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Abstract

This paper presents a new method to solve the
configuration problem on robotic hands: deter-
mine how a hand should be configured so as to
grasp a given object in a specific way, characterized
by a number of hand-object contacts to be satis-
fied. In contrast to previous algorithms given for
the same purpose, the one presented here allows
specifing such contacts between free-form regions
on the hand and object surfaces, and always re-
turns a solution whenever one exists. The method
is based on formulating the problem as a system
of polynomial equations of special form, and then
exploiting this form to isolate the solutions, us-
ing a numerical technique based on linear relax-
ations. The approach is general, in the sense that
it can be applied to any grasping mechanism in-
volving lower-pair joints, and it can accommodate
as many hand-object contacts as required. Experi-
ments are included that illustrate the performance
of the method in the particular case of the Schunk
Anthropomorphic hand.

Keywords: Configuration problem, precision
grasp, grasp planning, grasp synthesis, contact con-
straint, position analysis, inverse kinematics, an-
thropomorphic hand, prehension.

1 Introduction

Substantial efforts have been done in Robotics thus
far, to endow robots with the ability to grasp and
dexterously manipulate objects with multifingered
hands (Siciliano and Khatib 2008). Several as-
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Figure 1: A typical grasp configuration for a scalpel
can be specified by requiring the contact of regions
h1, . . . , h4 of the hand, with regions o1, . . . , o4 on
the object (top). The configuration problem is to
determine how should the hand be configured rel-
ative to the object, in order to bring the hand re-
gions into contact with their corresponding object
regions (bottom).

pects of this ability have been investigated, includ-
ing 1) the determination of object contact points on
which a form- or force-closure grasp (Bicchi 1995) is
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guaranteed (Dizioğlu and Lakshiminarayana 1984;
Markenscoff et al. 1990; Ferrari and Canny 1992;
Ponce et al. 1997; Cornellà and Suárez 2009); 2) the
delimitation of object regions such that an arbi-
trary contact on these regions assures a force/form
closure grasp (Nguyen 1988; Trinkle et al. 1995;
Pollard 2004; Roa and Suárez 2009); 3) the com-
putation of finger forces required to equilibrate an
external force applied on the object (Kerr and Roth
1986; Kumar and Waldron 1989; Buss et al. 1996;
Cornellà et al. 2008); 4) the planning of joint mo-
tions that would allow a stable and manipulable
displacement of the object (Li et al. 1989; Bicchi
and Kumar 2001; Arimoto 2007; Saut et al. 2007);
or 5) the synthesis of hand configurations satisfying
a number of grasping conditions (Borst et al. 2002;
Guan and Zhang 2003; Gorce and Rezzoug 2005;
Miller and Allen 2004; Rosell et al. 2005; Ciocarlie
and Allen 2009).

This paper addresses a problem within the latter
aspect. Given a number of regions on the surface of
the hand, and a number of corresponding regions
on the surface of the object, determine how should
the hand be configured relative to the object so that
each hand region establishes contact on its corre-
sponding object region. Fig. 1 illustrates the prob-
lem with an example. This problem, referred to
as the configuration problem hereafter, arises when
the object is to be grasped and manipulated in a
specific way, characterized by a number of contact
constraints to be satisfied (Borst et al. 2002; Guan
and Zhang 2003; Gorce and Rezzoug 2005; Rosell
et al. 2005). While the object regions may be the
outcome of an algorithm for contact region delim-
itation (Nguyen 1988; Trinkle et al. 1995; Pollard
2004; Roa and Suárez 2009), those on the hand
may derive from known patterns of static prehen-
sion (Kamakura et al. 1980), and the pairing be-
tween object and hand regions may be done using
representative points on each region (Woelfl and
Pfeiffer 1994; Fernández et al. 2005).

The configuration problem has mostly been ad-
dressed with local search methods to date. Ex-
amples of such methods include those proposed
by Borst et al. (2002), who cast the problem into
one of unconstrained optimization where the vari-
ous constraints are introduced as penalty terms in
an objective function, Gorce and Rezzoug (2005),
who rely on a neural network to learn the fin-
ger inverse kinematics, and later employ reinforce-

ment learning to optimize the pose of the hand,
and Rosell et al. (2005), who propose an iterative
method to compute joint displacements that max-
imally reduce the distance from the fingertips to
the contact points. Although such methods are
usually fast and return a solution in many cases,
their convergence is not always guaranteed, even
if a solution exists. Some of such methods, more-
over, require a sufficiently-good initial estimation of
the solution (Borst et al. 2002; Rosell et al. 2005),
which might not always be available.

This work attempts to find a way around such
limitations by proposing a new algorithm of guar-
anteed convergence; i.e., one that always provides
a solution whenever one exists. This algorithm,
which extends one introduced by Rosales et al.
(2008), does not require an initial estimation of
the solution and can, in fact, solve a superclass
of the configuration problems dealt with by Borst
et al. (2002), Gorce and Rezzoug (2005), Rosell
et al. (2005), and Rosales et al. (2008), because all
contact constraints considered in such works can
be seen as particular cases of more general ones
tractable herein.

The proposed algorithm is based on formulating
the problem as a system of polynomial equations
of special form, and then exploiting such form to
solve the equations, using an extended version of
a recent method based on linear relaxations (Porta
et al. 2009). It must be noted that, whereas the al-
gorithm in (Porta et al. 2009) can deal with lower-
pair mechanisms of general structure, it can not
be directly applied to the configuration problem of
mechanical hands, because it is unable to cope with
general contact constraints between free-form sur-
faces. Here, we extend that algorithm to be able
to specify such constraints between Bézier patches
defined anywhere on the object or on the hand, and
to solve the corresponding equations.

The rest of this paper is organized as follows. To
see which constraints come into play, Section 2 re-
views the kinematic structure of existing anthropo-
morphic hands and describes how the hand-object
contacts are specified. Section 3 shows that, reflect-
ing such constraints, the configuration problem can
be formulated as a system of polynomial equations.
Section 4 presents a numerical method to isolate
the solutions of this system. Section 5 illustrates
the performance of the approach on the particular
case of the Schunk Anthropomorphic (SA) hand—a
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commercial version of the DLR II hand (Butterfass
et al. 2004)—on various tasks requiring an object
to be grasped in a special way. Finally, Section 6
gives the paper conclusions and highlights points
deserving further attention.

2 The hand-object system

2.1 Structure of the hand

Although each anthropomorphic hand follows a
particular design, all hands are in general made
up of a palm and several fingers, one of them act-
ing as the thumb. Usually, all fingers are aligned
with each other and with the palm, except the
thumb, which is mounted asymmetrically so that
it can push against the other fingers. Each finger is
composed of several phalanges, usually articulated
through revolute (R) or universal (U) joints, whose
degrees of freedom may be actuated, unactuated, or
coupled to those of other joints. Mechanical limi-
tations usually exist, that constrain these degrees
of freedom to take values within prescribed ranges.

Many finger designs follow an URR structure or
slight variations of it. This structure closely mimics
that of the human finger (Napier 1993). It mounts
a universal joint at the finger base, to model the
metacarpophalangeal joint, and two additional rev-
olute joints, to model the proximal and distal in-
terphalangeal joints (Fig. 2). The axis of the U
joint that is fixed to the palm is responsible for ab-
duction/adduction movements, and the remaining
axes, which are usually parallel, are responsible for
flexion/extension movements of the finger.

The thumb structure is more diverse and contro-
versial (Giurintano et al. 1995; Valero-Cuevas et al.
2003). Designs are found where the thumb adopts
the same structure as that of the remaining fin-
gers, which facilitates the construction of the hand.
Other designs either decrease or increase the mobil-
ity of the thumb, by removing or adding joints with
respect to the basic URR design. In all cases, how-
ever, the tip of the thumb is allowed to face all other
fingertips, so as to be able to grasp and manipu-
late objects under stable prehensions. A summary
of representative hand designs adopted during the
last decade is provided in Table 1.

Note that, to reduce the number of motors neces-
sary to actuate the hand, many hands have coupled

U

R

R

Figure 2: Common URR structure of an anthropo-
morphic finger.

degrees of freedom. The coupling of two joints A
and B is indicated as ⁀AB in Table 1, meaning that
a rotation about an axis of A produces an identical
rotation about an axis of B. On a coupling ⁀UR only
the parallel axes are coupled.

2.2 Contact constraint specification

The contact constraints to be fulfilled are as-
sumed to be given as a collection of pairs (hc, oc),
c = 1, . . . , b, where hc and oc are two-dimensional
regions on the hand and object surfaces, respec-
tively. The constraint (hc, oc) is meant to require
the contact of hc and oc at some point, with the
normals to hc and oc aligned at such point, to avoid
the interpenetration of the regions.

By convention, hc and oc are assumed to be given
as polynomial patches. That is, it is assumed that
a polynomial function of the form

p = p(u, v), (1)

is given for each region, providing the parametric
coordinates p = (px, py, pz) of a point P in the re-
gion, in terms of some scalar parameters u and v,
bound to lie within the interval [0, 1]. To properly
align the normals of hc and oc, the parameteriza-
tion p(u, v) is supposed to be nondegenerate, in the
sense that, if pu and pv are the partial derivatives
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#Actuated Finger designs

Hand d.o.f. Little Ring Middle Index Thumb

DIST hand (Caffaz and Cannata 1998) 16 - URR

Robonaut hand (Lovchik and Diftler 1999) 12 R ⁀R ⁀RR U ⁀RR ⁀UR

LMS hand (Gazeau et al. 2001) 16 - URR

Ultralight Anthropom. hand (Schulz et al. 2001) 10 R ⁀RR ⁀U ⁀RR

GIFU II hand (Kawasaki et al. 2002) 16 U ⁀RR URR

Shadow Robot hand (Shadow Robot Company
2003)

18 RU ⁀RR U ⁀RR UUR

DLR II hand (Butterfass et al. 2004) 13 - U ⁀RR RU ⁀RR

UBH 3 hand (Lotti et al. 2004) 20 URR

MA-I hand (Suárez and Grosch 2005) 16 - URR

SA hand (Schunk GmbH & Co. KG 2006) 13 - U ⁀RR RU ⁀RR

Twendy-One hand (Iwata and Sugano 2009) 13 - U ⁀RR RUR

Table 1: Representative hand designs adopted during the last decade.

of p(u, v) with respect to u and v, then the normal
vector to the patch, defined as

n = pu × pv, (2)

never vanishes for (u, v) ∈ [0, 1] × [0, 1].
For ease of explanation, p(u, v) will adopt the

form of a standard Bézier patch of some given de-
gree M × N ,

p(u, v) =

M
∑

i=0

N
∑

j=0

bi,j · Bi,M (u) · Bj,N (v), (3)

where bi,j denote the Bézier control points of the
patch, and Bi,j(x) =

(

j

i

)

xi(1−x)j−i is the ith Bern-
stein polynomial of degree j. Note that any poly-
nomial paramaterization p(u, v) can be converted
into such form, by using an appropriate change of
basis (Farin 2001).

3 Kinematic equations

The configuration problem can be formulated as a
number of constraints that the poses of the hand
and object links must fulfill. This section formu-
lates such constraints mathematically, following the
methodology proposed by Porta et al. (2009). Once
gathered together, the constraints form a system of

polynomial equations characterizing all possible so-
lutions of the configuration problem. The special
structure of this system will be beneficial to solve
the problem numerically, as it will be shown in Sec-
tion 4.

3.1 Link constraints

It will be convenient to label the hand and object
links as L0, L1, . . . , Ln, where L0 is the palm link,
L1, . . . , Ln−1 are the various phalange links, and
Ln is the object link. The joints of the hand will
also be labelled for reference, as J1, . . . , Jm.

Each link Ll, l = 0, . . . , n, will be furnished with
a local reference frame Fl, and we will let the ref-
erence frame of the palm link, F0, to act as the
absolute frame. Moreover, each frame will have an
associated vector basis, and we will write vFl to
refer to the coordinates of vector v, written in the
basis of Fl. Vectors with no superscript will either
be expressed in the basis of the absolute frame, or
in no particular frame, depending on the context.

With the previous notation, a configuration of
the hand-object system will be an assignment of a
pose (rl,Rl) to each link Ll, l = 1, . . . , n, where
rl ∈ R

3 is the position of the origin of Fl with re-
spect to F0, and Rl is a 3×3 rotation matrix giving
the orientation of Fl relative to F0. The elements

4



Lj

Lj

Lj

Lj

Lk

Lk

Lk
Lk

(a) (b)

(c) (d)
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Figure 3: (a,b): The assembly of two links through a revolute joint is specified by imposing the coin-
cidence of two points and the alignment of two vectors. (c,d): The assembly through a universal joint
is specified by imposing the coincidence of two points and the orthogonality of two vectors. [Figure
adapted from
Porta et al. (2009).]

of the rotation matrices are not independent, be-
cause if Rl has the form (ĉl, d̂l, êl), then it must
be

‖ĉl‖
2 = 1, (4)

‖d̂l‖
2 = 1, (5)

ĉl · d̂l = 0, (6)

ĉl × d̂l = êl, (7)

for l = 1, . . . , n, in order for Rl to represent a valid
rotation. Note that the joints, the contacts, and the
mechanical limits impose additional constraints on
the link poses. These constraints are next formu-
lated explicitly.

3.2 Joint assembly constraints

Since most hand designs only resort to revolute
or universal joints (Table 1), we focus on formu-
lating the constraints imposed by such joints, but
other joint types would be formulated in a similar
way (Porta et al. 2009).

In terms of spatial constraints, the assembly of
two links Lj and Lk, through a revolute joint Ji,
is equivalent to imposing the coincidence of two
points, Pi and Qi, and the alignment of two unit
vectors, ûi and v̂i, respectively fixed to Lj and Lk

(Fig. 3a). These two points and vectors are chosen
on the axis of the joint, and they coalesce into a
single point and vector when the two links get as-
sembled (Fig. 3b). The coincidence and alignment
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conditions can be written, respectively, as

rj + Rj p
Fj

i = rk + Rk q
Fk

i , (8)

Rj û
Fj

i = Rk v̂
Fk

i , (9)

where p
Fj

i and q
Fk

i refer to the position vectors of
Pi and Qi in frames Fj and Fk, respectively. The
valid poses of the two links, hence, are those that
fulfill Eqs. (8) and (9) simultaneously.

Similarly, if Ji is a universal joint, the valid poses
of Lj and Lk are those that fulfill

rj + Rj p
Fj

i = rk + Rk q
Fk

i , (10)

Rj û
Fj

i · Rk v̂
Fk

i = 0 (11)

where Eqs. (10) and (11) impose the coincidence
of two points Pi and Qi, and the orthogonality of
two unit vectors ûi and v̂i, respectively fixed on Lj

and Lk. The points are located on the center of
the universal joint, on Fj and Fk. The vectors are
aligned with the axes of the joint on such frames

(Figs. 3c and 3d). Since vectors p
Fj

i , q
Fk

i , û
Fj

i ,

and v̂
Fk

i are known a priori, the only unknowns in
Eqs. (8)-(11) are the poses of the two links (rj ,Rj)
and (rk,Rk).

3.3 Joint limit constraints

For a revolute joint Ji incident to links Lj and
Lk, the relative angle between Lj and Lk, denoted
φi, is the angle between two unit vectors âi and
b̂i orthogonal to the axis of Ji, fixed in Lj and
Lk, respectively. Usually, due to the existence of
mechanical limits, φi can only take values within
a prescribed interval which, using a proper loca-
tion for âi and b̂i, can always be written in the
form [−αi, αi], with αi ∈ [0, π]. In our formu-
lation, these limits can be taken into account by
constraining the cosine of φi. For this, we define
a new variable ci = cos(φi), and observe that the
constraint φi ∈ [−αi, αi] is equivalent to the con-
straint ci ∈ [cos αi, 1]. Then we note that

ci = âi · b̂i. (12)

where

âi = Rj â
Fj

i , (13)

b̂i = Rk b̂
Fk

i . (14)

Thus, to constrain φi to the range [−αi, αi] it is
only necessary to add Eqs. (12)-(14) to the system
to be solved, taking into account that ci can only
take values in the range [cos αi, 1]. Joint limits for
a universal joint can be imposed in a similar way.

3.4 Contact constraints

Let us suppose that in the required grasp some
hand link Lk is required to be in contact with the
object link Ln, where the contact has to be estab-
lished between given regions hc and oc defined on
Lk and Ln, respectively (Fig. 4). Let Hc ∈ hc and
Oc ∈ oc be two points on such regions, with posi-
tion vectors hFk

c and oFn
c relative to Fk and Fn,

respectively, and let m̂c and n̂c denote unit normal
vectors to the link surface at such points. Then,
the poses of Lk and Ln that bring the two regions
in contact through Hc and Oc are those that fulfill

rk + Rk hFk
c = rn + Rn oFn

c , (15)

Rk m̂Fk
c = −Rn n̂Fn

c , (16)

where Eq. (15) imposes the coincidence of Hc and
Oc, and Eq. (16) establishes the alignment of m̂c

and n̂c.
All vectors and matrices in Eq. (15) are un-

knowns. However, since Hc and Oc are bound to
lie on hc and oc, the additional constraints

hFk
c = hFk

c (uc, vc), (17)

oFn
c = oFn

c (sc, tc), (18)

must be taken into account to properly formulate
the contact, where hFk

c (uc, vc) and oFn
c (sc, tc) are

parametric descriptions of regions hc and oc, given
in the form of Eq. (3). Note that the Bézier control
points of the patches hFk

c (uc, vc) and oFn
c (sc, tc)

must be given in frames Fk and Fn, respectively.
Analogously, the unit vectors m̂Fk

c and n̂Fn
c in

Eq. (16) must also be related to the patch parame-
ters. This relationship can be established by taking
into account that, for a parametric patch p(u, v) of
the form of Eq. (3), the normal vector n(u, v) de-
fined by Eq. (2) can be written as

n(u, v) =

2M−1
∑

i=0

2N−1
∑

j=0

b′

i,j · Bi,2M−1(u) · Bj,2N−1(v), (19)
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so that it can be thought of as a new Bézier patch,
but now of degree (2M − 1) × (2N − 1). Explicit
formulas for computing the control points b′

i,j in
this expression, in terms of the control points bi,j of
p(u, v), are given by Yamaguchi (1997). Thus, m̂Fk

c

and n̂Fn
c can be related to the patch parameters by

defining two unnormalized vectors mFk
c and nFn

c ,
and their norms µc and νc, placed in correspon-
dence with m̂Fk

c and n̂Fn
c through the constraints

µ2
c = ‖mFk

c ‖2, (20)

ν2
c = ‖nFn

c ‖2, (21)

mFk
c = µcm̂

Fk
c , (22)

nFn
c = νcn̂

Fn
c , (23)

and setting the additional constraints

mFk
c = mFk

c (uc, vc), (24)

nFn
c = nFn

c (sc, tc), (25)

whose right-hand sides follow the form of Eq. (19).

3.5 Final system of equations

Summarizing, the final system of equations defining
the possible grasp configurations will be formed by
Eqs. (4)-(7) for each link, Eqs. (8) and (9) for each
revolute joint, Eqs. (10) and (11) for each universal
joint, equations of the form of (12)-(14) for each
joint limit constraint, and Eqs. (15)-(18) and (20)-
(25) for each contact constraint. Note that the vari-
ables involved in this system are:

• The pose variables (rl,Rl) corresponding to
links Ll, l = 1, . . . , n.

• The variables âi, b̂i, and ci corresponding
to the joint limit constraints on all joints Ji,
i = 1, . . . ,m.

• The contact point coordinates hFk
c and oFn

c ,
associated normal vectors mFk

c , nFn
c , m̂Fk

c ,
n̂Fn

c , vector norms µc and νc, and parameters
uc, vc, sc, and tc, corresponding to all contact
constraints (hc, oc), c = 1, . . . , b.

It is worth mentioning that the rl variables of this
system can actually be eliminated, through a pro-
cess explained in detail by Porta et al. (2009). The
elimination is based on the fact that, for a loop of

Lk

Ln

Hc

Oc

m̂c

n̂c

oc

hc

Figure 4: Elements intervening in a contact con-
straint (hc, oc). The constraint is satisfied when
points Oc ∈ oc and Hc ∈ hc coincide, with the
normals on such points aligned.

links pairwise constrained by joint or contact con-
straints, Eqs. (8), (10), and (15) occurring along
the loop can be substituted by an equivalent “loop-
closure” equation which is their sum, which does
not contain any of the rl variables. This process
simplifies the system, and can always be invoked
if desired, but the numerical method that follows
is equally applicable to both the original and the
simplified system.

4 Numerical Solution

Let ne and nv be, respectively, the number of equa-
tions and variables of the final system described in
Section 3.5. This system can be compactly written
as

Φ(q) = 0, (26)

where q = (q1, . . . , qnv
) refers to the vector of its

variables, and Φ : R
nv → R

ne refers to the vector-
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valued function describing its equations. A numer-
ical method able to solve this system is next de-
scribed, based on the approach proposed by Porta
et al. (2009). The approach entails expanding the
equations to a canonical form (Section 4.1) and
then using a branch-and-prune method exploit-
ing this form to isolate the solutions (Sections 4.2
and 4.3).

4.1 Equation expansion

We distinguish two groups of equations in the fi-
nal system Φ(q) = 0. A first group encompassing
Eqs. (17), (18), (24), and (25), whose polynomials
follow the Bézier form of Eqs. (3) and (19), and
a second group encompassing the remaining equa-
tions, whose polynomials only contain monomials
of the form qi, q2

i and qiqj . Note that all equations
of the second group can be easily converted into
linear form by introducing the changes of variables

pi = q2
i (27)

bk = qiqj (28)

for all q2
i and qiqj monomials occuring in them.

After such changes, we obtain a new system of the
form

Λ(x) = 0
Ψ(x) = 0

}

, (29)

where x is an nx-dimensional vector encompass-
ing all of the original qi variables, and the newly-
introduced pi and bk ones. Here, Λ(x) = 0 rep-
resents a collection of linear equations in x, and
Ψ(x) = 0 represents a collection of equations, each
of which can only adopt one of these three forms:

xk = x2
i , (30)

xk = xixj , (31)

xk = f(xi, xj). (32)

While the first two forms correspond to the changes
of variables in Eqs. (27) and (28), the latter form
corresponds to the scalar components of Eqs. (17),
(18), (24), and (25), so that f(xi, xj) refers to a
Bernstein-form polynomial of degrees di and dj in
xi and xj , respectively.

4.2 Equation solving

It can be seen that, under the used formulation,
each variable xi of x can only take values within a

prescribed interval (Porta et al. 2009), so that the
Cartesian product of all such intervals defines an
initial nx-dimensional box B ⊂ R

nx which bounds
all solutions of Eqs. (29). The algorithm to isolate
such solutions recursively applies two operations on
B: box shrinking and box splitting.

Using box shrinking, portions of B containing no
solution are eliminated by narrowing some of its
defining intervals. This process is repeated until
either 1) the box is reduced to an empty set, in
which case it contains no solution, or 2) the box is
“sufficiently” small, in which case it is considered a
solution box, or 3) the box cannot be “significantly”
reduced, in which case it is bisected into two sub-
boxes via box splitting (which simply bisects the
box through its largest interval). To converge to all
solutions, the whole process is recursively applied
to the new sub-boxes, until one ends up with a
collection of solution boxes, whose side lengths are
below a given threshold σ.

As it turns out, this algorithm explores a binary
tree of boxes, whose internal nodes correspond to
boxes that have been split at some time, and whose
leaves are either solution or empty boxes. By prop-
erly implementing the bookkeeping of boxes await-
ing to be processed, this tree can be explored either
in depth- or breadth-first order, the choice of order
depending on whether one wishes to isolate just one
solution, or the entire solution set.

Note that the algorithm is complete, in the sense
that the solution boxes it returns include all solu-
tion points of Eqs. (29). Thus, the algorithm will
always succeed in isolating a solution, whenever one
exists, provided that a small-enough value of the σ

parameter is used. Detailed properties of the al-
gorithm, together with examples of its output, are
given by Porta et al. (2007, 2009).

4.3 Box shrinking

We next see how a given sub-box Bc ⊆ B can be
reduced, discarding portions of the box that contain
no solution.

First, observe that the solutions of Eqs. (29) ly-
ing within Bc ⊆ B must lie on the linear variety
defined by Λ(x) = 0. Thus, in principle, we might
shrink Bc to the smallest possible box bounding
this variety inside Bc. The lower and upper limits
of the shrunk box along dimension xi, i = 1, . . . , nx,
would respectively be found by solving the two lin-
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Figure 5: Polytope bounds within Bc. (a) The
points on xk = x2

i are bound by the triangle
A1A2A3. (b) The points on xk = xixj are bound
by the tetrahedron B1B2B3B4. (c) The points on
xk = f(xi, xk) are bound by the convex hull of
the points Cpq. In this example, f(xi, xk) is a
Bernstein-form polynomial of degree two in xi and
xj , so that the control points Cpq form a grid of
size 3 × 3.

ear programs

LP1: Minimize xi, subject to: Λ(x) = 0,x ∈ Bc,

LP2: Maximize xi, subject to: Λ(x) = 0,x ∈ Bc.

Bc may be further reduced, however, because the
solutions must also satisfy the equations Ψ(x) = 0.
These equations can be taken into account by not-
ing that for each equation it is possible to define a
convex polytope that bounds the equation solutions
within Bc. Thus, to better delimit the solutions of
the system, Bc can be safely reduced to the smallest
possible box enclosing the intersection of Λ(x) = 0
and the polytopes of all equations in Ψ(x) = 0.
This reduction can be implemented by represent-
ing the individual polytopes with linear inequali-
ties, and adding such inequalities to the constraint
set of the linear programs LP1 and LP2. We next
see how such polytopes can be derived, for each one
of Eqs. (30)-(32). The notation [li, ui] will refer to
the interval of Bc relative to xi.

To derive a polytope for xk = x2
i , note that the

portion of the parabola xk = x2
i lying within Bc is

bound by the triangle A1A2A3 in the xi-xk plane,
where A1 and A2 are the points where the parabola
intercepts the lines xi = li and xi = ui, and A3 is
the point where the tangent lines at A1 and A2

meet (Fig. 5a). Thus, the polytope of xk = x2
i

is defined by the triangle A1A2A3, which can be
represented by three inequalities that correspond
to the three edges of this triangle.

To derive a polytope for xk = xixj , we realize
that the portion of the surface xk = xixj included
in Bc is bound by a tetrahedron B1B2B3B4 in the
xi-xj-xk subspace, whose vertices Bi are obtained
by lifting the four corners of the rectangle [li, ui]×
[lj , uj ] vertically to the surface xk = xixj (Fig. 5b).
Thus, the polytope of xk = xixj is defined by the
tetrahedron B1B2B3B4, and can be represented by
four inequalities, corresponding to the four faces of
this tetrahedron.

Finally, to derive a polytope for xk = f(xi, xj),
we resort to the subdivision and convex-hull prop-
erties of Bernstein polynomials (Farin 2001). Using
the subdivision property, on the one hand, f(xi, xj)
is written in the form

f(xi, xj) =

di
∑

p=0

dj
∑

q=0

bp,q · Bp,di
(xi) · Bq,dj

(xj),

9



Number of contacts 2 3 4

slightly constrained moderately constrained highly constrained

Object scalpel

Task name Upholding Handling Incision
Task requirements The task requires picking

the scalpel up by means of
a two-fingered grasp, us-
ing the index finger and
the thumb.

The task requires handling the
scalpel delicately using the mid-
dle finger, the thumb, and the
palm.

The hand must contact
the scalpel as in a usual
grasping of a pencil, using
the middle and index fin-
gers, the thumb, and the
palm.

nv , ne, d 219, 209, 17 243, 235, 16 331, 324, 18
Computed solution

CPU time [s] 106 255 418

Object teapot

Task name Lid lifting Service Transportation
Task requirements The lid must be pulled up

through its knob using a
two-fingered grasp involv-
ing the index finger and
the thumb.

The hand is required to hold
the teapot by its handle, placing
the thumb on top of the handle,
while the index and middle fin-
gers embrace the handle.

The palm has to contact
the bottom of the teapot,
while the index, middle,
and ring fingers enclose
the teapot so that it does
not slide out of the hand.

nv , ne, d 219, 209, 17 288, 278, 19 312, 305, 17
Computed solution

CPU time [s] 114 262 375

Object guitar

Task name Tunning Playing Holding
Task requirements The tunning task requires

the hand to grasp a given
key of the guitar with
the index finger and the
thumb, in order to tune
the tension of the corre-
sponding string.

The fingertips must contact at
specified strings and frets in or-
der to perform a given chord,
while the thumb contacts the
guitar neck.

The task requires an al-
most whole-hand grasp of
the guitar, on a specific
region where the guitar
can not be damaged while
being transported.

nv , ne, d 219, 209, 17 307, 298, 19 331, 324, 18
Computed solution

CPU time [s] 68 229 664

Table 2: Benchmark configuration problems and their computed solutions
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where the scalars bp,q are the so-called control
points of f(xi, xj) relative to the interval [li, ui] ×
[lj , uj ]. Using the convex-hull property, on the
other hand, we know that the surface xk = f(xi, xj)
must be contained inside the convex-hull of the 3D
points Cpq with coordinates

cpq =

„

li +
p

di

(ui − li), lj +
q

dj

(uj − lj), bp,q

«

, (33)

for p = 0, . . . , di, and q = 0, . . . , dj (Fig. 5c).
This convex hull defines a polytope for equation
xk = f(xi, xj), which can be encoded as a set of in-
equalities by resorting to an algorithm for convex-
hull computations (Barber et al. 1996).

5 Experiments

The presented method has been implemented in C,
extending the libraries of the CUIK platform (Porta
et al. 2009). This section illustrates the perfor-
mance of the method under this implementation,
on various experiments where an object needs to
be grasped in a particular way, in order to fulfill a
given task.

The experiments involve the solution of vari-
ous configuration problems defined on a scalpel, a
teapot, and a guitar, where each problem involves
a number of regions to be placed in contact, im-
posed by the specific requirements of the task to
be accomplished with the object (Table 2). In all
experiments, the SA hand has been used to grasp
the objects (Fig. 6), but the presented methodology
is equally applicable to any other hand. While the
area of all contact regions defined on the hand is
approximately 40% of the fingertip area (the dark
patches on the upper limbs in Fig. 6b), the area of
the contact regions on the object varies from exper-
iment to experiment, from 2% of the fingertip area
on the teapot knob (“lid lifting” experiment), to
9000% of such area on the guitar neck (“playing”
experiment).

We next explain how the equations of the hand
can be set up, and later discuss the algorithm’s
performance on the mentioned experiments.

5.1 Equations for the SA hand

The SA hand is composed of four identical fin-
gers that follow the anthropomorphic structure il-

lustrated in Fig. 2. Three of these fingers are di-
rectly mounted on the palm, and act as ring, mid-
dle, and index fingers. The fourth finger is mounted
on an intermediate link articulated with the palm
through a revolute joint, which allows this finger to
act as a thumb (Fig. 6). The hand has a total of
fourteen links (one palm and thirteen phalanges)
and thirteen joints (nine revolute joints and four
universal joints).

To set up the equations, the links of the hand are
labelled as L0, . . . , L13, as shown in Fig. 6, and the
joints as J1, . . . , J13, letting Ji be the joint between
Li−1 and Li (for clarity, joint labels are not shown
in Fig. 6). Twenty-six points and unit vectors are
then defined, that provide the positions and orien-
tations of all rotation axes of the hand relative to
the involved links. The points correspond to the
centers of the universal joints and to the midpoints
of the revolute joints. The vectors correspond to
unit vectors aligned with the rotation axes of the
joints. These points and vectors are displayed in
Fig. 6 and their coordinates are given in Table 3,
in milimeters. All reference frames Fl are located
with their origin in Ql, so that q

Fl

l = (0, 0, 0), for
l = 0, . . . , 13. The orientations of such frames can
be deduced easily from the coordinates provided
in Table 3. Taking into account these definitions,
Eqs. (4)-(11) can readily be written for all links and
joints involved.

To write down the equations of Section 3.3, the
mechanical limits of the SA hand must be consid-
ered. Regarding the universal joints, the rotations
about their ûi and v̂i axes are limited to the ranges
[−15o, 15o] and [−4o, 75o], respectively. Regarding
the revolute joints, all of them can only rotate in
the range [4o, 75o], except for the revolute joint at
the base of the thumb, which is restricted to the
range [0o, 90o]. The reference configuration corre-
sponding to setting all rotation angles to zero is
shown in Fig. 6b.

Finally, it must be taken into account that not all
joints of the SA hand are independently actuated.
The two distal joints of each finger are coupled, so
that when one of such joints is actuated, a rotation
of the same angle about the other is produced. In
the adopted formulation, the coupling of two rota-
tion angles is simply imposed by equating the sine
and cosine of such angles.
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Figure 6: Geometric parameters (a) and reference configuration (b) of the Schunk Anthropomorphic
Hand. The various joint types are indicated in (b).

5.2 Computed solutions

A system of equations has to be solved for each task
of Table 2, encompassing the equations of the SA
hand, together with the contact equations that im-
pose the specific requirements of the task. It must
be noted that Eqs. (4)-(11) relative to fingers not
in contact with the object can actually be removed
from this system, because such fingers do not inter-
vene in any kinematic loop, and hence impose no
loop-closure constraint on the overall system.

Table 2 provides the size of the equation sys-
tem (26) to be solved in each case, in terms of
the number of variables (nv) and equations (ne) it
involves, and the dimension of its solution space
(d), predicted as the number of variables minus
the number of non-redundant equations. Note in
this regard that Eq. (9) introduces equations that
are redundant in terms of predicting such dimen-
sion, because ûi and v̂i are unit vectors, and it is

sufficient to establish the x and y components of
Eq. (9) to determine the alignment of Lk relative
to Lj . The third component of Eq. (9), however,
is needed to remove a sign ambiguity in such align-
ment. Since a similar redundancy is introduced by
Eq. (16), there will be as many redundant equa-
tions as the number of joints and contacts involved
in the problem at hand.

As it can be observed from Table 2, typical con-
figuration problems yield solution spaces of rather
high dimension. To avoid the curse of dimensional-
ity as much as possible, and converge to one solu-
tion rapidly, the proposed algorithm must be set to
explore in depth-first order (Section 4.2). Running
the algorithm in this order, we have obtained the
hand-object configurations depicted, in the CPU
times indicated in each case. All times reported
correspond to a parallelized version of the algo-
rithm, executed on a grid of 8 DELL Poweredge
computers, equipped with two Intel Quadcore Xeon
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Joint Ring Middle Index Thumb

type Par. Value Par. Value Par. Value Par. Value

R

p
F2

3
(30, 0, 0) p

F4

6
(30, 0, 0) p

F7

9
(30, 0, 0) p

F12

13

(30, 0, 0)

û
F2

3
(0, 1, 0) û

F5

6
(0, 1, 0) û

F8

9
(0, 1, 0) û

F12

13

(0, 1, 0)

v̂
F3

3
(0, 1, 0) v̂

F6

6
(0, 1, 0) v̂

F9

9
(0, 1, 0) v̂

F13

13

(0, 1, 0)

R

p
F1

2
(67.80, 0, 0) p

F4

5
(67.80, 0, 0) p

F7

8
(67.80, 0, 0) p

F11

12

(67.80, 0, 0)

û
F1

2
(0, 1, 0) û

F4

5
(0, 1, 0) û

F7

8
(0, 1, 0) û

F11

12

(0, 1, 0)

v̂
F2

2
(0, 1, 0) v̂

F5

5
(0, 1, 0) v̂

F8

8
(0, 1, 0) v̂

F12

12

(0, 1, 0)

U

p
F0

1
(−4.30,−40.16, 145.43) p

F0

4
(−4.30, 0, 145.43) p

F0

7
(−4.30, 40.16, 145.43) p

F10

11

(97, 6,−87)

û
F0

1
(1, 0, 0) û

F0

4
(1, 0, 0) û

F0

7
(1, 0, 0) û

F10

11

(cos 55o, 0, sin 55o)

v̂
F1

1
(0, 1, 0) v̂

F4

4
(0, 1, 0) v̂

F7

7
(0, 1, 0) v̂

F11

11

(0, 1, 0)

R

p
F0

10

(−3, 27.10, 0)

û
F0

10

(0, 0,−1)

v̂
F10

10

(1, 0, 0)

Table 3: Parameters of the Schunk Anthropomorphic hand.

E5310 processors and a 4Gb RAM each one, using
a threshold of σ = 0.1. Note that the cost of com-
puting a solution increases with the number of con-
tact constraints to be satisfied. This is because the
size of the linear programs to be solved during box
shrinking is proportional to the number of poly-
tope inequalities introduced by such constraints,
which increases the cost of each iteration of the
algorithm (Section 4.3).

6 Conclusions

This paper has presented a new solution to the con-
figuration problem of robotic hands. When com-
pared to other approaches to this problem, the
proposed method is always guaranteed to converge
to a solution whenever one exists. An additional
feature of the method is its ability to deal with
general region-to-region contact constraints, as op-
posed to point-to-region (Borst et al. 2002; Rosell
et al. 2005) or point-to-point (Gorce and Rezzoug
2005) constraints, and the possibility to define the
involved regions as general Bézier patches, to better
adapt the regions to the real surfaces of the hand
and object considered.

The method performs sufficiently well and re-
turns problem solutions in reasonable times. Such
times are arguably large, however, so as to allow
the execution of the method in real-time robotic
platforms devoted to manipulation tasks. Instead,
the approach is more suitable to off-line compu-

tations in the context of grasp planning, where ef-
forts are being made to develop standard databases
of graspable objects, along with corresponding sets
of stable grasps for each object. Algorithms al-
ready exist that exploit such precomputed grasps
to produce proper grasps of objects perceived on-
line (Goldfeder et al. 2009).

Although the focus of the work has been on deal-
ing with the kinematic and contact constraints in-
herent to the hand-object system, the approach
seems to be versatile enough so as to accommo-
date the treatment of additional constraints aris-
ing in grasp synthesis, like stability, or dexterity
constraints (Siciliano and Khatib 2008, Chapter
28). An interesting point for further research, thus,
would be to explore the possibility of formulat-
ing such constraints in the form required by the
method, to be able to synthesize grasp configura-
tions satisfying all constraints simultaneously.

It is worth noting that, as defined, the configura-
tion problem does not account for collision avoid-
ance constraints. While such constraints might in
principle be added to Eq. (26), this would consid-
erably increase the size of the linear programs to
be solved (Section 4.3), with the consequent in-
crease in execution time. As an alternative, one
can initially ignore collision constraints, and then
use retraction techniques to try to eliminate ob-
ject penetrations later on (Zhang and Manocha
2008), should such penetrations occur on the re-
turned configuration. Clearly, this is another point
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deserving further attention.

Finally, further work needs to be done, also, on
automating the process of deciding which object re-
gions should be placed in contact with which hand
regions. While some heuristic methods have been
proposed for the case in which such regions are iso-
lated points (Woelfl and Pfeiffer 1994; Fernández
et al. 2005), algorithms able to cope with general
free-form regions are still to be developed.
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Dizioğlu, B. and Lakshiminarayana, K. (1984).
Mechanics of form closure. Acta Mechanica,
52(1):107–118.

Farin, G. (2001). Curves and Surfaces for CAGD:
A Practical Guide. Morgan Kaufmann, 5th edi-
tion.

Fernández, C., Reinoso, O., Vicente, A., and
Aracil, R. (2005). Kinematic Redundancy in
Robot Grasp Synthesis. An Efficient Tree-based
Representation. In Proceedings of the IEEE In-
ternational Conference on Robotics and Automa-
tion, pages 1203–1209.

Ferrari, C. and Canny, J. (1992). Planning optimal
grasps. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages
2290–2295.

Gazeau, J. P., Zehloul, S., Arsicault, M., and Lalle-
mand, J. P. (2001). The LMS hand: force and po-
sition controls in the aim of the fine manipulation
of objects. In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation,
pages 2642–2648.

14



Giurintano, D. J., Hollister, A. M., Buford, W. L.,
Thompson, D. E., and Myers, L. M. (1995). A
virtual five-link model of the thumb. Medical En-
gineering & Physics, 17(4):297–303.

Goldfeder, C., Ciocarlie, M., Dang, H., and Allen,
P. (2009). The Columbia grasp database. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation, pages 1710–1716.

Gorce, P. and Rezzoug, N. (2005). Grasping pos-
ture learning with noisy sensing information for
a large scale of multifingered robotic systems:
Research articles. Journal of Robotic Systems,
22(12):711–724.

Guan, Y. and Zhang, H. (2003). Kinematic
feasibility analysis of 3-D multifingered grasps.
IEEE Transactions on Robotics and Automation,
19(3):507–513.

Iwata, H. and Sugano, S. (2009). Design of hu-
man symbiotic robot TWENDY-ONE. In Pro-
ceedings of the IEEE International Conference
on Robotics and Automation, pages 580–586.

Kamakura, N., Matsuo, M., Ishii, H., Mitsuboshi,
F., and Miura, Y. (1980). Patterns of static pre-
hension in normal hands. The American Journal
of Occupational Therapy, 34(7):437–445.

Kawasaki, H., Komatsu, T., and Uchiyama,
K. (2002). Dexterous anthropomorphic robot
hand with distributed tactile sensor: Gifu
hand II. IEEE/ASME Transactions on Mecha-
tronics, 7(3):296–303.

Kerr, J. and Roth, B. (1986). Analysis of mul-
tifingered hands. The International Journal of
Robotics Research, 4(4):3–17.

Kumar, V. and Waldron, K. J. (1989). Subopti-
mal algorithms for force distribution in multifin-
gered grippers. IEEE Transactions on Robotics
and Automation, 5(4):491–498.

Li, Z., Hsu, P., and Sastry, S. (1989). Grasp-
ing and coordinated manipulation by a multifin-
gered robot hand. The International Journal of
Robotics Research, 8(4):33–50.

Lotti, F., Tiezzi, P., Vassura, G., Biagiotti, L., and
Melchiorri, C. (2004). UBH 3: An anthropomor-
phic hand with simplified endo-skeletal structure

and soft continuous fingerpads. In Proceedings of
the IEEE International Conference on Robotics
and Automation, pages 4736–4741.

Lovchik, C. S. and Diftler, M. A. (1999). The Robo-
naut hand: A dexterous robot hand for space.
In Proceedings of the IEEE International Con-
ference on Robotics and Automation, pages 907–
912.

Markenscoff, X., Ni, L., and Papadimitriou, C. H.
(1990). The geometry of grasping. The Interna-
tional Journal of Robotics Research, 9(1):61–74.

Miller, A. T. and Allen, P. K. (2004). Graspit! A
versatile simulator for robotic grasping. Robotics
& Automation Magazine, IEEE, 11(4):110–122.

Napier, J. (1993). Hands. Princeton University
Press.

Nguyen, V.-D. (1988). Constructing force- closure
grasps. The International Journal of Robotics
Research, 7(3):3–16.

Pollard, N. S. (2004). Closure and quality equiv-
alence for efficient synthesis of grasps from ex-
amples. The International Journal of Robotics
Research, 23(6):595–613.

Ponce, J., Sullivan, S., Sudsang, A., Boissonnat,
J.-D., and Merlet, J.-P. (1997). On computing
four-finger equilibrium and force-closure grasps
of polyhedral objects. The International Journal
of Robotics Research, 16(1):11–35.

Porta, J. M., Ros, L., Creemers, T., and Thomas,
F. (2007). Box approximations of planar link-
age configuration spaces. Journal of Mechanical
Design, 129(4):397–405.

Porta, J. M., Ros, L., and Thomas, F. (2009). A
linear relaxation technique for the position anal-
ysis of multiloop linkages. IEEE Transactions on
Robotics, 25(2):225–239.
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