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Abstract

This work presents an intergated strategy for planning and learning suitable to execute tasks with robotic
platforms without any previous task specification. The approach rapidly learns planning operators from
few action experiences using a competitive strategy where many alternatives of cause-effect explanations
are evaluated in parallel, and the most successful ones are used to generate the operators. The system
operates without task interruption by integrating in the planning-learning loop a human teacher that
supports the planner in making decisions. All the mechanisms are integrated and synchronized in the
robot using a general decision-making framework.
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1 Introduction

In the last years special emphasis has been placed on the development of robots capable of helping
humans in carrying out human-like tasks. Human environments usually involve very large domains,
where many unexpected situations can arise easily, and coding the behaviours to cope with every possible
situation may result impractical. The alternative is to let the robot learn these behaviours autonomously.
However, for this alternative to make sense, learning should occur rapidly to let the robot be operative in
areasonable amount of time, and without interrupting much the ongoing task every time a new behaviour
should be learned.

This work presents a system that uses Al techniques for planning and learning to avoid the need
of coding these behaviours in real robot platforms. The system integrates a logic-based planner and a
learning approach that constantly enriches the capabilities of the planner for decision making, allowing
the robot to fulfil a wide spectrum of tasks without a previous coding of planning operators. Learning
and planning occur intertwined, without task interruption, and using experiences that arrive sequentially.

The strong requirements for learning behaviours pose insurmountable difficulties to the existing
learning paradigms, where on-line learning is not considered [10, 17], a significant amount of prior
knowledge need to be provided [8], or a large number of experiences are required [16, 17, 2, 14, 10].
To cope with the learning requirements, we devise a competitive approach that tries in parallel different
explanations of the cause-effects that would be observed from action executions, and use the ones with
higher probability of occurrence to code basic operators for planning. Trying different explanations of
cause-effects in parallel increases the chances of having a successful explanation among the competing
ones, which, in turn, increases the speed of learning. To determine the probability of occurrence we
propose a specialization of the m-estimate formula [5] that compensates the lack of experience in the
probability estimation, thus producing confident estimations with few examples.

Due to incomplete knowledge, the planner may fail in making a decision, interrupting the ongo-
ing task. To prevent these interruptions, we include a human teacher in the planning-learning loop that
provides the action to execute in the ongoing task when the planner fails. Finally, since the learning
approach needs the actual experience of actions to evaluate the cause-effect explanations, the planning
and learning mechanisms should be integrated in a more general framework that permits the grounding
of the symbolic descriptions of actions, and the abstraction into attribute-values of the raw perceptions
obtained from the sensors of the robot. To this end, we use a general decision-making framework that
integrates and synchronizes all the involved mechanisms in the robot. The proposed system was success-
fully tested in two real robot platforms: a Stdubli robot arm, and the humanoid robot platform ARMAR
IIT [1]. Next section presents the decision-making framework used for the integration. Section 3 briefly
explains the planner and the role of the teacher. Then, in Section 4, the learning mechanisms are detailed
and evaluated. The implementation in real robot platforms are described in Section 5. The paper ends
with some conclusions.

2 Decision-Making Framework

For the integration of planning and learning in the robot platform we use a conventional decision-making
framework (figure 1). The PERCEIVE module, above the planner, generates a symbolic description of
the initial situation by the abstraction of the values provided by the sensors into a set of discrete attribute-
values. The initial situation, together with the GOAL specification, are used by the PLANNER to search
for plans to achieve the goal from that situation. If a plan is found, the planner yields the first action to
execute. If not, the TEACHER is asked for action instruction. The action, provided either by the planner
or the teacher, is sent to the EXE module in charge of transforming the symbolic description of the
action into low-level commands for the actual action execution. After the action execution, a symbolic
description of the reached situation is provided by the other PERCEIVE module. The LEARNER takes
the situations descriptions before and after action execution, together with the symbolic description of
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the action, and generates or refines cause-effect explanations and planning operators. After learning, the
last situation perceived is supplied to the planner that searches for a new plan. This process is continued
until the goal is reached, in which case the planner yields the end of plan signal (EOP).

PERCEIVE GOAL

PLANNER

EOP NO
TEACHER

DONE

YES
EXE

PERCEIVE

l

LEARNER

Figure 1: Schema of the decision-making framework.

3 The Planner and the Teacher

The logic-based planner implemented is the PKS planner [13] which uses STRIPS-like planning oper-
ators [9] for plan generation. STRIPS-like operators are widely used due to their simplicity and their
capability of providing a compact representation of the domain, which is carried out in terms of relevant
attribute-values that permit predicting the effects of executing an action in a given situation. This kind
of representation is suitable for problems where the total number of attributes is large, but the attributes
relevant to predict the effects in a particular situation is small. A STRIPS-like planning operator (PO)
is composed of a precondition part, which is a logic clause with the attribute-values required for the
given action to yield the desired changes, and the effect part which specifies additions and deletions of
attribute-values with respect to the precondition part as a result of the action execution.

Since the PO database may be incomplete, which is the reason of why a learner is needed to complete
it, the planner may fail to make a decision because of incomplete knowledge. In this case we may adopt
two alternative strategies to support the planner in decision making. On the one hand, we may define
an action selection strategy, e.g. select an action randomly or an action that would be taken in a similar
situation, to provide the robot with an action to execute. On the other hand, we may simply use the
help of a human teacher to instruct the action to execute. We choose to use a human teacher since
this may diminish significantly the time spent for learning useful POs, and since its inclusion in the
planning-learning loop is very simple and straightforward for the kind of applications we are dealing
with: human-like tasks. Teacher instructions simply consist of a single action to be performed in the
current situation according to the task in progress.



Section 4 The Learner 3

4 The Learner

The learner has the important role of providing the planner with POs. To this end, we propose a learning
approach that evaluates in parallel cause-effect explanations of the form CEC; = {C;, E;}, where C; is the
cause part, and E; is the effect part. The cause part C; = {H;,q;} contains a symbolic reference of an
action a;, and a set of attribute-values H; that, observed in a given situation, would permit to obtain the
expected changes in the situation when g; is executed. The effect part E; codes these changes as the final
values of the attributes that are expected to change with the action.

4.1 Planning Operator Generation

The execution of every action instructed by the teacher produces the generation of many alternative
cause-effect explanations that compactly represent the observed transition, as well as the generation of a
PO. First, a cause-effect explanation CEC; is generated by instantiating a; with the instructed action, H;
with the initial values of the attributes that have changed with the action, and E; with final values of the
changed attributes. From this initial CEC; a planning operator is generated using a; as the name of the
operator, H; as the precondition part, E; as the additions in the effect part, while the values in H; changed
with the action (all of them in this case) are the deletions.

After the generation of the PO, many other cause-effect explanations are generated from the newly
generated one. This is done to provide the learning method with more alternatives to try in parallel in
case the newly generated PO fails (see next section). Every new additional explanation CEC,, is generated
with the same action a, = g; and effect E,, = E; of the CEC;, but with a set H, consisting of one among
all the specializations in one attribute-value of H;. This general to specific strategy is followed to keep a
compact representation.

4.2 Planning Operator Refinement

A PO is refined every time its execution leads to an unexpected effect. First, all the cause-effect expla-
nations that share the same action a and effect E of the failed PO r are brought together,

CECr:{CEC,-]a,-:a,Ei:E}. (1)
Then, from the set CEC,, the CEC with highest chance of occurrence,

CEC,,= argmax P(E;|H;,a;), @
CEC;eCEC,

is selected for the refinement of the PO, using H,, to replace its precondition part.

4.2.1 Cause-Effect Evaluation

The problem of evaluating the CEC; € CEC, can be handled as a classification problem, where each H;
represents a classification rule, and the classes are positive, when a situation covered by H; permits to
obtain E; with a;, and negative, otherwise. For example, the probability in (2) may be represented by a
probability for a positive instance, Py = P(E; | H;,a;).

We require the system to rapidly generate and refine POs using as few experiences as possible. This
implies that, if the lack of experience is not taken into account in the estimation, the approach may
wrongly produce large premature estimations of these probabilities, degrading the performance of the
system, mainly at early stages of the learning. To prevent premature estimations we use the m-estimate

formula [5, 7],
ny+mc

Pp=— 3
T4 +m 3)
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where n, is the number of experienced positive instances, n_ is the number of experienced negative
instances, ¢ is an a priori probability, and m is a parameter that regulates the influence of c. The m
parameter plays the role of the number of instances covered by the classification rule. For a given c, the
larger the value of m the lesser the influence of the experienced instances in the probability, and the closer
the estimation to c. This permits to regulate the influence of the initial experiences with m, preventing
large premature estimations. To illustrate how this regulation takes place, we use the extreme case of
setting m = 0, which leads to the traditional frequency probability calculation,

p— @)

ny+n_
where, if an estimation has to be done using only a couple of positive instances, it may produce a 100 %
chances of being a positive, disregarding the uncertainty associated to the instances that are still pending
to be tried. However, if we define a larger value of m, the influence of the observed instances decays
and the estimation is closer to c. The setting of m is defined by the user according to the classification
problem at hand. One known instantiation of the m-estimate is to set m =2 and ¢ = 1/2, in which case
we have the Laplace estimate [5],
ny+n_+2

widely used in known classification methods such as CN2 [6]. However, the original m-estimate does
not provide a way of regulating the influence of m as more experiences are gathered since the value of m
is assumed constant. This degrades the accuracy of the estimation as learning proceeds, it being worse
for larger values of m, which makes the estimation to be biased towards c. To avoid this problem, we
propose to use a variable m that consists in an estimation of the number of instances n® covered by the
classification rule that are still pending to be tried,

P,

~0
]{r:anAw7 (6)
ny+n_+n

where 7 is an estimation of n°. Equation (6) can be interpreted as the conventional frequency probability

calculation (4), where each inexperienced instance contributes with a fraction c of a sample for each class.
Note that, in (6), the value /? is particular for each rule, regulating the influence of the lack of experience
in each particular case. Since the kind of applications we are dealing with permits to calculate exactly
the number of instances covered by a classification rule, ny, we can calculate exactly the number of
inexperienced instances as

nwznT—n+—n,. (7

Using (7) in (6), setting the prior probability as ¢ = 1/2, and reformulating, we obtain,

P+:1(1+”—+—"—‘), @®)

which we name density-estimate, and it is used hereafter for the probability estimation. Note that, with
this equation, the probability of a class changes as a function of the density of samples for each class
rather than as a function of the relative frequencies. Low densities of samples will produce low variations
in the probability, preventing large premature estimations when few examples are collected. As learning
proceeds, the influence of the densities will be larger and the probability estimation will tend to the actual
probability. For instance, when all the instances are already experienced, we have ny =n, +n_, and
equation (8) is equal to (4).

4.3 Performance Evaluation

The evaluation is carried out in two different classification problems so as to assess the generality of
the method: the binary classification problem of the Monk’s problem number 2 [15] and the multi-class
classification problem of the Car-Evaluation [3].
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Figure 2: Comparing the performance of the density-estimate with that of the m-estimate.

4.3.1 The Monk’s Problem Number 2

The first evaluation is carried out in the binary classification problem of the Monk’s problem number
2 [15]. We choose this problem since it is a complex classification problem that poses difficulties to
many known classification methods, and since it permits a direct analogy with the binary classification
problem of partitioning the set of attributes H; into positive or negative. For the learning of the binary
function, we use the competitive strategy (2), where each classification rule is equivalent to a set H; of
a CEC; € CEC,, a positive instance is equivalent to a situation in which E is obtained with a (see (1)),
and a negative instance is equivalent to a situation in which E is not obtained when a is executed. We
select, from all the classification rules covering a given instance, on the one hand, the rule with highest
Py, and, on the other hand, the rule with highest P_. Then, the classification for that instance is the class
with highest probability. Two new rules are generated every time a misclassification occurs adding an
attribute-value selected randomly.

We first compare the results obtained from using the original m-estimate, with m = 0,2,4,8, and the
density-estimate, to calculate the probability of a class. Note that, for m = 0,2, we obtain (4) and (5),
respectively. Training instances are selected randomly in the input space. After each training iteration,
a test episode, consisting in calculating the classification error at every input in the input space, is run.
The results present the average of the classification errors of 10 runs for each considered case. We set
¢ =1/2 for all cases.

The results show that, when few instances are experienced (figure 2(a)), the performance of the con-
ventional m-estimate seems to improve as the value of m increases. However, this result is reversed as
learning proceeds (figure 2(b)) due to the inability of the original m-estimate to compensate the compo-
nent introduced by the large m. Our proposal, instead, precisely compensates the effect of the lack of
experience in the estimation of the probability, producing more confident estimations, and outperforming
the original m-estimate at all the stages of the learning process.

To illustrate how the competitive strategy increases the speed of learning, we performed an experi-
ment using only the density estimation and generating 10 rules, instead of 2 rules, every time a misclas-
sification occurs. Figures 3(a) and 3(b) present the results for the average of 10 runs at early stages of the
learning and in the long run, respectively. Note the improvement in the convergence speed for the case
of 10 rules generation, which permits to achieve a classification without errors much faster than in the 2
rules generation case.
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Figure 3: Comparing the performance of the density-estimate for 2 and 10 rules generation.

4.3.2 The Car-Evaluation Problem

To more thoroughly evaluate the performance of the competitive approach we apply it to the multi-class
classification problem of the Car-Evaluation [3]. For the probability estimation, we use our proposed
formula (6) with a probability ¢ that depends on the number of classes, K = 4. We select this benchmark
since it constitutes a different classification problem than the Monk’s number 2 problem, which permits
to assess the generality of our approach, and since it allows for comparisons with the state-of-the-art
approach of online bagging and boosting [12, 11].

For comparison we use the same experimental set-up as in [12] and we contrast the results obtained
with those of the best performance achieved from all the batch and online methods, i.e. AdaBoost (see
figure 4 in [12] for more information). Figure 4 presents the results of the experiments as an average over
ten runs. As seen from the figure, our strategy achieves a good performance faster and with more stable
convergence profile than the AdaBoost.

Fraction Correct
o
[e]

0.75F
0.7r
0.65- - - - Competitive Strategy |
—— AdaBoost
0.6

0 200 400 600 800 1000 1200 1400
Number of Examples

Figure 4: Comparing the performance of the competitive strategy and the AdaBoost (curve extracted from [12]) in
the classification problem of the Car-Evaluation.
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Figure 5: Scenarios. (a) ARMAR III. (b) Stdubli arm.

5 Implementation in Real Robot Platforms

The system has been implemented in two different robot platforms: the humanoid ARMARIII [1] and the
Staubli arm. To show the synergies between the integrated components, we use a task based on the test
application of Sokoban [4] since it permits a clear visualization of the interesting cases in which these
synergies take place, and actions can be easily instructed by a lay person. Given a goal specification,
consisting of a target object to be moved and its desired destination, the robot should learn to move the
target object to the specified position using vertical or horizontal movements. To achieve the goal, the
robot may be forced to move objects blocking the trajectory in an ordered way.

5.1 ARMAR Il Robot

The task in the ARMAR III platform consists in moving the green cup (light grey in figures) on a side-
board where there are other blocking cups, and without colliding with others (figure 5a). The horizontal
and vertical movements are performed through pick and place with grasping. Figure 6 presents a simple
experiment that permits to illustrate all the cases for learning, where the green cup should be moved to
the right but there is a blocking cup. At the time of this experiment, the robot has learned a single PO
from a similar experiment, but without a blocking object. The PKS notation for this PO is [13],

< action name = "TR2” >
< preconds >
K(z0(0)) "
K(e(R2))
<\ preconds >
< effects >
add(Kf, to(R2));
add(Kf, e(0));
<\ effects >
<\ action >
where "TR2” refers to the action of moving the target object two cells to the right, to is the position of
the target object, and e indicates that the referenced cell is empty. ”R2” refers to the cell two positions
to the right of the initial position of the target object. Note that this PO does not indicate that the cell
”R1” in the trajectory to the goal should be empty. In figure 6a, the planner provides PO "TR2” to be
executed, but the action is bypassed to avoid a collision. Since no changes occur, the expected effects are
not fulfilled and the PO refinement mechanism is triggered (Section 4.2). Then, from the set

CECtr; = {CECi|a; = TR2,E; = {to(R2)),e(0))}},

the selected CEC,, (2) has H,, = {t0(0),e(R2),e(R1)}, and it is used to refine the precondition part of
the PO, which now includes e¢(R1). CEC,, has a probability P, = 0.5001, with number of situations
experienced so far in the initial two experiments n, = 1 and n_ = 0, and with number of total situations
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Figure 6: Experiment in which the three cases of learning take place. For further explanations see the text.

covered by the cause part C,,, ny = 4096. For the sake of illustration, the sets H of other competing
CECs in CECrgr; are: H; = {t0(0),e(R2)}, with P, = 0.5, np. =1, n_ =1, ny = 8192, and Hy =
{to(0),e(R2),0(R1)}, with P =0.4999, n, =0, n_ = 1, np = 4096, where o(R1) indicates that an
object is one cell to the right of the target object. After the PO refinement, the planner fails to find a plan
since the refined PO is no longer applicable (figure 6b). Then, the teacher instructs to move the blocking
cup up, and the learner generates a new PO using the generation mechanism presented in Section 4.1.
Finally, in figure 6¢, the freed path permits reaching the goal successfully using the refined PO. Figure 7
presents another experiment, performed at later learning stages, in which the green cup should be moved
to the right, but there are more blocking cups than in the previous example. In this case, the cup to the
right of the target cup cannot be moved up since there is another cup blocking this movement, and neither
further to the right since there is not enough space for the hand of the robot to release the cup without
knocking over the cup farthest to the right. With the POs learned so far, the robot is able to generate a
three-step plan that permits to cope with all these restrictions, moving the cup blocking the target cup
first one position to the right, where no cups block its upwards movement, and then up. This frees the
path of the target cup which permits fulfilling the goal.

Initial Situation

Goal reached =3P
"

Figure 7: Example of the performance of the system in a more complex situation with many blocking cups.

5.2 Staubli Arm Robot

The task implemented in the Stdubli arm uses counters instead of cups (figure 5b). The target counter is
marked with a red label (light grey label in figures). In this case, we restrict the environment to be a 3
by 3 grid world, where the amount of counters ranges from 1 to 8. Collisions are now allowed. After the
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robot has learned a large enough set of POs, it is capable of solving difficult situations such as the one
presented in figure 8, in which the target counter should be moved from the lower middle position, to the
upper right corner of the grid, starting from the difficult situation where all the cells are occupied except
one.

& Initial Situation
Gdal reached =———>@=mgn
- — |
| N | - - | |
AU

Figure 8: Snapshots that illustrate the sequence of actions executed to move the target counter to the upper right
position.

6 Conclusions

In this work, we proposed a system that integrates Al techniques for planning and learning to enhance
the capabilities of a real robot in the execution of human-like tasks. The learner enriches the capabilities
of the planner by constantly generating and refining planning operators. In turn, the planner widens the
capabilities of the robot, since it allows the robot to cope with different tasks in previously inexperienced
situations using deliberation.

The system works reliably thanks to the rapid learning of planning operators using a competitive
strategy that tries many alternatives of cause-effect explanations in parallel rather than sequentially. The
inclusion of a human teacher in the planning-learning loop to support the planner in decision-making
permits the robot to generate planning operators that are relevant for the ongoing task, increasing also
the speed of learning. The teacher instruction, together with the capability of the learner of generating
and refining planning operators at runtime, prevents undesired task interruptions. The Al techniques
for planning and learning are integrated with the mechanisms of real robot platforms using a simple
decision-making framework. Non-robotic applications can also be handled as long as a set of discrete
actions and a set of perceptions, in the form of attribute-values, can be provided to the system. We believe
that the proposed system for planning and learning can be used to enhance the performance of other real
dynamic systems, such as industrial supply chains.
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