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This paper deals with the assessment of how far into the future a time series can be
safely predicted using inductive modelling and extrapolation techniques. Three
different time series are used to demonstrate the viability of the approaches presented in
the paper: one time series representing the water demand of the city of Barcelona,
another characterizing the water demand of a section of the city of Rotterdam, and a
third describing weather data for the city of Tucson. Fuzzy inductive reasoning (FIR) is
used to predict future values of these time series on the basis of their own past.
FIR predictions come with two different built-in measures of confidence that can be
used to obtain a quantitative estimate of how far into the future a time series can be
predicted.
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1. Introduction

In a companion paper (Cellier et al. 2010), the problem of estimating the forecasting error

in time-series predictions was discussed. It was shown that, especially in soft science

simulation, it is important to estimate the error of a prediction together with the prediction

itself, since it cannot be expected of the users that they would be able to assess the

reliability of the simulation results. Scepticism must be instilled in the simulation

software, rather than demanding it of its users.

In other forecasting methods, it is customary to provide a prediction value

accompanied by a confidence range or error envelope, based on a computation of the

mean square error of the series prediction in question. Assuming that the prediction

errors are normally distributed around the 0 value and based on the characteristics of

the normal distribution, it is possible to provide, for example, 95% confidence ranges,

using the prediction value ^2s, s being an estimation of the standard deviation of the

error distribution around 0. Such a confidence estimation is informative, but it has

limitations. On the one hand, it only provides a global estimation of the expected error,
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and on the other, it relies entirely on the normality assumption that may or may not

hold.

The method proposed in this work computes a local estimation of the confidence of

each individual prediction and makes no previous assumption on the error distribution of

the prediction. Additionally, since successive predictions of a several-step-ahead forecast

are not totally accurate, errors are likely to accumulate during iterative predictions of

future values of a time series. It is thus of much interest to the user of such a tool to be able

to assess the quality of predictions made not only locally, but also as a function of time,

i.e. the user should be able to obtain a (generally decaying) function of accumulated

confidence in progressive predictions. During the first step of a multi-step prediction, the

predicted value depends entirely on measurement data, and is, therefore, more likely to be

accurate than in subsequent steps, when the predictions depend on previously predicted

data points that are by themselves associated with a degree of uncertainty already.

There exist many applications for such a technology. For example, model predictive

control uses predictions of future values of measurement data to provide the controller

with an early warning if the system is about to leave the zone of safe operation. The earlier

such a warning can be provided, the more time the controller has to prevent this situation

from ever happening.

Yet, there are two types of errors that can occur in such predictions: (i) the predictor

foresees that the system will leave its operating zone, although in reality, this would not

happen and (ii) the predictor does not foresee any problems, although they do occur. Both

types of errors can degrade the achievable performance of the controller. The first error

type will make the controller overly conservative, preventing it from making use of the

full operating zone. The second error type may lead to either instability or plant

shutdown.

Both error types are closely related to the horizon of predictability. As the accuracy of

forecasts in a multi-step prediction decreases over time, the likelihood of making either

type of error grows. Hence, assessing the likelihood of these errors to occur is synonymous

with being able to assess the horizon of predictability of each measurement signal used in

the predictive control scheme.

The paper introduces measures for estimating the horizon of predictability. It then

calculates the prediction errors made when forecasting three separate time series over

multiple steps, and shows the strong positive correlation between the prediction error on

the one hand and the estimated horizon of predictability on the other.

2. Accumulated confidence measures in time-series prediction

As was shown in Cellier et al. (2010), the local prediction error can be estimated using

either proximity or similarity measures. Both types of estimators lead to satisfactory results

when used together with a fuzzy inductive reasoning (FIR) algorithm for the time-series

prediction, although the similarity measure is usually preferred as it is slightly more

sensitive than the proximity measure.

Both measures only account for uncertainty stemming from a single step of prediction,

i.e. they assume that the data on which the prediction is based are totally accurate, i.e. they

measure the local uncertainty associated with a single prediction, but not the accumulated

uncertainty resulting from multiple predictions, whose premises are themselves uncertain

already.

Either measure can easily be extended to become an estimator of accumulated

confidence. The reader may remember that an FIR model of a time-series predictor
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is characterized by a single-column optimal mask, e.g.

tnx y

t 2 5dt

t 2 4dt

t 2 3dt

t 2 2dt

t 2 dt

t

21

0
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23

þ1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð1Þ

denoting the equation

yðtÞ ¼ ~f yðt 2 5dtÞ; yðt 2 2dtÞ; yðt 2 dtÞ
� �

; ð2Þ

where ~f denotes a function specified through a finite state machine, rather than being

provided in the form of an analytical expression.

Negative mask elements denote mask inputs (m-inputs), whereas the þ1 element,

which will always show up in the last row, denotes the mask output (m-output).

For the above mask, it makes sense to define the accumulated confidence in the

prediction of y(t) as follows:

caðtÞ ¼ clðtÞ ·
1

3
· caðt 2 5dtÞ þ caðt 2 2dtÞ þ caðt 2 dtÞð Þ; ð3Þ

i.e. the accumulated confidence in the prediction of y(t), called caðtÞ, is defined as the

product of the local confidence in that prediction, clðtÞ, with the average accumulated

confidence in the m-inputs. Clearly, both the local and accumulated confidence values of

measured data points are 1.0; and, therefore, the accumulated confidence of the first

prediction step is always equal to the local confidence, computed using either the

proximity or the similarity measure, but at later times, the accumulated confidence is

always lower than the local confidence. The accumulated confidence is usually decaying

over time, although it is not necessarily a monotonically decreasing function.

The multiplication of the local confidence of the m-output with the average

accumulated confidence of the m-inputs is only correct, in a strict sense, if subsequent

values of y can be assumed to be uncorrelated, which, of course, is never the case.

However, from a practical standpoint, the measure works exceedingly well, as shall be

demonstrated by means of three separate examples.

Of course, the proposed approach to estimate the accumulated confidence in

predictions made is not limited to time series. For example, given a system with two inputs

and three outputs, characterized by the following optimal mask

tnx u1 u2 y1 y2 y3

t 2 2dt

t 2 dt

t

21 0 22 0 0

0 23 0 0 24

0 0 þ1 0 0

0
BB@

1
CCA

ð4Þ
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denoting that

y1ðtÞ ¼ ~f u1ðt 2 2dtÞ; y1ðt 2 2dtÞ; u2ðt 2 dtÞ; y3ðt 2 dtÞ
� �

ð5Þ

would lead to the following expression of accumulated confidence:

caðy1ðtÞÞ ¼ clðy1ðtÞÞ 0:5 þ 0:25 · caðy1ðt 2 2dtÞÞ þ 0:25 · caðy3ðt 2 dtÞÞ
� �

: ð6Þ

Since the input variables are always measured and, therefore, assumed to be accurate, the

accumulated confidence values associated with u1ðt 2 2dtÞ and u2ðt 2 dtÞ are always

assumed to be 1.0. This time, it was necessary to specify the names of the variables as

arguments of the ca and cl functions, since multiple variables are contributing to the

prediction.

3. Description of the simulation experiments

Matrix 7 shows how the computations were performed. It shows an excerpt of the time

series. The first column denotes the true measurement data. At each sampling point, a

multi-step prediction was performed, the results of which are written to the right of the last

measurement data point used in the prediction. The first argument denotes the time instant

for which the prediction is computed, whereas the second argument denotes the number of

prediction steps used to reach the prediction. Across one of the anti-diagonals, values are

marked in bold type for illustration. They all refer to the same time point, yet values

further to the right and top are less accurate, because they were obtained using a longer

prediction path (second argument).

Y ¼

. . . . . . . . . . . . . . . . . .

yðt 2 4dtÞ yðt 2 3dt; 1Þ yðt 2 2dt; 2Þ yðt 2 dt; 3Þ yðt; 4Þ . . .

yðt 2 3dtÞ yðt 2 2dt; 1Þ yðt 2 dt; 2Þ yðt; 3Þ yðt þ dt; 4Þ . . .

yðt 2 2dtÞ yðt 2 dt; 1Þ yðt; 2Þ yðt þ dt; 3Þ yðt þ 2dt; 4Þ . . .

yðt 2 dtÞ yðt; 1Þ yðt þ dt; 2Þ yðt þ 2dt; 3Þ yðt þ 3dt; 4Þ . . .

yðtÞ yðt þ dt; 1Þ yðt þ 2dt; 2Þ yðt þ 3dt; 3Þ yðtþ 4dt; 4Þ . . .

yðt þ dtÞ yðt þ 2dt; 1Þ yðt þ 3dt; 2Þ yðtþ 4dt; 3Þ yðt þ 5dt; 4Þ . . .

yðt þ 2dtÞ yðt þ 3dt; 1Þ yðtþ 4dt; 2Þ yðt þ 5dt; 3Þ yðt þ 6dt; 4Þ . . .

yðt þ 3dtÞ yðtþ 4dt; 1Þ yðt þ 5dt; 2Þ yðt þ 6dt; 3Þ yðt þ 7dt; 4Þ . . .

yðtþ 4dtÞ yðt þ 5dt; 1Þ yðt þ 6dt; 2Þ yðt þ 7dt; 3Þ yðt þ 8dt; 4Þ . . .

yðt þ 5dtÞ yðt þ 6dt; 1Þ yðt þ 7dt; 2Þ yðt þ 8dt; 3Þ yðt þ 9dt; 4Þ . . .

. . . . . . . . . . . . . . . . . .

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

:

ð7Þ

The above matrix can now be used in different ways. Horizontal rows indicate individual

multi-step predictions starting from the time shown in the first column that represents the

last measurement data point. Each new data point contains more sources of error than the

previous one, because it is built on a longer prediction history. Vertical columns show

long-term prediction cycles, whereby the measurement data lag behind the prediction
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by a fixed number of steps. Columns further to the left should, on average, be more

accurate than columns further to the right, because the prediction history leading to them is

shorter. The first column is 100% accurate, since it represents the measurement data.

Finally, values in anti-diagonals represent the same time instant estimated using longer

and longer prediction histories.

The accumulated confidence values associated with each prediction were stored in a

second matrix of identical dimensions. All values in column 1 are 1.0. Values further to the

right are likely to be smaller than those further to the left. The average value of each

column

ca½j� ¼
1

n

Xn

i¼1

ca½i; j� ð8Þ

is the average accumulated confidence associated with a prediction that is based on

measurement data that are lagging j sampling intervals behind.

It was decided to define the prediction error in the same fashion as proposed in Cellier

et al. (2010):

M ¼ maxðmaxðYÞÞ; ð9Þ

m ¼ minðminðYÞÞ; ð10Þ

Yn ¼
Y 2 m

M 2 m
; ð11Þ

errabs½i; j� ¼ Yn½i; j�2 Yn½i; 0�j j; ð12Þ

simtyi½i; j� ¼
minðYn½i; j�; Yn½i; 0�Þ

maxðYn½i; j�; Yn½i; 0�; 1Þ
; ð13Þ

errsim ¼ 1:0 2 simty; ð14Þ

err ¼
errabs þ errsim

2
; ð15Þ

i.e. all the data in the prediction matrix, Matrix 7, are first normalized together to the range

[0.0,1.0]. Then, the absolute error of each prediction is computed by calculating the

absolute difference between each value of the normalized prediction matrix and the

value stored in the same anti-diagonal (representing the same time instant) in column 1.

The matrix of absolute errors exhibits a first column of 0.0 values. Then, a dissimilarity

error is computed. Also the matrix of dissimilarity errors shows a first column of 0.0

values. Finally, the error matrix is computed as the average between the absolute and

dissimilarity error matrices.

The average value of each column of the error matrix

err½j� ¼
1

n

Xn

i¼1

err½i; j� ð16Þ

represents the average error associated with a prediction made over j sampling intervals.
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4. Simulation results

Three separate time series were used to investigate the effectiveness of the proposed

accumulated confidence measures as indirect statistical estimators for the prediction error

to be expected.

The first time series represents the water demand of an area of the city of Barcelona

(Aigües de Barcelona 1987). The measurement data are shown in Figure 1. The time series

is only mildly stochastic. The autocorrelation of this time series is shown in Figure 2. Even

by naked eye, it is quite easy to discern a strong weekly cycle. One-and-a-half years’ worth

of daily measurements, from January 1985 to July 1986, were available to generate

the model. This is one of the time series that had been used in Cellier et al. (2010) and

López et al. (1996).

The second time series represents the water demand of the city of Rotterdam

(Europoort 1996). The measurement data are shown in Figure 3. The behaviour of this

time series is considerably more stochastic than the previous one. However, there is still

quite a bit of autocorrelation contained in this time series, as shown in Figure 4. Also this

autocorrelation function shows a weekly cycle, though the peaks decay much more rapidly

than in the case of the Barcelona series. Luckily, more measurement data were available

for Rotterdam, namely 10 years’ worth of daily measurements, from January 1986 to

December 1995.

The third time series represents the temperature of the city of Tucson (NOAA records

for the city of Tucson). The measurement data are shown in Figure 5. The data exhibit
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Figure 1. Barcelona water demand – training and testing data.
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Figure 2. Barcelona water demand – autocorrelation functions.
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a strong daily cycle. The autocorrelation function is given in Figure 6. Hourly

measurements were available for the entire year 1995.

The three time series, as well as all the programs leading to the results discussed in

subsequent sections, can be obtained from the World Wide Web at the URL: http://www.

inf.ethz.ch/ , fcellier/Pubs/FIR/ConfHorz.html.

4.1 Water demand of the city of Barcelona

The optimal FIR model for this time series was found to be

y

t 2 14dt

t 2 13dt

· · ·

t 2 8dt

t 2 7dt

t 2 6dt

· · ·

t 2 2dt

t 2 dt

t

21

0

0

0
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0

23

þ1

0
BBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCA

: ð17Þ
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Figure 4. Rotterdam water demand – autocorrelation functions.
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This result is quite reasonable. Due to the strong weekly cycle inherent in this time series,

FIR concludes that the most useful data points to predict today’s water demand are

yesterday’s water demand, last week’s water demand and the water demand 2 weeks ago.

Five hundred and seventy days (from 1 January 1985 to 24 July 1986) were used as

training data, whereas 128 days (from 25 July 1986 to 29 November 1986) were used as

testing data. Thanks to the strong autocorrelation of this time series, 570 data points were

sufficient to derive a model exhibiting fairly good short-term prediction capabilities.

Figure 7 shows the accumulated confidence obtained when predicting over multiple

days starting from the first day of prediction. As expected, the accumulated confidence

decays rapidly, although not monotonically. The accumulated confidence does not have to

decay monotonically, because the accumulated confidence function

caðtÞ ¼ clðtÞ ·
1

3
caðt 2 dtÞ þ caðt 2 7dtÞ þ caðt 2 14dtÞð Þ ð18Þ

depends each time on different past confidence values.

A prediction matrix with 16 columns was constructed, i.e. at each time instant, a multi-

step prediction over 15 days was performed. The average error err[ j ] and the average

accumulated confidence ca½j� are plotted in Figure 8. As a gauge, the error is compared to

that of the trivial prediction that operates on the simple hypothesis that the predicted water

use is equal to the current one. On average, the FIR predictor exhibits an error that is

approximately 30% below that of the trivial predictor, except for days 7 and 14, for which

the trivial predictor makes decent predictions due to the high autocorrelation for these days.
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Figure 5. Tucson weather data – training and testing data.
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As already indicated in Cellier et al. (2010), the similarity measure is slightly more

sensitive than the proximity measure, and, therefore, the accumulated confidence decays

more rapidly.

The gradients of both confidence measures are slightly steeper during the 8th day of

prediction than during the previous days. This makes sense. During the first day, the

prediction depends on measured data only. During days 2–7, one of the past data points

used in the prediction, the value yðt 2 dtÞ is already contaminated by previous predictions,

whereas the other two data points, yðt 2 7dtÞ and yðt 2 14dtÞ, are measurement data. As of

day 8, a second of the past data points used in the prediction gets contaminated, and,

therefore, the accumulated confidence drops down further. As of day 15, even the third

past data point gets contaminated, leading to a further decay in accumulated confidence.

The correlation between the averaged error, err[ j ], and the function 1:0 2 ca½j� is

indeed very strong. The reader may notice that also the error grows more rapidly during

the first day, and then again during the 8th and 9th days.

Figure 9 compares the 1-day prediction, the 8-day prediction, and the 15-day

prediction with the measurement data. The reduction in forecasting quality is quite

noticeable, yet, even a 2-week forecast is still somewhat meaningful.

Earlier models of the same time series using a Box–Jenkins approach and a

neural network methodology, respectively, were published in Quevedo et al. (1988) and

Griñó (1992).
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Figure 6. Tucson weather data – autocorrelation functions.
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4.2 Water demand of the city of Rotterdam

Due to the more stochastic nature of this time series, more data points were needed for

model identification. Of the available 10 years of data, 9.5 years of data (corresponding to

3500 data points) were used as training data (i.e. for model identification), whereas the

remaining 0.5 years’ worth of data were used as testing data (i.e. for model validation).

FIR found the following optimal mask:

y

t 2 7dt

t 2 6dt

t 2 5dt

t 2 4dt

t 2 3dt

t 2 2dt

t 2dt

t
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Figure 7. Barcelona water demand prediction – accumulated confidence values.
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Again, the model that FIR proposes is quite reasonable. Because of the more rapid

decay of the autocorrelation function, the data point yðt 2 14dtÞ is less relevant than in

the previous case. Instead, FIR chose to also use the data point yðt 2 3dtÞ for the

prediction.

Figure 10 shows the averaged error err[ j ] and the two averaged accumulated

confidence functions ca½j� as functions of the number of sampling periods, j, that the

measurement data lag behind the prediction. Just as in the case of the Barcelona series, the

errors are compared to those of the trivial predictor. It turns out that the series is so highly

stochastic that, over a short time span, FIR cannot beat the trivial predictor, i.e. it

essentially does not predict anything.

Figure 11 compares the 1-day prediction, the 8-day prediction and the 15-day

prediction to the measurement data. The 1-day prediction looks quite decent to the naked

eye, but so would the trivial prediction. It can be seen that the hills and valleys lag more

and more behind as the number of prediction days is increased. This is because they are

not really being predicted, they are only remembered.

An earlier model for the prediction of the water demand of the city of Rotterdam

(or, more precisely, its Berenplaat region) was published in Baggelaar (1992). It used a

Box–Jenkins approach to make a 1-day prediction of the water demand in that region.
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4.3 Tucson weather prediction

The third time series is of particular interest, because there exists a rich literature about

weather prediction and the (usually quantitative) models used for it. It is well established

that a prediction over about 5 days is feasible from local data, whereas a longer term

prediction will not work due to the chaotic nature of the underlying physical system. It is to

be expected that the simple FIR model used in this paper will do a much poorer job than

the sophisticated partial differential equation models discussed in the open literature, as it

only takes into account previous ambient temperature values, ignoring other important

factors such as cloud cover, humidity, sky radiation and the effective temperature of the

night sky to mention just a few of the more important influencing factors, quantities that

are being taken into account by the more sophisticated quantitative models. Yet, the

investigation is of interest in order to better understand the relative importance of

first-order vs. second-order effects, i.e. to be able to assess to what extent the temperature

is determined by its own past.

Five thousand of the available data points were used as training data, whereas another

1000 data points were used for prediction. The optimal model proposed by FIR is the

following:
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The optimal mask here is of complexity 3, i.e. makes use of one less mask

input than in the case of the previous two time series. The best mask of complexity

4 is
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Surprisingly, FIR decided that it is better to base the prediction on data values that

are somewhat off in time from the expected sampling points of t 2 24dt and t 2 48dt,

i.e. although the autocorrelation function (Figure 6) has its peaks at t 2 24dt and

t 2 48dt, FIR does not consider these to be the best sampling points to use for its

prediction.

This time, a prediction matrix with 51 columns was chosen, i.e. at each time instant, a

multi-step prediction over 50 steps was performed. The averaged errors, err[ j ], and the

averaged accumulated confidence values, ca½j�, are shown in Figure 12. Superimposed

with the averaged errors are the error values obtained for the trivial prediction. FIR cannot

beat the trivial predictor on short-term predictions due to the slow time constant of the

temperature. Yet for predictions of more than about 4 h, FIR starts to outperform the trivial

predictor, and does so consistently until 25 h. Thereafter, FIR gets lost in its own

computations, and starts producing noise instead of predicting the desired signal.

The confidence measures (lower two curves of Figure 12) show dramatically the effect

of data values being contaminated by previous predictions. Up to 21 h of prediction, only

one of the two data points is contaminated by a previous prediction, whereas the other data

point is still clean. After 42 h, the next iteration comes to play, as there are now data being

used that are doubly contaminated, i.e. each of the data points in use depends on

predictions that themselves already depend on previously made predictions.

Figure 13 compares the 1-h prediction the 24-h prediction, and the 48-h prediction

with the trivial predictions made over the same time horizons, and with the measurement
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data. Clearly, the 1-h FIR prediction is considerably better than the 1-h trivial prediction.

However, the two 24-h predictions are of comparable quality, and the same holds for the

48-h predictions.

Was FIR correct in its assessment of which sampling points to use? To answer this

question, a second simulation was performed using the mask
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The results of this simulation are plotted in Figure 14. The errors are consistently higher

than those found with the previous mask, and the confidence values are consistently lower.

Evidently, FIR was correct in its assessment. The Shannon entropy measure that FIR uses

to determine its optimal mask is considerably a better estimator of information content

than the (linear) autocorrelation function.
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5. The predictability horizon

How can the information presented up to this point be used to determine the horizon of

predictability? Clearly, the predictability horizon is not fixed, but depends on the

magnitude of errors that can be tolerated. The more accurate the results have to be, the

smaller will be the horizon of predictability.

The curves presented in Figures 8, 10, and 12 can be used in different ways. If the

desired time span of a prediction is predetermined, such as in a predictive control scheme,

the information provided in these figures can be used to determine how large the average

errors will be that result from such a demand. On the other hand, if the tolerated average

errors are given, the graphs can be used to determine the maximum time span of the

prediction, i.e. the horizon of predictability.

Unfortunately, the errors cannot be computed at the time the predictions are being made,

but only at the time for which the predictions are being made, which is too late. However,

confidence values can be estimated at the time when the prediction is being made.

For any given example, the average errors can be correlated with the corresponding

confidence values. Considering the example of the Tucson weather prediction, Figure 12

shows that a prediction over 5 h corresponds, on average, to an error of 30% (using the

error formula proposed in this paper). It also corresponds to an average similarity value of

0.92. This information can be turned around. A prediction can be said to be acceptable if its
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accompanying similarity confidence value is above 0.92. Otherwise, the prediction must

be rejected as being too speculative.

6. Conclusions

This paper has shown a systematic means to evaluate the horizon of predictability of a time

series making use of local as well as accumulated confidence measures that can be

obtained in parallel with the prediction of the time series itself using the FIR methodology.

FIR was applied to three different time series representing the water demands of

regions of the cities of Barcelona and Rotterdam, and the ambient temperature of the city

of Tucson, respectively.

The predictions obtained were not breathtaking. FIR performed rather well on the

Barcelona series that exhibits an almost periodic behaviour. It outperformed the trivial

predictor only by a moderate amount in the cases of the two more stochastic time series.

Even the Barcelona series could have been predicted almost as well using a slightly

different trivial predictor. Because of the high weekly correlation, it would make sense to

predict today’s water demand to be the same as 7 days ago rather than 1 day ago. Once this

possibility has been recognized, the predictions might be even further improved by

somewhat more elaborate (less trivial) predictors. For example, it might make sense
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to predict today’s water demand as a weighted sum of the water demands of the last week.

The factors could for instance be taken from the autocorrelation function, normalizing

their sum to a value of 1.0. Alternatively, one could use FIR to calculate the qualities of the

masks of complexity 2 that have their input 1, 2, . . . days back, and use the normalized

mask qualities as the mixing factors. Finally, one could use a neural network to train these

factors such that the forecasting error over the training data is minimized. There are as

many options for developing reasonable predictors as one may dream of.

The reader should not expect any miracles, neither of FIR nor of any other prediction

technique. A time-series predictor can only exploit the information that it is provided with.

For example, if a random number generator is used to produce a ‘time series’, neither FIR

nor any other technique will ever be able to predict anything but noise, as does the trivial

predictor. Thus, if FIR outperforms the trivial predictor only by a small amount for a given

series, this may be because there is very little signal underneath the noise.

What if another technique can predict a series considerably better than FIR? Even such

a result would not be truly surprising. For example in Weigend and Gershenfeld (1994), a

prediction of the Lorenz attractor was published that was amazingly accurate (Wan 1994).

Yet, if the three parameters of the Lorenz attractor system are only slightly modified and

the advocated approach is repeated, the method does not provide a particularly good

estimation any longer. Wan had simply been lucky – after all, someone always wins the

lottery. Only if another technique can be found that consistently outperforms FIR on a

large number of different time series, one would have to conclude that FIR does not exploit

all the information that it is being presented with.

The authors are convinced that FIR actually does its job, and does it rather well. There

are many indications that FIR indeed exploits all the information that it is being given, and

it does so in a rather robust fashion, i.e. it does not require any fine-tuning in order to make

decent predictions. Yet, the same holds for many other reasonable prediction techniques,

i.e. there are many ways in which the available information can be exploited to lead to

equally reasonable predictions. What makes FIR unique is not its prediction performance.

It is the robust and flexible fashion in which it deals with a variety of different model

identification problems, its elegant way to cope with multiple correlated time series (not

shown in this article), and its compelling way of computing a local estimate of the

confidence it has in its own prediction.
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López, J., Cembrano, G. and Cellier, F.E., 1996. Time series prediction using fuzzy inductive
reasoning. Proceedings ESM’96, European Simulation MultiConference. Ghent: SCS Europe
BvbA, 765–770.

Quevedo, J., Cembrano, G., Valls, A. and Serra, J., 1988. Time series modelling of water demand – a
study on short-term and long-term predictions. Vol. 1. New York: John Wiley, 268–288.

Wan, E.A., 1994. Time series prediction by using a connectionist network with internal delay lines.
In: A.S. Weigend and N.A. Gershenfeld, eds. Time series prediction: forecasting the future and
understanding the past. Reading, MA: Addison-Wesley, 195–217.

Weigend, A.S. and Gershenfeld, N.A., eds, 1994. Time series prediction: forecasting the future and
understanding the past. Reading, MA: Addison-Wesley.
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