constraint, ordinary manipulator, under-
actuated manipulator, parallel manipulator. 
 
 

 
 
NOMENCLATURE 

 
P = prismatic pair 
U = universal joint 
S = spherical pair 
nS = non-holonomic spherical pair 
SPU = spherical-prismatic-universal kinematic chain (limb) 
nSPU = (non-holonomic spherical)-prismatic-universal 
              kinematic chain (limb) 
FPM = fully parallel manipulator 
DPA = direct position analysis 
dof = degrees-of-freedom 
RB = rigid body 
 

1 Introduction 
 
Non-holonomic constraints arise in many different areas of 

robotics [1-4] such as motion planning and control of mobile 
robots, reorientation of free-flying space robots, rolling contacts of 
multi-fingered hands, etc. In all these cases, the non-holonomic 
constraints are inherent to the problem, but there are some cases in 
which the artificial introduction of this kind of constraints can 
provide important advantages. 

In pick-and-place applications of manipulators, only the 
initial and the final poses (position and orientation) of the end 
effector are assigned by the task, whereas the end-effector path 
between them is free. The ideal manipulator for these applications 
should be able to make the end effector reach any pose in the six-
dimensional operational space, and, by exploiting the free fly of 
the end effector, it should be able to satisfy additional design 
conditions that reduce its hardware complexity. Joints with non-
holonomic constraints do not reduce the reachable relative poses 
of the links connected by the joint since non-holonomic 

constraints have the only effect of reducing the set of paths that 
can be covered for moving between two reachable relative poses. 
This reduction of practicable paths is accompanied by the rising of 
new reaction forces in the joint which can be usefully exploited to 
eliminate actuators. Thus, designing a manipulator with fewer 
actuators than the degrees-of-freedom (dof)1 of its configuration 
space ---to reduce bulk, weight and expense--- becomes feasible 
by introducing mechanical elements that lead to non-holonomic 
constraints. 

The literature on the use of non-holonomic devices in the 
design of manipulators is limited to few examples. In [7], 
Stammers et al. presents a robot wrist that can attain any 
orientation with two motors only. This is achieved by means of a 
friction drive, using rollers on a spherical ball to which the end 
effector is fixed, and by fixing the two motors to the arm. In [8], 
Peshkin et al. present a passive spherical robot which can display 
programmable constraints. The device is based on a non-
holonomic element involving a sphere and three reorientable 
rollers. In [9], Nakamura et al. describe an n-joint serial robot 
which can reach any pose in its n-dimensional configuration space 
with only two actuators. The joints of this manipulator are coupled 
by (n-1) non-holonomic devices, based on spheres and rollers, so 
that it reaches a desired pose by following a path whose 
computation is algorithmically equivalent to maneuvering a car 
with n-trailers. More recently, in [10], Ben-Horin and Thomas 
proposed a three-legged parallel robot where each leg is connected 
to the base through a sphere whose motion is constrained by a 
roller. This latter parallel architecture permits to attain any 
                                                           

1 The degrees-of-freedom (dof) of the configuration space, also 
called configuration (or finite) dof [5], are the minimum number of 
geometric parameters necessary to uniquely identify the configuration of 
the mechanical system [6]. They may be different from the instantaneous 
dof, also called velocity dof [5], of the same mechanical system. 
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position and orientation for the platform using only three 
prismatic actuators. 

Despite the difference of purpose, all mentioned examples 
include at least one sphere whose motion is constrained by a roller 
that can freely roll in contact with the sphere without slipping 
laterally. This no-slip constraint is a non-holonomic constraint, a 
constraint relating the velocities of the sphere and the roller. The 
kinematics of this sphere-roller assembly is equivalent to that of a 
unicycle on a sphere whose equations of motion can be 
represented by first-order differential equations [11]. 

Many research efforts have been made to clarify different 
aspects of non-holonomic mechanical systems including its 
controllability, stability, feedback stabilization, time-periodic 
control, chained form transformation, etc. but, in any case, 
achieving a formulation for the kinematics of the system, as 
compact and simple as possible, is essential to explore the 
applicability of all these results available in the literature. 

Herein, how under-actuated manipulators can be generated 
through the substitution of a spherical pair (S pair) by a particular 
non-holonomic pair, named non-holonomic spherical pair (nS 
pair), in ordinary (i.e., not under-actuated) manipulators is shown. 
As a case study, the under-actuated parallel architecture presented 
in [10] is demonstrated to be generable from an inversion of the 6-
3 fully-parallel manipulator (FPM). Its kinetostatic analysis is 
reformulated, and a simple and compact formulation, useful for its 
design and control, is obtained. 

This paper is structured as follows. Next section describes 
how to generate under-actuated manipulators through substitution 
of suitable kinematic pairs in ordinary manipulators. Section 3 is 
devoted to the case study: a compact formulation for its 
instantaneous kinematics and statics is obtained, and some clues 
for the characterization of its singularities are provided. 
Eventually, section 4 offers the conclusions. 
 
 
2 Generation of Under-Actuated Manipulators 

 
Two rigid bodies (RBs) connected by a spherical pair (S pair) 

can assume any relative orientation, and can move from one 
relative orientation to another by covering any spherical-motion 
path that joins the two relative orientations. Actually, the 
possibility of freely orientating two RBs with respect to one 
another is not related to the possibility of performing relative 
rotations around axes which pass through the center of spherical 
motion and have any direction. In fact, a suitable sequence (at 
least three) of finite rotations around coplanar axes that pass 
through the spherical-motion center can freely orientate one RB 
with respect to another. Thus, if the only free relative orientation 
of two RBs is required, the use of an S pair will be redundant. The 
use of a kinematic pair that allows  only rotations around coplanar 
axes that pass through a fixed point would be sufficient. 

Due to frictional forces, the rolling contact between a sphere 
and a roller forbids the sphere rotations around the axis through 
the sphere center, and perpendicular to the plane defined by the 
roller axis and the sphere center. By combining such a non-
holonomic constraint with other constraints that forbid the relative 
translation between the sphere center and the roller axis, a non-
holonomic joint will result. This joint constrains two RBs: one 
fixed to the sphere and the other fixed to the plane, defined by the 
roller axis and the sphere center. So that the resulting constrained 
motion permits only relative rotations around axes lying on the 
above-mentioned plane and passing through the sphere center. 
Hereafter, this type of joint will be called non-holonomic spherical 
pair (nS pair). 

 
 

Figure 1.  3D CAD model of one out of many different 
manufacturing schemes for the nS pair: (1) sphere, (2) roller 
(carried out through a roller bearing), (3) spherical bearing 
[there are three spherical bearing (only two are visible) that 
forbids the translation of the sphere], (4) pre-load adjust 
screw, and (5) parallelism adjust screws. 
 
 
The constraint forces, which two RBs, joined by a nS pair, exert 
on one another through the joint, can be reduced to a resultant 
force applied on the sphere center and a torque perpendicular to 
the plane defined by the roller axis and the sphere center. The 
torque is the static effect of the non-holonomic constraint, whereas 
the resultant force on the sphere center is the same static effect 
that an S pair would have generated. 

An nS pair could be manufactured as shown in Fig. 1. From a 
manufacturing point of view, it is worth noting that, in a nS pair, 
the presence of any number of roller-sphere contacts does not alter 
the kinetostatics of the nS pair, provided that all the roller axes lie 
on a same plane passing through the sphere center2. Moreover, the 
maximum torque transmitted through the nS pair, due to its 
frictional origin, can be fixed by suitably choosing the number of 
roller-sphere contacts together with the normal force transmitted 
through each contact. 

The above discussion brings to the proposition: i) the 
substitution of a number of nS pairs for as many S pairs in a 
kinematic chain does not change the configuration space of that 
chain (i.e., neither the degrees-of-freedom (dof)3 of the 
configuration space nor the reachable configurations change), it 
only reduces the practicable paths for moving that chain from one 
configuration to another. 

Moreover, due to the torque that arises in a nS pair and to 
proposition i), the following proposition holds, too: ii) in a 
manipulator, the substitution of a number of nS pairs for as many 
S pairs does not change its workspace and allows the elimination 
of a number of actuators equal to the number of introduced nS 
pairs (i.e., generates an under-actuated manipulator). 

S pairs are extensively employed in spatial parallel 
manipulators (see, for instance, [12-15]). In particular, fully-

                                                           
2 In general, two rollers whose axes locate with the sphere center two 

different planes constrains the sphere to rotate around the intersection line 
between the two planes, whereas three rollers whose axes locate with the 
sphere center three different planes lock the sphere. 

3 The presence of non-holonomic constraints does not change the 
configuration dof [5, 6]. It only affects the instantaneous dof of the 
mechanism. Hereafter, the acronym dof used alone will mean 
configuration dof. 
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parallel manipulators (FPMs) feature two platforms, one mobile 
(end effector) and the other fixed (frame), connected to each other 
by means of six universal(U)-prismatic(P)-spherical(S) kinematic 
chains (UPS limbs) where the prismatic pairs are the only actuated 
pairs. In each limb, the centers of the universal joint and of the 
spherical pair (limb's attachment points) are points, fixed either to 
the end effector or to the frame, whose distance (limb length) is 
controlled by the actuated prismatic pair. Two or more attachment 
points, either in the end effector or in the frame, can coalesce into 
a unique point. According to the number of attachment points (no 
matter if they are multiple or not) in the end effector, say p, and in 
the frame, say q, different FPM architectures, named p-q FPM, are 
distinguished [15]. 

Due to the high number of S pairs appearing in FPMs, the 
substitutions of nS pairs for S pairs, accompanied by as many 
eliminations of actuators in the prismatic pairs, can be operated in 
many ways in all the FPM architectures. By exploiting all the 
possible substitutions, a lot of new under-actuated parallel 
manipulators can be generated. It is worth noting that a passive 
UPS limb only affects the workspace borders since it has 
connectivity six, and, if this effect is not necessary, the 
elimination of the actuator in a prismatic pair could be 
accompanied by the elimination of the whole resulting passive 
UPS limb. 

 
 

3  Case Study 
 
In this section, an under-actuated parallel manipulator 

generated from the 6-3 FPM (Fig. 2) is studied. 
The 6-3 FPM architecture features three couples of UPS 

limbs with coalesced S pairs in the end effector. This architecture 
was proposed first by Stewart [16], in the 1965, for a flight 
simulator. Successively, with the renewed interest for the parallel 
architectures, started at the end of the eighties, it was diffusely 
studied. In particular, regarding the direct position analysis of the 
6-3 FPM, Innocenti and Parenti-Castelli [17] demonstrated that at 
most sixteen end-effector poses correspond to a given set of limb 
lengths. Then, Parenti-Castelli and Di Gregorio [18] demonstrated 
that the end-effector pose is uniquely determined when the value 
of one passive joint variable is measured besides the six limb 
lengths. The direct position analysis of this FPM can also be used 
for spatial parallel manipulators that become 3-RS structures when 
the actuators are locked (see, for instance, [19-22]). 

Starting from the 6-3 architecture, each couple of UPS limbs 
with coalesced S pairs (Fig. 3(left)) can be transformed into an 
UPnS limb, as shown in Fig 3(right), without affecting the 
workspace of the manipulator (see proposition i)). By operating 
this substitution in all the three couples of UPS limbs together 
with the inversion of the end effector with the frame, the under-
actuated manipulator with topology 3-nSPU, shown in Fig. 4, is 
obtained. This under-actuated manipulator is able to move the end 
effector in a six-dof workspace by changing only the three limb 
lengths. The 3-nSPU has been proposed first in [10]. 

Regarding the direct position analysis (DPA) of the 3-nSPU, 
since its configuration space has six dof, a number of closure 
equations equals to the number of unknowns can be written if, and 
only if,  over the three limb lengths, three more passive joint 
variables are assigned (measured). By assigning (measuring) the 
three joint variables of the three revolute pairs4 not adjacent to the 
end effector, the closure equation system coincides with the one of 
the 6-3 FPM for assigned limb lengths [18], and admits at most 
                                                           

4 Each U joint is constituted by two revolute pairs: one adjacent to, 
and the other not adjacent to the end effector. 

sixteen solution for the end-effector pose. Moreover, if the joint 
variable of a revolute pair adjacent to the end effector is measured 
(or coherently assigned) too, only one end-effector pose satisfies 
the closure equations [18]. 

 

 
 

Figure 2.  6-3 FPM 
 
 

 
 

Figure 3.  UPnS limb (right) generated by substituting an nS 
pair for the S pair in the two UPS limbs with coalesced S pairs 
(left). 

 
 

3.1 Instantaneous Kinematics: Fig. 5 shows the ith limb, i = 1, 2, 
3, together with the notation that will be used. w1i and w2i are two 
any mutually orthogonal unit vectors fixed to the frame and lying 
on the plane defined by the roller axis and the center, Ai, of the 
sphere, in the roller-sphere contact. w3i and w4i are the two 
mutually orthogonal unit vectors of the axes of the two revolute 
pairs constituting the U joint. Bi is the center of the U joint. ai and 
bi are the two position vectors which locate the points Ai and Bi, 
respectively, in a generic Cartesian reference fixed to the frame, 
whereas p is the position vector of an end-effector point, P, in the 
same Cartesian reference. θji, for j =1, …, 4, is a joint variable 
denoting a rotation angle around the joint-axis defined by wji, for 
j=1, …, 4, and positive if counterclockwise with respect to wji. 
The  length  of the ith limb is equal to ||bi − ai||, and it will be 
denoted li. Moreover, the limb-axis' unit vector, g i, and the unit 
vector, hi (ri) normal to the plane located by the U-joint's revolute-
pair axes (by the roller axis together with the sphere center in the 
nS joint) satisfy the following relationships: 

 
li g i = bi − ai,    hi = w3i × w4i,   ri = w1i × w2i. (1) 

 
The time differentiation of the first of the relationships (1) 

yields 
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Figure 4.  Under-actuated manipulator with topology 3-nSPU: 
(a) kinematic model, (b) 3D CAD model of a manufacturing 
scheme. 
 
 

+ =g g bi i i i il l  (2) 
 
Since 1 1 2 2(θ θ )×= +g w w gi i i i i i , and = + ×( )−b p ω b pi i , 

where ω denotes the end-effector angular velocity, Eq. (2) can be 
rewritten as 

 

1 1 2 2+ [θ ( × ) + θ ( × )]= + ×( )−g w g w g p ω b pi i i i i i i i i il l . (3) 
 
The dot products of (3) by w1i and w2i yield the following 

two scalar equations: 
 

1 2 2 1 1 1( ) + θ ( × ) = + ×( )⋅ ⋅ ⋅ − ⋅g w w g w p w ω b p wi i i i i i i i i i il l , (4) 

2 1 1 2 2 2( ) + θ ( × ) = + ×( )⋅ ⋅ ⋅ − ⋅g w w g w p w ω b p wi i i i i i i i i i il l . (5) 

 
 

Figure 5.  ith limb of type nSPU: notations. 
 
 
On the other hand (see Fig. 5), the end-effector angular 

velocity is equal to 
1,4
θ

=∑ wji jij
, whose dot product by hi gives 

the following expression 
 

1 1 2 2= θ ( ) + θ ( )⋅ ⋅ ⋅ω h w h w hi i i i i i i . 
 
Solving (4) and (5) for 2θ i  and 1θ i , respectively, and 

replacing the result in the above equation, yields: 
 

2 2 2
1

1 2

1 1 1
2

2 1

 + ×( )= ( ) 
( × )

 + ×( )          + ( ).
( × )

⎡ ⎤⋅ − ⋅ − ⋅
⋅ ⋅⎢ ⎥

⋅⎢ ⎥⎣ ⎦
⎡ ⎤⋅ − ⋅ − ⋅

⋅⎢ ⎥
⋅⎢ ⎥⎣ ⎦

p w ω b p w g wω h w h
w g w

p w ω b p w g w w h
w g w

i i i i i i
i i i

i i i i

i i i i i i
i i

i i i i

l
l

l
l

 

 (6) 
 
Taking into account the identities 
 

1 2 2 1 1 2×  = × ( × ) = ( ) ( )⋅ − ⋅h r h w w w h w w h wi i i i i i i i i i i , 

1 2 1 2 2 1 =  ×  = ×  = × ⋅ ⋅ − ⋅ ⋅r g w w g w g w w g wi i i i i i i i i i i , 
 

relationship (6) can be rewritten as: 
 
( × ) = ( × ) + [( )×( × ) ( ) ]⋅ ⋅ ⋅ − − ⋅g h r p h r ω b p h r r g hi i i i i i i i i i i i il l . (7) 
 
Since il  can also be obtained as the projection of bi  on g i 

[see Eq. (2)], the following expression holds 
 

= =  + [( )× ]⋅ ⋅ ⋅ −b g p g ω b p gi i i i i il . (8) 
 
Replacing expression (8) for il  in (7), gives 
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+ [( )× ( ) ] = 0⋅ ⋅ − − ⋅p s ω b p s r g hi i i i i i il . (9) 
 

where 
 

= ×  [ ( × )] − ⋅s h r g h r gi i i i i i i . (10) 
 

is the component of hi×ri perpendicular to g i. 
Eventually, rewriting Eqs. (8) and (9), for i = 1, 2, 3, in 

matrix form yields 
 

3 3 3 3 3 3

3 3 3 3 3 3

= × × ×

× × ×

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

1 G K p
l

0 S J ω
 (11) 

 
where 13×3 and 03×3 are the 3×3 identity and zero matrix, 
respectively, 1 2 3= ( , , )l l l l T is the vector collecting the joint rates of 
the actuated joints, and 
 
KT [i,:] = (bi − p) × g i  (12) 
GT [i,:] = g i  (13) 
JT [i,:] = (bi − p) × s i − li (ri ⋅ g i) h i   (14) 
ST [i,:] = s i  (15) 
 
with the notation AT [i,:] to mean the i-th column of matrix 3×3AT . 

Matrix relationship (11) is the sought-after input-output 
instantaneous relationship necessary to implement the control 
algorithms of the 3-nSPU. 

 
3.2 Static Analysis: The only input-output static relationship can 
be immediately deduced from (11) through the principle of virtual 
work. Nevertheless, in order to highlight how the loads act upon 
the limbs and are transmitted through the joints, the complete 
static analysis of the 3-nSPU will be developed here 
independently of (11). 

Figure 6 shows the free-body diagram of the ith limb. With 
reference to Fig. 6, the force fbi (fai), applied on Bi (Ai), together 
with the torque mhi hi (mri ri) are the resultants of constraint forces 
exerted by the end effector (frame) on the ith limb through the U 
joint (the nS joint). Moreover, the force −fext, applied on the end-
effector point P, together with the torque −mext will denote the 
resultants of the interaction forces exerted on the end effector. The 
force τi gi will denote the axial force exerted on the upper part of 
the ith limb by the actuator in the prismatic pair. It is worth noting 
that the force equilibrium, along the limb axis, of the upper part of 
the ith limb yields the following relationship τi = −fbi ⋅ gi. 

With these notations, the equilibrium of the forces applied on 
the ith limb yields fbi + fai = 0; whereas, taking Ai as reference 
point, the equilibrium of the moments applied on the same limb is: 

 
mhi hi + mri ri + li gi × fbi = 0. (16) 

 
The dot product of Eq. (16) by gi, yields the relationship 
 

 = ⋅
−

⋅
h g
r g

i i
ri hi

i i

m m . (17) 

 
whose substitution for mri in (16) leads to 

 
 
 

 
 

Figure 6.  ith limb of type nSPU: free-body diagram. 
 
 

[  × (  × )] +   ×  =  
⋅

g h r g f 0
r g

hi
i i i i i bi

i i

m l . (18) 

 
where the vector identity gi × (hi × ri) = (ri ⋅ gi) hi − (hi ⋅ gi) ri has 
been used. 

The dot product of Eq. (18) by hi × ri yields the relationship: 
(gi × fbi) ⋅ (hi × ri) = 0. Such a relationship is satisfied if, and only 
if, fbi is a linear combination of gi  and  hi × ri.  Subtracting  from 
hi × ri its component along gi, the vector si is obtained. Since gi 
and si are two orthogonal vectors that span the same subspace as gi 
and hi × ri, fbi can be expressed as follows: 

 
fbi = −τi gi − τ⊥i si. (19) 

 
Equation (19) can be interpreted as the equilibrium of the 

forces applied on the upper part of the ith limb. In fact, the two 
forces τi gi and τ⊥i si are, respectively, the active axial and the 
passive shear forces applied through the actuated prismatic pair. 

Replacing expression (19) for fbi in (18), and taking into 
account that gi ×(hi × ri) = gi × si yields 

 

   τ (  × ) = ⊥⎛ ⎞
−⎜ ⎟⎜ ⎟⋅⎝ ⎠

g s 0
r g

hi
i i i i

i i

m l  

 
which is satisfied if 

 
mhi = li τ⊥i  (ri ⋅ gi). (20) 

 
Using (17), (20) can be rewritten as 
 

mri = −li τ⊥i  (hi ⋅ gi). (21) 
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Regarding the end-effector equilibrium, the equilibrium of 
the forces is: 

 
3 3 3

1 1 1
τ + τ⊥

= = =

= − =∑ ∑ ∑f f g sext bi i i i i
i i i

, (22) 

 
and, taking the end-effector point P as reference point, the 
equilibrium of the moments is: 

 
3 3

1 1
( )×

= =

= − − −∑ ∑m h b p fext hi i i bi
i i

m . (23) 

 
The substitution of fbi, according to (19), and of mhi, 

according to (20), into (23) yields 
 

3 3

1 1
τ ( )× + τ [( )× ( ) ]⊥

= =

= − − − ⋅∑ ∑m b p g b p s r g hext i i i i i i i i i i
i i

l . (24) 

 
Finally, Eqs. (22) and (24) can be rewritten in matrix form as 

follows: 
 

3 3 3 3

3 3 3 3

= × ×
⊥

× ×

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

f G K τ
m S J τ

T
ext

ext

 (25) 

 
where  τ = (τ1, τ2, τ3)T is a vector collecting the signed magnitudes 
of the forces applied by the  actuators in the prismatic pairs, and 
τ⊥ = ( 1 2 3τ ,τ , τ⊥ ⊥ ⊥ )T. 

Matrix  relationship  (25)  is  the input-output static 
relationship of the 3-nSPU. It is worth noting that, as expected, 
(11)   and   (25)   satisfy   the   instantaneous   power   balance:  
fext ⋅ p  + mext ⋅ ω = τ ⋅ l . 

 
3.3 Singularity Analysis: Singularities are manipulator 
configurations where the relationship (input-output instantaneous 
relationship) between the rates of the actuated-joint variables and 
the end-effector twist, ( p , ω), fails [23−25]. Three types of 
singularities can be distinguished [23]: (I) singularities of the 
inverse kinematic problem, (II) singularities of the direct 
kinematic problem, and (III) singularities both of the inverse and 
of the direct kinematic problems. Type-I singularities occur when 
the actuated joint rates cannot be uniquely computed for an 
assigned end-effector twist. Vice versa, type-II singularities occur 
when the end-effector twist cannot be uniquely determined for 
assigned actuated joint rates. 

For the 3-nSPU, the input-output instantaneous relationship 
is (11) where the actuated joint rates are collected in the vector l . 
This relationship highlights that the 3-nSPU has only three 
instantaneous dof. Therefore, its singularity analysis can be 
addressed by using the scheme proposed in [26]. 

Regarding type-I singularities, provided that the assigned 
twist, ( p , ω), satisfies the last three equation of system (11), the 
inverse kinematic problem can be always solved5. 

Regarding type-II singularities, the equation of the 
singularity locus is 

                                                           
5 System (11) does not model the mobility limitations due to the 

physical constitution of the real joints, and to the real sizes of the links. 
Such limitations bound the workspace and, when correctly modeled, yield 
type-I singularities. 

 

3 3 3 3

3 3 3 3

det = 0× ×

× ×

⎛ ⎞
⎜ ⎟
⎝ ⎠

G K
S J

 (26) 

 
The geometric interpretation of the above algebraic condition 

is not straightforward. 
Nevertheless, the last three equations of system (11) allows 

the elimination of p  provided that det(S3×3) = s1⋅s2×s3 is different  
from  zero.  In this case, system (11) becomes 

 
l  = Q ω (27) 

 
where Q is the 3×3 matrix (K3×3 − G3×3

1
3 3
−
×S J3×3). Thus, the 

analytic expression of the singularity locus becomes 
 

det (Q) = q1 ⋅ q2 × q3  (28) 
 

where the vectors qi, for i = 1, 2, 3, are the column vectors of 
matrix Q. In conclusion, if the mixed product s1 ⋅ s2 × s3 is different 
from zero (i.e., the three vectors si, for i = 1, 2, 3, are neither 
coplanar nor null vectors), the type-II singularities are 
geometrically identified by either the coplanarity of the three 
vectors qi, for i = 1, 2, 3, or by the fact that at least one of the qi 
vectors is a null vector. 

If the mixed product s1 ⋅ s2 × s3 is zero, the determinant of the 
whole 6×6 matrix appearing in (26) must be considered, and 
geometric interpretations of (26) are much more difficult to 
provide. 

The zeroing of s1 ⋅ s2 × s3 can be geometrically identified 
since it occurs when either (a) at least one of the si vectors is a 
null vector, or (b) the three  si vectors are coplanar. Vector si (see 
definition (10)) is related to the configuration of the ith limb, and it 
is the component of hi × ri perpendicular to gi (i.e., to the limb 
axis). 

As a consequence, condition (a) occurs when, in at least one 
limb, either (a.1) the two unit vectors hi and ri are parallel (i.e., 
when, in a limb, the revolute pair axes in the U joint are both 
parallel to the plane defined by the roller axis and the sphere 
center in the nS pair), or (a.2) the limb axis is the intersection line 
between the plane, defined by the roller axis and the sphere center 
in the nS pair, and the plane, defined by the revolute pair axes of 
the U joint. Condition (a.2) is forbidden in practice by the actual 
sizes of joints and links. Regarding condition (a.1), a very special 
case occurs when hi and ri are parallel in all the limbs. This 
occurrence makes the matrix S3×3 a null matrix and allows the 
determinant at the left-hand side of (26) to be factorized as 
det(G3×3) det(J3×3) where det(G3×3) is equal to g1 ⋅ g2 × g3, whereas, 
in this case, det(J3×3) is equal to −l1l2l3 (r1 ⋅ g1) (r2 ⋅ g2) (r3 ⋅ g3) h1 ⋅ 
h2 × h3. Thus, in this case, a type-II singularity occurs when either 
the limb axes are all parallel to a unique plane, or the hi vectors 
are coplanar, or, finally, in at least one limb, the limb axis lies on 
the plane defined by the roller axis and the sphere center of the nS 
pair. Moreover, it is worth noting that, in this case, the end 
effector performs an instantaneous translation, if neither det(G3×3) 
nor det(J3×3) are equal to zero (i.e., out of singularity). 

Regarding condition (b) (i.e., the coplanarity of the si 
vectors), it occurs when the limb axes are all parallel, and in other 
configurations more difficult to visualize. 

 
3.4 Local and Global Controllability: Each end-effector 
configuration (pose) can be modeled as a point in R3×SO(3) 
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which is locally diffeomorphic to R6 equipped with a proper set of 
local coordinates: x ≡ (pT, ηT)T where η is a three-dimensional 
vector collecting the values of the three orientation parameters 
chosen to locate end-effector’s orientation. 

By using the orientation parameters’ rates, η , the end-
effector’s angular velocity, ω, can be expressed as: 

 
ω = H3×3 η  (29). 

 
Relationship (29) allows system (11) to be rewritten in the 

form 
 

6x6
3x1

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

l
x V

0
 (30) 

 
with 
 

1
3 3 3 3 3 3 3 3

6 6 1 2 3 4 5 6 1
3 3 3 3 3 3 3 3

( , , , , , ) =
−

× × × ×
−

× × ×

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

1 0 G K
V v v v v v v

0 H S Jx
x

 (31) 

 
where vi is the i-th 6-dimensional column vector of matrix V6x6. 
The vectors vi depend only on x; so, they are vector fields defined 
on end-effector’s configuration space. 

Definition (31) allows (30) to be further simplified as 
follows: 

 

1 1 2 2 3 3= + +x v v vl l l  (32). 
 
Relationship (32) states that, in the neighborhood of a generic 

configuration, x0, all the configurations, x, reachable without 
maneuvering (i.e., without a sequence of coordinated actions of 
the actuators) are so located that (x−x0) ∈ Span(v1, v2, v3). 

(32) is the relationship to be considered for discussing end-
effector’s ability to reach any configuration in the neighborhood 
of a generic configuration, x0 [27, 28]. The presence of non-
holonomic constraints in the 3-nSPU manipulator might allow all 
neighboring configurations be reachable possibly by maneuvering. 
If this happened, the system would be “locally controllable” [27] 
at the configuration x0.  

It can be shown (see [28] pp 323-324) that, if a system, 
satisfying (32) and at the configuration x0, first follows vi, 
i∈{1,2,3}, for a small time ε, then follows vj, j∈{1,2,3⎪j≠i}, for 
the same time ε, then −vi for ε, and finally −vj for ε, it will reach 
the following configuration of x0’s neighborhood:  

 

0

2
0 i j0

lim (4ε) ε [ , ] =ε→
= + x xx x v v  (33) 

 
where [vi, vj] is the 6-dimensional vector field named Lie product 
of vi and vj, defined as follows 
 

j i
i j i j[ , ]

∂ ∂
= −
∂ ∂

v vv v v v
x x

 (34), 

 
and the trailing subscript, x = x0, indicates the point the two vector 
fields, vi and vj, are evaluated at. 

By reiterating the same reasoning (first, on pairs of vector 
fields of type vi and [vj, vk], i,j,k∈{1,2,3⎮i≠j≠k}, and, 
successively, on pairs of vector fields belonging to the set which 
collects all the vector fields that, in the previous iterations, were 

demonstrated to point from x0 toward reachable configurations), it 
can be demonstrated that all the vector fields obtained through Lie 
products of any degree of elements of the set  {v1, v2, v3} point 
toward configurations that are reachable by maneuvering from x0 
[27]. In other word, for any reachable configuration, say x, the 
vector (x−x0) belongs to the Lie algebra6 of {v1, v2, v3}. 

In our case, demonstrating that the dimension of the linear 
space Span(v1, v2, v3, [v1, v2], [v1, v3], [v1, v2]) is six7 is sufficient 
for concluding that the manipulator is locally controllable at a 
given configuration since end-effector’s configuration space is 6-
dimensional (Chow’s theorem [28]). Moreover, showing that the 
set of configurations where the system is locally controllable is a 
simply connected region is sufficient to demonstrate the existence 
of finite regions of end-effector’s configuration space where, for 
any two configurations belonging to that region, at least one path 
exists, which the system can follows, for moving from one 
configuration to the other (i.e., the system is “globally 
controllable” in that region). 

According to the above discussion, the configurations where 
the local controllability of our manipulator is not guaranteed are 
the geometric locus of the roots of the following equation 

 
det(L6×6) = 0 (35) 
 
where  
 
L6×6  (v1, v2, v3, [v1,v2], [v1,v3], [v2,v3]) (36). 

 
The locus of the roots of (35) is in general a 5-dimensional 

variety; thus, a finite region where our manipulator is globally 
controllable in general exists. This statement will be verified 
through the numerical example reported below. 

 
3.5 Numerical Example: With reference to the notation defined 
in the Figs. 5 and 6, a 3-nSPU is considered where the points Ai 
(Bi) for i=1,2,3 are at the vertices of an equilateral triangle fixed to 
the frame (to the end effector). The Cartesian reference system 
fixed to the frame (to the end effector) has the origin O (P) at the 
centroid of the equilateral triangle, z axis perpendicular to the 
plane of the triangle, x axis passing through A3 (B3) with direction 
from A3 (B3) toward O (P), and y axis accordingly chosen. In an 
arbitrary unit of length (aul), the distance of the triangle vertices 
Ai (Bi) from its centroid is 39.7 aul (11.76 aul). In the same unit, 
the geometry of the frame and of the end effector are defined by 
the following data (the vector without any leading superscript are 
measured in the frame reference, whereas the vectors with the 
leading superscript e(⋅) are measured in the end-effector 
reference): a1=(19.85, −34.3812, 0)T, a2=(19.85, 34.3812, 0)T, 
a3=(39.7, 0, 0)T, r1=(0.7887, −0.2113, 0.5774)T, r2=(−0.2113, 
0.7887, 0.5774)T, r3=(−0.5774, 0.5774, 0.5774)T, e(b1−p)=(5.88, 
−10.1845, 0)T, e(b2−p)=(5.88, 10.1845, 0)T, e(b3−p)=(11.76, 0, 
0)T, ew41=(0.3536, −0.6124, 0.7071)T, ew42=(0.3536, 0.6124, 
0.7071)T, ew43=(−0.7071, 0, 0.7071)T. 

With this manipulator geometry, the singularity locus defined 
by Eq. (26) and the root locus of Eq. (35) have been computed for 
a fixed orientation of the  end  effector  with  respect  to the frame. 

                                                           
6 The “Lie algebra” of a set of vector fields is the linear span of all 

Lie products, of all degrees, of vector fields belonging to that set [27]. 
7 It is worth noting that, if the dimension of Span(v1, v2, v3, [v1,v2], 

[v1,v3], [v2,v3]) is six, all the Lie products of any degree in {v1, v2, v3} 
must belong to Span(v1, v2, v3, [v1,v2], [v1,v3], [v2,v3]); thus, all the 
reachable configurations, x, satisfy the condition (x−x0)∈ Span(v1, v2, v3, 
[v1,v2], [v1,v3], [v2,v3]). 
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Figure 7.  Singularity locus [Eq. (26)] for the 3-nSPU geometry 
of the numerical example, and end-effector orientation fixed to 
XZX Euler angles’ values (0, 1, 0) radians: (a) 3D view, (b) top 
view 
 
 
The results of these two computations are shown in the Figs. 7 and 
8, respectively. By comparing the singularity locus (Fig. 7) and 
the root locus of Eq. (35) (Fig. 8), a wide free-from-singularity 
region that is globally controllable can be easily identified. 

 

 
 
Figure 8.  Locus of the Eq. (35) roots for the 3-nSPU geometry 
of the numerical example, and end-effector orientation fixed to 
XZX Euler angles’ values (0, 1, 0) radians: (a) 3D view, (b) top 
view 
 
 
4  Conclusions 

 
If a number of non-holonomic spherical pairs replaces as 

many spherical pairs in a manipulator, the same number of 
actuators can be eliminated. The resulting manipulator will keep 
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the same workspace of the generating manipulator, but it will be 
under-actuated. 

This technique for generating under-actuated manipulators 
can be applied to fully-parallel manipulators, where many 
spherical pairs are present, and the elimination of an actuator in an 
UPS limb can be accompanied with the elimination of the whole 
UPS limb. 

Through this pair substitution, an under-actuated 
manipulator, previously proposed by one of the authors, has been 
generated from an inversion of the 6-3 FPM. The kinetostatic 
analysis of this manipulator has been reconsidered to obtain a 
simple and compact formulation. This reformulated analysis can 
be used both in the design of the under-actuated manipulator, and 
in its control. Further works on this manipulator will present an 
exhaustive singularity analysis, and will provide design criteria for 
increasing its useful workspace. 
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